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Force on a moving liquid blister
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This paper investigates the motion of a liquid blister, trapped between an elastic sheet and
a rigid substrate. The blister is driven by a frictionless blade moving at a constant velocity,
forcing a constant gap that causes fluid to bleed from the blister. The sheet adheres to
the substrate ahead of the blister. The main goal of the study is to assess the magnitude
and orientation of the force applied by the blade on the moving blister. The solution is
constructed for the asymptotic case of a long blister. Thanks to a separation of scales, the
asymptotic solution is obtained by matching the boundary layers at the front end and at the
back end of the blister to an outer solution characterised by a uniform pressure in the bulk.
Both boundary layers are formulated as travelling-wave equations for the gap between the
sheet and the substrate. The formulation accounts for a moving fluid front, distinct from
the separation edge, and for a tail with a gap tending to an a priori unknown value far
behind the blister. Scaling of the governing equations indicates that the solution depends
on two numbers: a dimensionless toughness K and a scaled gap W imposed by the moving
blade. The key result concerns the dependence of the scaled force on the two numbers
controlling the solution of the moving liquid blister. There are two asymptotic solutions:
for small gaps at the blade, the force on the blade is dominated by viscous dissipation at
the back end and only depends on aperture W ; for large gaps, the horizontal force H only
depends on toughness K, a function of both fluid viscosity and energy of separation at the
front end, whereas the vertical force V depends on both K and W .

Key words: boundary-layer structure, lubrication theory

1. Introduction

Processes involving fluid-driven separation of an elastic sheet from a stiff substrate are
ubiquitous in geosciences and engineering. Emplacement of shallow magmatic intrusions
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(Bunger & Cruden 2011; Michaut 2011; Thorey & Michaut 2016), and the flow-driven
formation of a cavity at the contact between an ice sheet and bedrock caused by rapid
drainage of supraglacial lakes (Tsai & Rice 2012; Hewitt, Chini & Neufeld 2018) are
large-scale instances of such processes in nature. Excavation of hard rocks (Young 1999),
cave inducement in mining (Jeffrey et al. 2000) and contaminant spill remediation
(Murdoch 2002) represent examples of engineered hydraulic fractures near a free surface.
Other technological applications include the manufacturing of silicon wafers (Tayler &
King 1987; King 1989), the fabrication of micro-electro-mechanical systems (Hosoi &
Mahadevan 2004) and the liquid-blister test to measure the adhesive strength of the
interface due to the surface tension of an interstitial fluid layer (Chopin, Vella & Boudaoud
2008).

Many of these problems can advantageously be modelled as the peeling, by bending,
of an elastic sheet from a rigid adhesive substrate (Flitton & King 2004; Lister, Peng &
Neufeld 2013). Models based on beam or plate theory, lubrication theory and fracture
mechanics lead to the formulation of a sixth-order nonlinear diffusion equation (Flitton &
King 2004; Lister et al. 2013; Hewitt, Balmforth & De Bruyn 2015), which governs the
evolution of the fluid-filled gap between the elastic sheet and the substrate. However, this
equation does not have a solution if the fluid is assumed to fully fill the growing cavity.
Indeed the conditions of zero flux and zero aperture at the moving front lead to a singular
solution that is not compatible with the underlying hypotheses (Tayler & King 1987; Flitton
& King 2004; Lister et al. 2013; Hewitt et al. 2015).

Different forms of regularisation of the solution in the tip region have been proposed in
recent studies. These include assuming the existence of a thin pre-wetting film of fluid of
constant thickness (Flitton & King 2004; Lister et al. 2013; Hewitt et al. 2015); relaxing
the impermeability constraint so as to allow leak-off of the injected fluid in the permeable
substrate (Hewitt et al. 2018); introducing a moving-fluid front that lags behind the
separation front (Hewitt et al. 2015; Ball & Neufeld 2018; Wang & Detournay 2018); and
finally considering the full elasticity equations rather than the simplified Euler–Bernoulli
equations governing the bending of the elastic sheet, on account that these latter equations
are not applicable within a distance of order of the layer thickness from the tip (Lister,
Skinner & Large 2019). As the global solution is critically dependent on the dynamics of
the separation front, the form of regularisation has to be motivated by the physics of the
problem. For example, it is not realistic to invoke the presence of a pre-wetting film of
fluid for a hydraulic fracture propagating along an initially dry adhesive interface.

In this paper we consider the motion of a two-dimensional liquid blister trapped between
a rigid substrate and an adhering elastic sheet, with the goal of assessing the force required
to displace the blister. The motion of the blister is driven by a frictionless blade that
is kinematically constrained to locally impose a constant gap between the sheet and the
substrate. The complete closure of this gap to prevent bleeding of the blister at its back
end would require the application of an infinite force on the blade, as could be surmised
from the related problem of scraping a viscous fluid from a plane surface (Taylor 1962;
Giacomin et al. 2012; Seiwert, Quéré & Clanet 2013). However, the gap far behind
the blister is itself an unknown, not unlike the residual film thickness in the elastic
Landau–Levitch dip-coating problem, which involves withdrawal of a plate from a bath
of fluid covered by a thin elastic interface (Landau & Levich 1942; Dixit & Homsy 2013;
Warburton, Hewitt & Neufeld 2020). A common example of application of this simplified
model is the attempted removal of a viscous blister from a wallpaper by sliding a blade on
the paper.

The paper is structured as follows. First, the moving blister problem is formulated in
terms of the gap between the elastic sheet and the rigid substrate. The formulation accounts
918 A15-2
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for a moving fluid front distinct from the separation edge at the front end of the blister and
for a tail with a residual gap behind the blister. An asymptotic solution for a long blister is
then described. Scaling of the governing equations indicates that this asymptotic solution
depends on two numbers: one can be interpreted as a dimensionless toughness, the other
is a scaled measure of the gap imposed by the blade. A separation of scales allows for the
construction of a solution obtained by matching boundary layers at the front end and at
the back end to an outer solution in the bulk of the blister. The key result concerns the
dependence of the scaled force on the two numbers controlling the solution of the moving
liquid blister.

