
Correspondence

Extending the lumped subglacial–englacial hydrology
model of Bartholomaus and others (2011)

Bartholomaus and others (2011) model the subglacial and

englacial hydrology of Kennicott Glacier, Alaska, USA, and

the glacier’s response to a lateral lake outburst flood that

occurs each summer, i.e. a jökulhlaup. The model uses

observed input flux and highly simplified subglacial and

englacial morphology to reproduce the hydrograph of the

Kennicott River, other hydrographs and the glacier motion

(sliding). The model is ‘lumped’, i.e. the entire hydrological

system is represented by one cell, with the advantage that

parameter identification is possible given the observed input

and output fluxes.

The goal of this correspondence is to extend their model

in three specific ways: (1) to show a (lumped) pressure

equation which follows from their equations, (2) to show

how to extend their model to the distributed flowline case,

with attention to the form of the distributed pressure

equation, and (3) to state a water-amount-vs-pressure

relation that applies in the steady-state case of their model.

Thus this correspondence is largely deductive, showing what

holds in the Bartholomaus and others (2011) theory, but with

a distributed model as an extension.

Their model (the ‘Bartholomaus model’) would seem to

be significantly different from more recent distributed

models, specifically the theory of Hewitt (2011), Hewitt

and others (2012) and Schoof and others (2012). Some

similarities exist among them, however. All of these theories

describe the evolution of subglacial linked-cavity systems

and include physical opening and closing processes for

these cavities. On the other hand, the just-cited distributed

theories are entirely subglacial, while the Bartholomaus

model has both subglacial and englacial water storage.

The distributed version of the lumped pressure equation

derivable in the Bartholomaus model (Eqn (8) below) is a

parabolic regularization of the elliptic pressure equation in

Schoof and others (2012). In other words, we show that the

pressure equation in Schoof and others (2012) is the zero

englacial porosity limit of the distributed version of the

pressure equation implicit in the Bartholomaus model. A

connection between the Bartholomaus model and distrib-

uted models is observed by Hewitt (2013), but this is limited

to the addition of an englacial storage term in the mass

conservation equation. Werder and others (2013) include a

parabolic pressure equation, with englacial void ratio in the

coefficient of the pressure rate term, similar to what is

implicit in the Bartholomaus model. Exposing these

connections of the Bartholomaus model to more recent

literature is a motivation for this correspondence.

In the Bartholomaus model, the total volume of liquid

water stored in the glacier is SðtÞ, and this is split into

englacial SenðtÞ and subglacial SsubðtÞ portions:

S ¼ Sen þ Ssub: ð1Þ

Mass conservation in the model is the simple statement

(Bartholomaus and others, 2008)

dS

dt
¼ QinðtÞ � QoutðtÞ: ð2Þ

In the Kennicott Glacier application, fluxes Qin and Qout

are observed.

The subglacial cavities have geometry determined by

bedrock bumps that have horizontal spacing �x ,�y , height h

and width wc. These combine to give a dimensionless

capacity parameter f ¼ hwc=ð�x�yÞ; the value f ¼ 0:05 is

used for Kennicott Glacier. Each cavity has cross-sectional

area AcðtÞ and thus volume wcAc. The glacier occupies a

rectangle of dimensions L�W in the map-plane so that the

number of cavities is � ¼ ðLW Þ=ð�x�yÞ. It follows that the

subglacial storage volume is Ssub ¼ ðwcAcÞ� ¼ fLWAc=h,

proportional to Ac in this lumped case.