2. Mathematical description

2.1. Problem definition
Figure 1 illustrates a liquid blister forced to advance between a thin elastic sheet and a
rigid substrate by the action of a rigid frictionless blade moving at constant velocity v,
while enforcing a constant gap w0 at the blister back end. The elastic layer of thickness
h is characterised by flexural rigidity D = Eh3/12(1 − ν2), where E is Young’s modulus
and ν is Poisson’s ratio. The fluid is assumed to be incompressible and Newtonian with
viscosity μ. Ahead of the blister, the elastic sheet adheres to the substrate. The strength of
the interface is characterised by adhesion energy Gc, whose dissipation is assumed to be
localised at the separation front. The blister consists of a fluid-filled part and a cavity at
the front filled with fluid vapours, which is at negative pressure −σ0, with the atmospheric
pressure taken as reference. There is therefore a lag between the separation front and the
fluid front. A residual fluid film trapped between the sheet and the substrate is left behind
the blister. This region, assumed to be infinite, is referred to as the tail.

Although the existence of fluid lag at the front end of the blister is a requirement to avoid
a pressure singularity incompatible with the underlying mathematical model, a gap w0 is
required at the receding end of the blister, where the blade touches the elastic sheet, to
regularise the pressure singularity that would otherwise arise. Both the fluid lag λ and the
residual gap w∞ far behind the blade are a priori unknown and thus part of the solution.

The blister is characterised by three moving boundaries: a separation front where the
elastic layer breaks away from the substrate, a fluid front lagging behind the separation
front and a receding front at the blade. In the moving coordinate system with origin at
the blade, x = X − vt, where X is a fixed coordinate and t is time, the separation front
is located at x = �(t), the fluid front at x = �f (t), with �f = � − λ. The geometry of the
blister and of the tail is described by the gap thickness w(x, t), which also represents the
deflection of the elastic sheet.

The force F imparted by the frictionless blade pressing down on the sheet to squeeze
the fluid forward is normal to the neutral axis of the sheet. As the slope of the elastic
sheet at the point of contact is w′(0, t) > 0, the horizontal component H of force F can be
expressed as H = Vw′(0, t), where V the vertical component given by V = D(w′′′(0−, t) −
w′′′(0+, t)) within the approximation of Euler–Bernoulli beam theory. When the blister
propagates, the external power Hv balances the dissipation at the propagation front, which
is associated with the delamination of the sheet from the substrate, the dissipation in the
viscous fluid and the rate of change of the elastic energy in the sheet.

In summary, the set of parameters S defining the moving blister problem consists of the
blade velocity v, the imposed gap w0 at the blade, the adhesion energy Gc, the bending
stiffness D, the viscosity μ and the negative lag pressure −σ0. Clearly, the problem is time
dependent and its solution requires the initial conditions be defined. However, the solution
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Figure 1. Liquid blister trapped between an elastic sheet and a rigid substrate. The blister is driven by a steadily
moving blade, kinematically constrained to enforce a constant gap w0 at the receding back end of the blister. A
negative pressure −σ0 acts in the lag cavity behind the separation front.

eventually reaches a quasi-steady state in the limit w0 → 0, with the volume of fluid in the
blister remaining approximately constant.

2.2. Governing equations
To complete the description of the problem, we introduce fluid pressure p(x, t) and fluid
flux q(x, t) measured relative to the fixed coordinate X. In the lag region �f < x < �, the
vapour pressure is p = −σ0, recalling that the atmospheric pressure is taken as reference.
The fluid pressure vanishes sufficiently far behind the blade in order to satisfy static
equilibrium between the fluid film and the elastic sheet.

The equations governing the unknown fields in both the blister and the tail, as well
as the evolution of the blister length � and of the fluid lag λ = � − �f are formulated
in the moving coordinate system attached to the blade. The elastic sheet is viewed as
a Euler–Bernoulli beam and thus its deflection w(x, t) is related to the net pressure p
according to

D
∂4w
∂x4 = p, x ∈ [−∞, �] (2.1)

noting that p = −σ0 in the lag region �f < x ≤ �. The flow of fluid in the moving blister
is assumed to be governed by lubrication theory. Within this description, the continuity
equation written in the moving coordinate system yields

∂w
∂t

− v
∂w
∂x

+ ∂q
∂x

= 0, x ∈ [−∞, �f ] (2.2)

and Poiseuille law reads

q = −w3

μ′
∂p
∂x

, (2.3)

where μ′ = 12μ is introduced to remove numerical factors from the scales defined in § 3.
These three equations together with the initial gap profile and the following conditions

on w(x, t) constitute a closed system of equations to determine the blister thickness w(x, t),
length �(t) and lag λ(t) as functions of the parameter set S .

2.2.1. At the delamination front x = �

The geometrical conditions are

w = ∂w
∂x

= 0, (2.4)
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and the separation criterion is

∂2w
∂x2 =

(
2Gc

D

)1/2

. (2.5)

The second condition (2.4) results from the assumption that the substrate is rigid and that
the delamination is localised at the moving front. The separation condition (2.5) expresses
the curvature at the peeling front in terms of the ratio of the critical energy release rate and
the bending stiffness (Landau & Lifshitz 1986; Hutchinson & Suo 1991; Majidi & Adams
2009).

2.2.2. At the fluid front (x = �f )
The movement of the fluid front is determined by the Stefan condition

v + d�f

dt
= q

w
. (2.6)

There are five continuity conditions[
∂ iw
∂xi

]
= 0, i = 0, . . . , 4, (2.7)

where [ f (�)] = f (x)|x=�+
f

− f (x)|x=�−
f

. In particular, continuity of the fourth-order
derivative represents continuity of the pressure at the fluid front, i.e. p(�f ) = −σ0.

2.2.3. In the receding region (x ≤ 0)
The aperture at the blade is known,

w = w0, x = 0. (2.8)

With the net pressure vanishing far behind the blister, the gap tends to a constant but
unknown value w∞(t),

w = w∞ (t) , x → −∞. (2.9)

Once w(x, t) has been determined by solving the system of (2.4)–(2.8), the components
of the force F applied by the blade, normal and parallel to its motion can be deduced from
the slope of the deflection and the jump of the shear force at x = 0.

2.3. Long blister limit
The asymptotic solution for a long blister is characterised by the existence of a central
region with a quasi-uniform pressure, to which are appended two boundary layers: one
at the front of the blister, the other at the back. The boundary layers can be considered
as being quasi-autonomous and can thus be approximated as a travelling wave. However,
in the limiting case w0 → 0, the whole solution is in the form of a travelling wave, after
undergoing some transient evolution from an initial state at rest.

This structure of the long-blister asymptotic solution rests on two key points. First, the
matched curvature between the front-end boundary layer and the core region is the same
as the matched curvature at the back-end boundary layer, a consequence of the front–back
symmetry of the outer solution resulting in part from the uniformity of the pressure in the
central region. Second, the velocity v′ of the separation front and of the fluid front is to first
order the same as the velocity v of the blade. Actually, as demonstrated in Appendix A,
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v′ = (1 − ε(t))v, where ε ∼ w∞�−2, noting that w∞ → 0 and thus v′ → v in the limit
w0 → 0. Thus, although the blister progressively contracts as it is bleeding fluid through
the gap at the blade, the solutions in the boundary layers are to first order translationally
time invariant.

The outer solution of the central region couples the two boundary layers: the back
imposes the front velocity, but the front imposes the matched curvature at the back, which
ultimately controls the force on the blade under certain conditions. With the matched
curvature remaining constant to first order, the uniform pressure in the core region of
the blister varies according to p ∼ �−2 (this dependence of p on the blister length could
be translated into a dependence on time t, on account that the bleeding rate is to first order
constant in the long-blister asymptotic case).

In the boundary layers, the continuity equation (2.2) can therefore be simplified to

v
dw
dx

= dq
dx

. (2.10)

Integrating this equation yields

q = vw (2.11)

in the front-end boundary layer, but

q = v(w − w∞) (2.12)

in the back-end boundary layer. The difference between these two integrated continuity
equations stems from the Stefan condition at the front and the zero flux condition at
x → −∞. Combining the Euler–Bernoulli equation (2.1) with Poiseuille’s law (2.3) and
either (2.11) or (2.12) yields a fifth-order nonlinear ordinary differential equation (ODE)
governing the gap w(x) in the fluid-filled part of the front layer and in the back layer.

3. Scaling

The structure of the asymptotic solution for a long blister, a central region under
quasi-uniform pressure, sandwiched between two boundary layers, is confirmed by a
scaling analysis, which further shows that the solution in the boundary layers actually
depends on two numbers: toughness K and imposed gap W at the blade. As the focus of
this study is to determine the quasi-stationary force required to drive the blade, we avoid
conducting a scaling analysis of the general set of equations by considering the limiting
case w0 → 0, which accepts a travelling-wave solution. The back-end boundary layer in
the general case w0 > 0 then naturally depends on the additional number W .

Let �∗ and w∗ denote scales for the blister length and thickness, respectively. We then
define the dimensionless gap Ω , coordinate ξ , fluid front position γf and lag Λ

Ω = w
γ α

f w∗
, ξ = x

�f
, γf = �f

�∗
, Λ = � − �f

�∗
= λ

�∗
. (3.1a–d)

Considering the limiting case w0 = 0, for which the solution is only defined on x ∈ [0, �],
and assuming that �f is used as proxy for the volume of fluid trapped in the blister (because
a one-to-one relationship exists between these two parameters), the nonlinear system of
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equations governing Ω(ξ) at steady state are

Ω2 d5Ω

dξ5 = −Gmγ 5−3α
f , ξ ∈ [0, 1] , (3.2)

d4Ω

dξ4 = −Gsγ
4−α
f , ξ ∈

[
1, 1 + Λ

γf

]
, (3.3)

Ω = dΩ

dξ
= 0,

d2Ω

dξ2 = Gkγ
2−α
f , at ξ = 1 + Λ

γf
, (3.4a,b)

Ω = 0, at ξ = 0. (3.5)

Three dimensionless groups appear in the above equations:

Gm = μ′v�5∗
Dw3∗

, Gk =
(

2Gc�
4∗

Dw2∗

)1/2

, Gs = σ0�
4∗

w∗D
. (3.6a–c)

The scales �∗ and w∗ are identified by imposing Gm = Gs = 1. This particular choice of
scaling makes it possible to consider the limiting case Gc = 0. Hence,

�∗ =
(

μ′vD2

σ 3
0

)1/7

, w∗ =
(

μ′4v4D

σ 5
0

)1/7

, (3.7a,b)

and the scale k∗ for the curvature is therefore

k∗ =
(

μ′2v2σ0

D3

)1/7

. (3.8)

In addition, choosing
α = 2 (3.9)

guarantees that Ω remains bounded when γf → ∞. Indeed, for this limit, the right-hand
side of (3.2) vanishes (equivalent to an inviscid fluid), (3.3) effectively disappears as Λ →
0, Ω(1) → 0 and importantly the curvature tends to a finite limit at ξ = 1.

Using the Euler–Bernoulli equation (2.1) and the continuity equation (2.11), the net
pressure and flux scale according to

Π =
γ 2

f p

p∗
, Ψ = q

γ 2
f q∗

, (3.10a,b)

with the scales p∗ and q∗ given by

p∗ = σ0, q∗ =
(

μ′4v11D

σ 5
0

)1/7

. (3.11a,b)

The above expressions for Π and Ψ guarantee that the scaled versions of (2.1) and (2.2)
become

d4Ω

dξ4 = Π, Ψ = Ω. (3.12a,b)

918 A15-7

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
1.

32
8 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2021.328


Z.Q. Wang and E. Detournay

Finally, the horizontal component H and the vertical component V of the force on the
blade scale according to

◦H = H
H∗

,
◦V = γf V

V∗
, (3.13a,b)

with the scales H∗ and V∗ given by

H∗ =
(
μ′4v4Dσ 2

0

)1/7
, V∗ =

(
μ′vD2σ 4

0

)1/7
. (3.14a,b)

The scaling of the vertical force V is consistent with that of the net pressure, i.e. V∗ = �∗p∗.
It implies that for a long blister, the vertical force essentially equilibrates the pressure at
the back end of the blister.

The remaining free number Gk in the original set (3.6a–c) can be interpreted as a
dimensionless toughness; it is renamed as K. For non-zero w0, there is an additional
number W = w0/w∗ controlling the back-end boundary layer. The front-end boundary
layer only depends on K, however, as the only information from the back end affecting its
solution is the velocity v of the blade. In § 4.4, it is shown that the back-end boundary layer
actually depends on a single number, a function of both K and W . The explicit expressions
of these two numbers in terms of the physical quantities defining the blister problem are
given by

K =
(

27G7
c

Dσ 2
0 μ′4v4

)1/14

, W =
(

w7
0σ

5
0

μ′4v4D

)1/7

. (3.15a,b)

4. Long-blister limit

4.1. Structure of solution
As noted earlier, the dimensionless viscosity effectively vanishes in the interval ξ ∈
[0, 1] and the lag Λ/γf tends to zero (noting that Λ = O(1) or less, see following) for
large γf . Viewed at length scale �f = γf �∗, this solution is characterised by a uniform
pressure

◦
Π . However, there exist two boundary layers, one at the advancing front and the

other at the receding end of the blister, where viscous dissipation cannot be neglected, see
figure 2. The solution in these (three) regions will be expressed as Ω̂(ξ̂ ) for the front-end
boundary layer,

◦
Ω(ξ) for the core region, and Ω̌(ξ̌ ) for the back-end boundary layer. The

boundary-layer solutions and the outer solution are matched with the curvature, which is
equal to Υ (K) at both ends of the core region owing to the symmetric nature of the outer
solution.