Englacial water is assumed to fill a well-connected system

of crevasses and moulins up to a level zwðtÞ above the

bedrock, in a system that has macroporosity �, so the

englacial storage is Sen ¼ LW�zw. Denote the subglacial

water pressure by PðtÞ. In the Bartholomaus model, P is

hydrostatic, so knowledge of P is equivalent to knowledge of

englacial storage, because of the assumed efficient connec-

tion to the subglacial system; the englacial system acts as a

piezometer. In fact, noting the relation Sen ¼ LW�zw above,

and denoting the density of fresh water by �w and gravity by

g, we have

P ¼ �wgzw ¼
�wg

LW�
Sen: ð3Þ

Now, in the Bartholomaus model the cavity cross-

sectional area Ac evolves by physical opening and closure

processes. The rate of production of subglacial water

through wall melt is denoted here simply by Z, with sign

Z > 0 when cavities are enlarging. The melt rate Z is further

parameterized in the Bartholomaus model, but the details

are unimportant to the derivation here. Let Cc ¼ ð2AÞ=nn,

where A and n are the ice softness parameter and power in

the Glen ice flow law (Glen, 1955), respectively. Denote the

sliding speed by ub and let Po ¼ �igH be the overburden

pressure, where �i is the density of ice. In these terms the

cavity evolution equation is

dAc

dt
¼ ubh þ Z � CcAcðPo � PÞ

n
: ð4Þ

The three terms on the right are opening by cavitation,

opening by wall melt, and closure by creep, respectively (cf.

equation (4) in Bartholomaus and others, 2011).

Equations (1–4) combine to give an evolution equation

for the pressure, as follows. From Eqn (3) we can write the

pressure rate of change dP=dt in terms of the englacial

storage rate of change dSen=dt . Then using the time-

derivative of Eqn (1), and both Eqn (2) and the proportion-

ality between Ssub and Ac, we can rewrite in terms of fluxes

and cavity area:

dP

dt
¼

�wg

LW�

dSen

dt

¼
�wg

LW�

dS

dt
�

dSsub

dt

� �

¼
�wg

LW�
Qin � Qout �

fLW

h

dAc

dt

� �

:

ð5Þ

Finally, Eqn (4) eliminates dAc=dt:

dP

dt
¼

�wg

LW�
Qin � Qout �

fLW

h
ubh þ Z � CcAcðPo � PÞ

n
½ �

� �

:

ð6Þ
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Though it is not stated there, Eqn (6) follows from the

equations in Bartholomaus and others (2011). However,

equation (12) in Bartholomaus and others (2011) is a

restriction of Eqn (6) to the case of no creep closure and

no input/output fluxes.

Furthermore, Eqn (6) suggests how to extend the

Bartholomaus model from ‘lumped’ to ‘distributed’. Con-

sider a one-dimensional glacier under which the water is

flowing in the positive x direction. Recalling W is the

transverse width, replace L by �x, the along-flow length of

one cell in a finite-difference or finite-volume scheme. Then

Eqn (6) becomes

�W

�wg

dP

dt
¼ �

Qout � Qin

�x
�

fW

h
ubh þ Z � CcAcðPo � PÞ

n
½ �,

ð7Þ

which still describes the pressure in one cell. Because Qin is

the upstream input flux into the cell while Qout is the

downstream output, the continuum limit of Eqn (7) is

therefore clear, with ðQout � QinÞ=�x ! @Q=@x as �x ! 0.

Thus a distributed flowline form of the Bartholomaus model

includes the partial differential equation

�W

�wg

@P

@t
¼ �

@Q

@x
�

fW

h
ubh þ Z � CcAcðPo � PÞ

n
½ �: ð8Þ

A distributed extension of the Bartholomaus model is not

viable without a Darcy or other expression for Q. Such a flux

parameterization was not needed in the Kennicott Glacier

application because the input and output flux data form

complete boundary conditions for a one-cell model.

However, using any reasonable Darcy-type formulation for

the flux Q, such as the power laws (2.10) of Schoof and

others (2012), Eqn (8) becomes a nonlinear parabolic

equation for the pressure. Furthermore, when using a Darcy

flux expression, the �! 0 (singular) limit of Eqn (8) is an

elliptic equation for the water pressure, namely equation

(2.12) in Schoof and others (2012).