4.2. Front-end boundary layer
The boundary layer at the moving front is representative of the tip region of any
propagating near-surface hydraulic fracture, provided that there is a separation of scales.
The solution is expressed as Ω̂(ξ̂ ), where

ξ̂ = (� − x)/�∗, Ω̂ = w/w∗, (4.1a,b)

with the scales defined in (3.7a,b). The solution is characterised by a lag Λ, which, in
the context of the moving blister, is equal to Λ = (� − �f )/�∗. Its maximum value
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Moving blade

Outer solution

Front-end BLBack-end BL

Matching region Matching region

O

O
ξ

ξ

ξ̂ξ̌

Ω°

1

1

Λ
γf

Ω̌Ω̌0Ω̌∞ Ω̂

Υ

Λ
γf

1 +

(a)

(b) (c)

(d)

Figure 2. Structure of solution: (a) outer solution, (b) back-end boundary layer, (c) front-end boundary layer
and (d) schematic of the regions of validity of the inner and outer solutions in the matching procedure.

10–1 100 101

100

101

Zero-toughness

1
1

Zero-viscosity

10–1 100 101

10–1

100

ΛΥ

Large K asymptote

2
3

Zero-toughness
(a) (b)

K K
Figure 3. Front-end boundary layer: (a) far-field curvature Υ and (b) lag Λ; numerical solution (solid line)

and asymptotic solution (dashed lines) (Wang & Detournay 2018).

Λmax = 1.325 is reached in the limit K = 0 (Wang & Detournay 2018). The far-field
curvature Υ (K) is defined as

Υ = lim
ξ̂→∞

Ω̂ ′′, (4.2)

where the prime denotes differentiation with respect to the argument of the function. Plots
of the functions Υ (K) and Λ(K) are shown in figure 3. Since the curvature is matched
between the outer solution and the front-end boundary layer, Υ (K) effectively represents
the dimensionless toughness for the outer solution. This apparent toughness accounts not
only for the energy expended in delamination at the front, but also for the resistance to
propagation associated with the presence of a lag and for viscous dissipation in the tip
region.
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There are two limiting regimes of propagation (Ball & Neufeld 2018; Wang & Detournay
2018): a toughness-dominated regime (K � 10), and a viscosity-dominated regime (K �
0.1). The asymptotic behaviours of Υ (K) for small and large K are given by

Υ 
 K, K � 10 and Υ 
 1.769, K � 0.1 (4.3a,b)

and in the range 0.1 < K < 10, Υ (K) is conveniently approximated as (Wang &
Detournay 2018)

Υ 

4∑

i=0

aiKi, 0.1 < K < 10, (4.4)

where a0 = 1.70404, a1 = 0.09348, a2 = 0.21373, a3 = −0.02278 and a4 = 8.87789 ×
10−4.

4.3. Outer solution
The solution in the bulk of the blister, the outer solution, is denoted as

◦
Ω(ξ) and

◦
Π . These

field variables are scaled similarly to Ω(ξ) and Π(ξ). The outer solution is obtained by
solving

◦
Ω

′′′′ = ◦
Π, ξ ∈ [0, 1] , (4.5)

with conditions
◦

Ω = ◦
Ω

′ = 0,
◦

Ω
′′ = Υ (K), at ξ = 1, (4.6a,b)

◦
Ω = 0,

◦
Ω

′ = 0, at ξ = 0. (4.7a,b)

The solution is given by

◦
Ω =

◦
Π

24
ξ2(1 − ξ)2,

◦
Π = 12 Υ (K). (4.8a,b)

The condition on the curvature at ξ = 1 is the matching condition between the outer
solution and the front-end boundary layer. Because of the symmetry in

◦
Ω(ξ), the curvature

at ξ = 0 is also equal to Υ (K). The curvature is further used to match the outer solution
and the boundary-layer solution at the back end.

Although the curvature scale does not depend on γf , this dimensionless parameter enters
the scales used to define ξ ,

◦
Ω and

◦
Π . The blister thickness w and pressure p evolve

therefore with time because γf decreases with t owing to the bleeding of the blister when
w0 > 0. However, the curvature at both ends of the blister is quasi-time-invariant as long
as γf is large enough to guarantee that the front velocity v′ 
 v.

4.4. Back-end boundary layer

For the receding end of the blister, we introduce the fast variable ξ̌ and the associated
blister thickness Ω̌(ξ̌ ) and pressure Π̌(ξ̌ )

ξ̌ = Υ 3(K)
x
�∗

, Ω̌ = Υ 5(K)
w
w∗

, Π̌ = Υ −7(K)
p
p∗

. (4.9a–c)
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Force on a moving liquid blister

In this scaling, the horizontal force Ȟ and the vertical force V̌ applied by the blade are
naturally defined as

Ȟ = Υ −2(K)
H
H∗

, V̌ = Υ −4(K)
V
V∗

, (4.10a,b)

so that Ȟ = −Ω̌ ′(0)[Ω̌ ′′′(0)], V̌ = −[Ω̌ ′′′(0)]. The receding boundary layer and the
outer solution are matched with the curvature, i.e.

lim
ξ→0

◦
Ω

′′ = Υ (K) lim
ξ̌→∞

Ω̌ ′′, (4.11)

which implies that
Ω̌ = 1

2 ξ̌2, ξ̌ → ∞. (4.12)

With the introduction of Υ in the definition of the boundary-layer variables, the system of
equations governing Ω̌(ξ̌ ) only depends on Ω̌0, the scaled gap at the blade

Ω̌0 = WΥ 5(K). (4.13)

The boundary layer consists of two parts: the back end of the blister corresponding to
ξ̌ ∈ [0, ∞] and the tail behind the blade, ξ̌ ∈ [−∞, 0]. It can be deduced from (2.3) and
(2.12) that the gap Ω̌(ξ̌ ) in the boundary layer is governed by

Ω̌3Ω̌ ′′′′′ = −(Ω̌ − Ω̌∞), ξ̌ ∈ [−∞, ∞] , (4.14)

subject to the conditions

Ω̌ = 1
2 ξ̌2 as ξ̌ → ∞, (4.15)

Ω̌ = Ω̌0 at ξ̌ = 0, (4.16)

Ω̌ = Ω̌∞ as ξ̌ → −∞. (4.17)

The system of (4.14)–(4.17) is closed as there are enough constraints to identify the five
constants of integration for (4.14), the discontinuity of Ω̌ ′′′(ξ̌ ) at ξ̌ = 0 and the residual
gap Ω̌∞. Indeed, (4.15) implies that Ω̌ ′′ = 1 and Ω̌ ′′′ = Ω̌ ′′′′ = 0 at ξ̌ = ∞, while (4.17)
entails the vanishing of the derivatives of Ω̌(ξ̌ ) at ξ̌ = −∞.

Numerical solution of the system of (4.14)–(4.17) is facilitated by recognising that the
governing equation (4.14) for the gap degenerates into a linear ODE at sufficiently large
distance behind the blade

Ω̌3
∞Ω̌ ′′′′′ = −(Ω̌ − Ω̌∞), −ξ̌ � 1. (4.18)

After dropping the terms that become unbounded as ξ̌ → −∞, the asymptotic solution is
thus given by

Ω̌ = Ω̌∞ +
[

č1 cos

(
αξ̌

Ω̌
3/5
∞

)
+ č2 sin

(
αξ̌

Ω̌
3/5
∞

)]
exp

(
βξ̌

Ω̌
3/5
∞

)
, −ξ̌ � 1, (4.19)

where

α =
√

5
8

−
√

5
8

, β =
(

1
4

+
√

5
4

)
. (4.20a,b)

The above asymptotic solution replaces the boundary condition (4.17) at ξ̌ = −∞. Now
nine conditions are needed to obtain a solution: five to integrate the ODE, one to determine
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[Ω̌ ′′′(0)] and three to identify the unknowns Ω̌∞, č1, and č2 of the asymptotic solution.
These requirements are fulfilled by the three conditions equivalent to (4.15) as ξ̌ → ∞,
one constraint at ξ̌ = 0 and five continuity conditions with the asymptotic solution (4.19),
namely the function Ω̌(ξ̌ ) and its first four derivatives at the truncated boundary.

The solution in the back-end boundary layer is obtained numerically by combining a
finite-element discretisation of the beam equation and a finite-volume discretisation of
the lubrication equation. The general algorithm is the same as the one used to solve the
front-end boundary layer, see Wang & Detournay (2018) for details. The infinite fluid-filled
channel is truncated to the interval ξ̌ ∈ [ξ̌−∞, ξ̌∞], where ξ̌−∞ and ξ̌∞ are chosen, through
a trial-and-error procedure, to be large enough to ensure convergence of the solution. The
finite region is divided into n elements that are delimited by n + 1 nodes with coordinate
ξ̌i, i = 1, . . . , n + 1. One node is located at ξ̌ = 0 enabling us to impose the constraint
Ω̌(0) = Ω̌0. Net pressure Π̌i, aperture Ω̌i and aperture gradient Ω̌ ′

i are the primarily
variables defined at each node i = 1, . . . , n + 1, while flux Ψ̌i+1/2 is evaluated at the
midpoint of element i. The discretised fluid–beam equations and the boundary conditions
constitute a system of 2n + 2 nonlinear algebraic equations in terms of 2n + 2 unknowns
Ω̌∞, č1, č2, Ω̌i,Ω̌ ′

i , i = 2, . . . , n + 1 (except for the opening at ξ̌ = 0 ), noting that Ω̌1,Ω̌ ′
1

are determined by the constants Ω̌∞, č1 and č2. These nonlinear systems of equations are
solved using Newton’s iteration procedure built in the Mathematica software.

5. Small-, intermediate- and large-Ω̌0 regimes

Motivated by the determination of the force on the blade, we focus our attention to the
structure of the solution near the origin. As evident from the system of (4.14)–(4.17), the
scaled solution in the back-end boundary layer depends on only one number, the prescribed
gap Ω̌0 = WΥ 5(K) at the blade edge. In principle, we can identify three regimes: (i)
a small-Ω̌0 asymptote, which only depends on the viscous dissipation in the receding
boundary layer; (ii) an intermediate-Ω̌0 regime; (iii) a large-Ω̌0 asymptote for which the
curvature in front of the blade is equal to the matched curvature between the front-end
boundary layer and the bulk solution.

5.1. Small-Ω̌0 regime

If Ω̌0 = 0, the blister thickness Ω̌(ξ̌ ) near ξ̌ = 0 is given by (Tayler & King 1987)

Ω̌
ξ̌→0∼ Aξ̌5/3, (5.1)

with

A = 1
2

(
35

5 × 7

)1/3


 0.9539 (5.2)

as it can be confirmed by substituting this power-law solution into (4.14).
When Ω̌0  1, Ω̌ = Aξ̌5/3 becomes an intermediate asymptotic. To determine the

solution near the origin, the problem can be rescaled so that this asymptote applies to
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Figure 4. Numerical (solid line) and asymptotic (dashed line) small-Ω̌0 solutions near the back end: (a,b)
gap Ω̃(ξ̃ ) and curvature Ω̃ ′′(ξ̃ ); (c,d) shear force Ω̃ ′′′(ξ̃ ) and net fluid pressure Ω̃ ′′′′(ξ̃ ).

the far field in the rescaled variable. This is done by introducing the new scaling

ξ̃ = Ω̌
−3/5
0 ξ̌ , Ω̃ = Ω̌−1

0 Ω̌, Π̃ = Ω̌
7/5
0 Π̌. (5.3a–c)

The gap aperture Ω̃(ξ̃ ) is then governed by

Ω̃3Ω̃ ′′′′′ = −(Ω̃ − Ω̃∞), ξ̃ ∈ [−∞, ∞] , (5.4)

with conditions

Ω̃
ξ̃→∞∼ Aξ̃5/3, (5.5)

Ω̃ = 1 at ξ̃ = 0, (5.6)

Ω̃ = Ω̃∞ +
[

c̃1 cos

(
αξ̃

Ω̃
3/5
∞

)
+ c̃2 sin

(
αξ̃

Ω̃
3/5
∞

)]
exp

(
βξ̃

Ω̃
3/5
∞

)
, −ξ̃ � 1, (5.7)

where Ω̃∞ = Ω̌∞/Ω̌0 is an a priori unknown number (smaller than 1). In other words,
Ω̌∞ is simply proportional to Ω̌0 in the asymptotic small-Ω̌0 regime.