Equation (8) should be solved in a time-dependent,

coupled system with Eqn (4). The state space of the resulting

model, i.e. the values that must be given as initial conditions

for these evolution equations, is the pair of variables ðAc, PÞ,

where both Ac (equivalently, the subglacial water layer

thickness �) and P depend on time t and space x.

Note that Eqn (8) should be solved subject to inequalities

0 � P � ð�w=�iÞPo. This is because the emergence of water

at the surface of the glacier, from the efficiently connected

englacial system, bounds the subglacial pressure. (Though

Bartholomaus and others (2011) report a supraglacial geyser

lifting water a few meters above the glacier surface, which

violates the given upper bound, the use of the bound in a

model supposes, reasonably, that such over-pressure geysers

are short-lived and small in magnitude relative to over-

burden.) Compare the physical justification of related

bounds 0 � P � Po in Schoof and others (2012), in a model

which includes the �! 0 limit of Eqn (8).

An additional implication of the Bartholomaus model,

again not stated in Bartholomaus and others (2011),

concerns the pressure in steady state. Specifically,

d=dt ¼ 0 in Eqn (4) gives this relationship between pressure

P and cavity area Ac:

P ¼ Po �
ubh þ Z

CcAc

� �1=n

: ð9Þ

In the Bartholomaus model, the cavities described by Ac are

assumed to always be water-filled (cf. Schoof and others,

2012). Thus Eqn (9) is equivalent to saying that in steady

state the pressure is a function Pð�Þ of the area-averaged

thickness � of the subglacial water layer. Equation (9) also

suggests the behavior of coupled Eqns (4) and (6) (or (4) and

(8) in the distributed case) at large englacial porosity values.

The above reasons might support the a priori inclusion of a

water-amount-vs-pressure functional relationship like Eqn (9)

in a model, for use only on longer-timescale questions, but

this is certainly not recommended for numerical models

which are intended to follow the timescales that drove the

construction of the Bartholomaus model. However, a power

law P ¼ Poð�=�critÞ
7=2

, with �crit a positive constant, is used by

Flowers and Clarke (2002) in non-steady circumstances also.

Equation (9) is not a power law, however, though it is at least

increasing with � like the Flowers and Clarke (2002) relation.

It is interesting to observe from Eqn (9) that the steady

water pressure does not depend on the englacial macro-

porosity �. Though the englacial pressure is parameterized

by P ¼ �wgzw in Bartholomaus and others (2011), its steady

value is entirely determined by the balance between sliding,

wall melt and creep closure in the subglacial system. Thus

the englacial system is passive in determining subglacial

steady state, while the value of � is critical in determining

timescales of the hydrological, and thus glacier sliding,

response (Van Pelt, 2013).

A two-horizontal-dimension version of coupled equations

(4) and (8), using a full-cavity assumption as in the

Bartholomaus model, and using the general Darcy flux

relation (2.10) from Schoof and others (2012), is numerically

solved in the ‘distributed’ hydrology model code which is

part of the Parallel Ice Sheet Model (PISM) in its 0.6 release

(February 2014) (see Bueler and Van Pelt, 2014). The steady-

state result (Eqn (9)) is not used in the PISM implementation,

other than when a user supplies to PISM the initial values for

water amount (i.e. Ac or � in the above equations) without

supplying initial values for pressure; the result of Eqn (9) is as

good an initial guess for pressure as any other in this data-

deficient situation.

We have observed that implementing a parabolic pres-

sure equation like Eqn (8), subject to either of the above

bounds on pressure, is substantially simpler than numeric-

ally solving the variational inequality form of the corres-

ponding elliptic pressure equation (Schoof and others,

2012). In particular, our work shows that physical pressure

bounds can be preserved, a part of the linked-cavities model

dismissed as ‘prohibitively expensive’ by Werder and others

(2013), by explicit time-stepping of such a parabolic

pressure equation (Bueler and Van Pelt, 2014).
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