The system of (5.4)–(5.7) is solved numerically using an approach similar to that
described in § 4.4. The asymptotic solution (5.5) is replaced by imposing the second, third
and fourth derivative of (5.5) at a point ξ̃∞ � 1. Point ξ̃∞ must be chosen in such a way
that the computed Ω̃ matches (5.5) in the neighbourhood of ξ̃∞. A similar approach is used
for the continuity conditions between the computed Ω̃ and (5.7), which is enforced at a
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point −ξ̃∞ � 1. Numerical solution of (5.4)–(5.7) yields Ω̃∞ = 0.6125, Ω̃ ′(0) = 0.8558,
Ω̃ ′′(0) = 1.195, [Ω̃ ′′′(0)] = −1.430 and Ω̃ ′′′′(0) = 0.3732.

The small-Ω̌0 asymptotic solution is illustrated in figure 4 (Ω̃(ξ̃ ), Ω̃ ′′(ξ̃ ), Ω̃ ′′′(ξ̃ ) and
Ω̃ ′′′′(ξ̃ )) in a linear scale near the origin to capture the solution behind the blade and
in double logarithmic scale to illustrate convergence of the solution to the intermediate
asymptote (5.5) in the back end of the blister. These figures indicate that the asymptotic
solution (5.7) is effectively reached at ξ̃ 
 −4, and that the numerical solution matches
the intermediate asymptote (5.5) at approximately ξ̃ 
 10. In particular, note that the
minimum gap Ω̃min = 0.5495 is located at ξ̃min = −1.566. The peak pressure occurs at
ξ̃ = −0.8052, which marks the transition between forward and backward average flow.

There is another solution operating on the scale of the variable ξ̌ that connects the
(intermediate) asymptote (5.1) to the far-field quadratic condition (4.12). This solution
would need to be computed numerically. However, the intermediate asymptote (5.1)
effectively shields the solution Ω̃(ξ̃ ) from (4.12), and thus from the processes at the front
of the blister. In other words, the reaction force on the blade only depends on the viscous
dissipation at the back end of the blister in the small-Ω̌0 regime.

5.2. Large-Ω̌0 regime

In the large-Ω̌0 regime, viscous dissipation is expected to be negligible in the
neighbourhood of the blade. Completely ignoring viscous effects, which implies a zero
net pressure, would cause, however, the elastic sheet to contact the rigid substrate at some
distance behind the blade (see the outer solution illustrated in the inset of figure 5a).
However, as indicated earlier, the viscous dissipation associated with the narrowing
of the gap leads to an increase of the fluid pressure. Complete closure of the gap is
actually prevented, as it would entail a strong pressure singularity according to (5.1). This
contradiction suggests the existence of an asymptotic viscous layer inside the back-end
boundary layer, with the zero-viscosity solution acting as an outer solution.

5.2.1. Outer solution
A rescaling of the boundary-layer variables is required to derive the zero-viscosity
solution. After defining the new variables as

ξ̄ = Ω̌
−1/2
0 ξ̌ , Ω̄ = Ω̌−1

0 Ω̌, (5.8a,b)

so as to preserve the independence upon Ω̌0 of the constant curvature at infinity, the
governing equation becomes

Ω̄3Ω̄ ′′′′′ = −Ω̌
−1/2
0

(
Ω̄ − Ω̄∞

)
, ξ̄ ∈ [−∞, ∞] , (5.9)

with Ω̄∞ = Ω̌∞/Ω̌0. This equation indicates that the right-hand side is negligibly small
and can thus be ignored provided that Ω̌0 � 1 and Ω̄ is of order O(1) or more. Noting the
condition at infinity, the zero-order solution Ω̄(0)(ξ̄ ) is obtained by solving

Ω̄ ′′′′
(0) = 0, ξ̄ ∈ [ξ̄c, ∞

]
, (5.10)

subjected to

Ω̄ ′′
(0) = 1, Ω̄ ′′′

(0) = 0 at ξ̄ = ∞; Ω̄(0)(0) = 1; Ω̄(0) = Ω̄ ′
(0) = Ω̄ ′′

(0) = 0 at ξ̄ = ξ̄c.
(5.11a–d)
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Figure 5. Numerical (solid line) and zero-order (dashed line) outer solution near the back end for large Ω̌0:
(a) Ω̄(ξ̄ ), (b) Ω̄ ′′(ξ̄ ), (c) Ω̄ ′′′(ξ̄ ) and (d) Ω̄ ′′′′(ξ̄ ). Results calculated for Ω̌0 = 6.4 × 107.

In the above, ξ̄c < 0 is the a priori unknown position of the contact line where the elastic
sheet would touch the substrate if the fluid were inviscid. This set of equations is closed
since the six conditions (5.11a–c) provide the necessary information to determine the four
constants of integration, [Ω̄ ′′′

(0)(0)], and ξ̄c.
The zero-order solution Ω̄(0)(ξ̄ ) is readily obtained as

Ω̄(0)(ξ̄ ) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

0, ξ̄ ≤ −ξ̄c,(
ξ̄c − ξ̄

ξ̄c

)3

, ξ̄c ≤ ξ̄ ≤ 0,

1 + ξ̄

2

(
ξ̄ − ξ̄c

)
, ξ̄ ≥ 0,

(5.12)

with

ξ̄c = −
√

6. (5.13)

The numerical solution of Ω̄(ξ̄ ) in the large-Ω̌0 regime, which is governed by equations
similar to the system (5.4)–(5.7) except for the condition as ξ̄ → ∞, is illustrated
in figure 5(a), together with the zero-order solution (5.12). Comparison between the
numerical and the zero-order solution for Ω̄ ′′(ξ̄ ), Ω̄ ′′′(ξ̄ ) and Ω̄ ′′′′(ξ̄ ) can be found in
figure 5(c,d), noting that Ω̄ ′′′′

(0)(ξ̄ ) = 0. Figure 5 reveals the existence of a nested boundary
layer near ξ̄ = ξ̄c.
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5.2.2. Inner solution
Yet another scaling is required to determine the solution in the inner viscous layer at the
back end for the large-Ω̌0 regime, in particular the relationship between Ω̌∞ and Ω̌0. Thus,
let

ξ̆ = (ξ̄ − ξ̄c)Ω̌
λ
0 , Ω̆ = Ω̄Ω̌ν

0 , (5.14)

where the exponents λ and ν (expected to be positive) are to be specified by requiring that
the equations governing Ω̆(ξ̆ ) do not contain Ω̌0. The information needed to determine
these two power-law indices can be deduced from the rescaled governing equation

Ω̌
5λ−3ν+1/2
0 Ω̆3Ω̆ ′′′′′ = −

(
Ω̆ − Ω̆∞

)
(5.15)

and the condition

Ω̌3λ−ν
0 Ω̆ ′′′ = −ξ̄−1

c as ξ̆ → ∞, (5.16)

deduced by matching Ω̄ ′′′
(0)(0

−) = −ξ̄−1
c as ξ̆ → ∞. Except for the finite (unknown)

condition

Ω̆ = Ω̆∞ ≡ Ω̌∞
Ω̌0

Ω̌ν
0 as ξ̆ → −∞, (5.17)

all the other conditions on Ω̆(ξ̆ ) or its derivatives are either zero or infinite. Elimination
of the exponents of Ω̌0 in (5.15) and (5.16) requires λ = 1/8 and ν = 3/8. These results
further imply that

Ω̌∞ = Ω̆∞Ω̌
5/8
0 . (5.18)

If the asymptotic solution (4.19), properly rescaled for Ω̆(ξ̆ ), is used, there are eight
unknowns: Ω̆∞, the two constants of the asymptotic solution (4.19) and five constants of
integration. The problem is closed by the five continuity conditions between the asymptotic
solution (4.19) and Ω̆(ξ̆ ) and the asymptotic condition (5.16) as ξ̆ → ∞. (The asymptotic
condition can be construed as being equivalent to the three conditions Ω̆ ′′(ξ̆∞) =
−ξ̄−1

c ξ̆∞, Ω̆ ′′′(ξ̆∞) = −ξ̄−1
c and Ω̆ ′′′′(ξ̆∞) = 0, with ξ̆∞ denoting the truncated boundary,

when constructing the solution numerically.) The numerical solution in this viscous
boundary layer can be found in figure 6, together with the asymptotic solution. Numerical
results show that Ω̆∞ = 2.431.

5.3. Intermediate-Ω̌0 regime
The system of (4.14)–(4.15) can be solved numerically to construct the solution for
intermediate values of Ω̌0, which can then be connected to the small- and large-Ω̌0
asymptotic solutions, recast in the original back-end boundary-layer scaling (4.9a–c).

Some of numerical results obtained by varying Ω̌0 over the range [10−2–108] are
compiled in figure 7. This figure illustrates the variation of Ω̌ ′(0), Ω̌∞, V̌ and Ȟ with Ω̌0
together the asymptotic solutions, which are summarised in table 1. These results indicate
that the large-Ω̌0 asymptotic solution applies for Ω̌0 � 105 and the small-Ω̌0 asymptotic
solution for Ω̌0 � 10−1.
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Figure 6. Numerical (solid line) and asymptotic (dashed line) solution in the viscous boundary layer in the
neighbourhood of the blade for the large-Ω̌0 regime: (a,b) gap Ω̆(ξ̆ ), (c) shear force Ω̆ ′′′(ξ̆ ) and (d) net pressure
Ω̆ ′′′′(ξ̆ ). Results calculated for Ω̌0 = 6.4 × 107.

6. Force on the moving blade

While the relationships Ȟ(Ω̌0) and V̌(Ω̌0) illustrated in figure 7(b,d) in combination with
the scales contain all the information needed to determine the magnitude of the horizontal
force and the vertical force applied on the moving blade, it is useful to recast these results
in terms of the scaled forces H(W,K) = H/H∗ and V(W,K) = V/V∗, noting that H =
Υ 2(K)Ȟ and V = Υ 4(K)V̌ . The dependence of H and V on toughness K and gap W are
illustrated in figure 8.

The horizontal force H can also be related to the dissipation in the fluid and at the
separation front. The viscous dissipation in the back-end boundary layer is given by

Ǧf = −
∫ ∞

−∞
Π̌ ′Ψ̌ dξ̌ . (6.1)

Expressing the pressure Π̌ and the flux Ψ̌ in the previous equation in terms of Ω̌ using
the Euler–Bernoulli equation and the continuity equation yields

Ǧf = −
∫ ∞

−∞
Ω̌ ′′′′′

(
Ω̌ − Ω̌∞

)
dξ̌ . (6.2)

Noting the conditions (4.15)–(4.17) and integrating by parts three times leads to

Ǧf = −1
2 − Ω̌ ′ (0)

[
Ω̌ ′′′(0)

]
, (6.3)

918 A15-17

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
1.

32
8 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2021.328


Z.Q. Wang and E. Detournay

10–210–1 100 101 102 103 104 105 106 107 108

10–1

100

101

102

103

104

5
2

2
1

10–210–1 100 101 102 103 104 105 106 107 108
10–3

10–2

10–1

100

101

102

103

104

105

1
1

5
8

10–210–1 100 101 102 103 104 105 106 107 108
10–5

10–4

10–3

10–2

10–1

100

101

102

5
4

2
1

10–210–1 100 101 102 103 104 105 106 107 108
10–1

100

101

0.5

5

2

Ω̌′ (0)

Ω̌0

Ω̌0 Ω̌0

Ω̌0

Ω̌∞

V̌ Ȟ
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Figure 7. Variation of (a) slope Ω̌ ′(0), (b) residual gap Ω̌∞, (c) force component V̌ and (d) force component
Ȟ with Ω̌0. Numerical (solid line) and asymptotic (dashed line) solutions.

Small-Ω̌0 Large-Ω̌0

Ω̌∞ 0.6125Ω̌0 2.431Ω̌5/8
0

Ω̌ ′(0) 0.8558Ω̌2/5
0

3√
6
Ω̌1/2

0

V̌ 1.430Ω̌−4/5
0

1√
6
Ω̌−1/2

0

Ȟ 1.224Ω̌−2/5
0

1
2

Table 1. Summary of asymptotes.

which can be rewritten as

H = Dc + Df , (6.4)

where Dc = Υ 2/2, Df = Υ 2Ǧf . This equation is an expression of the energy balance:
the external power vH is balanced by dissipation vDc at the front end of the blister
(a combination of dissipation in the fluid and at the separation front) and by viscous
dissipation vDf at the back end.

In the small-Ω̌0 regime, the horizontal force H simplifies to

H = 1.224W−2/5, Ω̌0 � 10−1, (6.5)
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Figure 8. Force at the blister back end: (a) log10(H) as a function of K and W ; (b) log10(V) as a function of
K and W ; (c) H as a function of W ; (d) V as a function of W ; (e) H as a function of K; (e) V as a function
of K. Numerical solution (solid line) and asymptotic solution (dashed line).

and the vertical force V to

V = 1.43W−4/5, Ω̌0 � 10−1. (6.6)

In the large-Ω̌0 regime

H = 1
2Υ 2(K), Ω̌0 � 106, (6.7)

and

V = 1√
6
Υ 3/2W−1/2, Ω̌0 � 106. (6.8)
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As a result, the relationship between H, V and the blade velocity v depends on the
regime.

(i) Small-Ω̌0 asymptotics. The horizontal force is given by

H = 1.224

(
Dμ′4v4

w2
0

)1/5

, Ω̌0 � 10−1, (6.9)

and the vertical force by

V = 1.43

(
D2μ′3v3

w4
0

)1/5

, Ω̌0 � 10−1. (6.10)

These expressions indicate that H ∼ v4/5 and V ∼ v3/5. The magnitude of the
applied force is only related to the viscous dissipation near the receding end.

(ii) Large-Ω̌0 asymptotics: WΥ 5(K) � 106. The force is controlled by processes at the
leading edge of the blister. In the toughness-dominated regime at the propagating
front, the applied forces are independent of the velocity v

H = Gc, if K � 10 and W � 106K−5, (6.11)

V = 1√
3

(
2G3

cD

w2
0

)1/4

, if K � 10 and W � 106K−5. (6.12)

On the other hand, if the regime of propagation is viscosity dominated at the front,
then

H = 1.565
(

Dμ′4v4σ 2
0

)1/7
, if K � 0.1 and W � 5.77 × 104, (6.13)

and

V = 0.961

(
D5μ′6v6σ 3

0

w7
0

)1/14

, if K � 0.1 and W � 5.77 × 104. (6.14)

Thus, H ∼ v4/7 and V ∼ v3/7 are independent of the adhesion energy Gc.

7. Conclusions

In this paper we have analysed the motion of a two-dimensional blister trapped between
a rigid substrate and an adhering elastic sheet. In contrast to most problems involving the
hydraulically forced peeling of an elastic sheet from its substrate, the fluid is driven here
by a moving blade rather than by injection of fluid. The peculiarity of this problem lies
further in regularisations of the solution at both ends of the blister, an advancing fluid
front that lags behind the separation front and a residual fluid film behind the receding
end of the blister. The main objective of the study was to determine, for a long blister, the
dependence of the reaction force on the blade upon the problem parameters.

Through scaling, it was shown that the asymptotic solution depends on two
dimensionless groups K and W that can be interpreted, respectively, as a toughness and
as an imposed gap at the back end. This asymptotic solution reflects the existence of a
quasi-uniform pressure region in the bulk of the blister. This central region is sandwiched
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between two boundary layers, which can be approximated as travelling waves in the long
blister limit. Furthermore, the solution in the front-end boundary layer, including the lag
between the separation and the fluid fronts, only depends on K and thus is insensitive to
the conditions at the receding back end of the blister, except for the blade velocity.

When matching asymptotes at the back end, information from the front-end boundary
layer namely the matching curvature of the elastic sheet is transferred to the back end
through the uniform pressure central region. This matched curvature is independent of the
blister length. It is found that only one number Ω̌0, a rescaled residual aperture, controls
the solution in the back-end boundary layer and thus the force on the blade. In the small-Ω̌0
regime, the back-end solution is characterised by the existence of an intermediate viscosity
asymptote, which effectively shields the receding contact line from toughness K. In this
regime, the scaled force on the blade is dominated by viscous dissipation at the back
end and is solely a function of the residual aperture W . For the large-Ω̌0 asymptote, the
curvature at the receding end is equal to the matched curvature between the advancing
boundary layer and the bulk solution. In this regime, H only depends on toughness K,
whereas the vertical force V depends on both K and W .

Relaxing the assumption of a long blister introduces a time dependency to the problem.
As a result, the velocity of the separation front and of the fluid front become time
dependent and are no longer the same as the blade velocity. Moreover, the front end is now
coupled to the whole solution, including the back end with a feedback from the residual
film thickness. These considerations should be accounted for in further investigations,
including the membrane effect in the elastic sheet and the viscous shear stresses that have
been ignored in this study.
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Appendix A. Estimation of the front velocity

In this appendix, the front velocity is estimated for a long blister that is bleeding fluid at its
back end. The outer solution for a long blister is characterised by a uniform pressure p(t).
Further imposing w = w′ = 0 at x = 0 and x = �(t) leads to the following expression for
the gap w(x, t)

w = p
24D

x2(�(t) − x)2, (A1)

from which we deduce the beam curvature at x = �(t)

w′′∣∣
x=�(t) = p�2(t)

12D
. (A2)

On the other hand, matching the outer curvature at x = �(t) to the far-field curvature of the
front-region boundary layer yields

w′′∣∣
x=�(t) = k∗Υ (K). (A3)
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The pressure p(t) is then deduced by comparing (A2) and (A3)

p(t) = 12D
�2(t)

k∗Υ (K). (A4)

Neglecting the crack volume in the lag region, the fluid volume Af trapped in the blister is
given by

Af =
∫ �(t)

0
w dx = 1

60 k∗Υ (K)�3(t). (A5)

Differentiating with respect to time the above expression, after freezing the dependence of
k∗ and K on the front velocity v′, yields

Ȧf = 1
20 k∗Υ (K)�2(t)�̇(t). (A6)

However, due to the fluid loss at the back end,

Ȧf = −w∞v. (A7)

Hence, from (A5) and (A7), we deduce that

�̇(t) = −ε (t) v, ε (t) = 20w∞
�2(t)k∗Υ (K)

. (A8)

Thus, the velocity v′ of the separation front can be estimated as

v′ = v + �̇(t) = (1 − ε (t)) v. (A9)
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