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Abstract

In this paper, we present a general framework to construct fractal interpolation surfaces (FISs) on
rectangular grids. Then we introduce bilinear FISs, which can be defined without any restriction on
interpolation points and vertical scaling factors.
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1. Introduction

By using the method of iterated function systems, Barnsley [1] introduced (one-
dimensional) fractal interpolation functions (FIFs). Basically, an FIF is an inter-
polation function whose graph is the invariant set of an iterated function system. Since
then, much work has been done on FIFs, leading to theoretical progress and practical
applications (see, for example, [3, 4, 16, 18–21]).

It is natural to ask whether we can define FIFs in higher-dimensional cases, in
particular, the two-dimensional case. While it is straightforward to define a similar
iterated function system to that in the one-dimensional case, it is hard to guarantee
that the invariant set of such an iterated function system is the graph of a continuous
function.

In [15], Massopust defined fractal interpolation surfaces (FISs) on triangles, where
the interpolation points on the boundary are required to be coplanar. This work was
generalised by Geronimo and Hardin [12] and Zhao [23], where the interpolation
points have more freedom.

Dalla [9] constructed FISs on rectangular grids, where the interpolation points
on the boundary are collinear. Feng [11] presented a more general construction
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of FISs on rectangular grids, but the restrictive condition for continuity is hard to
check.

By introducing a ‘fold-out’ technique, Małysz [14] constructed FISs on rectangles
for arbitrary interpolation points. The main deficiency in [14] is that vertical scaling
factors are required to be equal. This method was generalised by Metzler and Yun [17],
with a function as vertical scaling factor. However, examples in [17] still assumed that
vertical scaling factors are equal.

In this paper we present a general framework to generate FISs. Then we define
a special class of FISs which are called bilinear FISs. We remark that bilinear FISs
can be defined on rectangular grids without any restriction on interpolation points and
vertical scaling factors.

While we were preparing our manuscript, we learned of the work on one-
dimensional bilinear fractal interpolation functions by Barnsley and Massopust [5].
We remark that some ideas of the two papers are similar.

The paper is organised as follows. In Section 2 we recall some ideas needed in
constructing FIFs. In Section 3 we present a general framework to construct FISs.
Bilinear FISs are introduced in Section 4. In Section 5 we give some remarks on
future work.

2. Preliminaries

2.1. One-dimensional fractal interpolation functions. Let x0 < x1 < · · · < xN be
real numbers. Let Li : [x0, xN]→ [xi−1, xi] be a contractive homeomorphism satisfying

Li(x0) = xi−1, Li(xN) = xi, i = 1, 2, . . . ,N. (2.1)

Denote K = [x0, xN] × R. Let y0, y1, . . . , yN be real numbers. For i = 1, 2, . . . ,N, define
a continuous map Fi : K → R such that, for a constant 0 < αi < 1,

Fi(x0, y0) = yi−1, Fi(xN , yN) = yi,

|Fi(x, y′) − Fi(x, y′′)| ≤ αi · |y′ − y′′|
(2.2)

for all x ∈ [x0, xN] and y′, y′′ ∈ R. Now, define functions Wi : K→ K for i = 1,2, . . . ,N
by

Wi(x, y) = (Li(x), Fi(x, y)).

Then Wi is a continuous function from K to K for each i so that {K,Wi : i = 1, 2, . . . ,N}
is an iterated function system (IFS).

Barnsley [1] proved that there exists a unique nonempty compact subset G of K
satisfying G =

⋃N
i=1 Wi(G), that is, G is the invariant set of the IFS. Furthermore,

G is the graph of a continuous function f : [x0, xN]→ R which obeys f (xi) = yi,
i = 0, 1, . . . , N. We call such a function f a (one-dimensional) fractal interpolation
function.

The fractal interpolation function f defined above is called a linear FIF if for all
1 ≤ i ≤ N,

Li(x) = aix + ei, Fi(x, y) = cix + siy + gi,
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where ai, ei, ci, si, gi are constants and |si| < 1. It is clear that ai and ei can be found
from (2.1). By (2.2), only one of ci, si and gi can be arbitrary chosen. We always
choose si to be the free parameter since we require that |si| < 1. We call si, 1 ≤ i ≤ N,
the vertical scaling factors of the FIF f .

Linear FIFs have been widely used in applications. For example, one efficient
algorithm was presented by Mazel and Hayes [16] to model discrete data.

2.2. Fractal interpolation surfaces on rectangular grids. Let I = [a, b] and J =

[c, d]. Given interpolation data {(xi, y j, zi j) ∈ R3 | i = 0, 1, . . . ,N; j = 0, 1, . . . , M} such
that a = x0 < x1 < · · · < xN = b and c = y0 < y1 < · · · < yM = d, it is natural to ask the
following questions:

Question 2.1. Can we present a general framework as in [1] to define a fractal function
f on I × J such that f (xi, y j) = zi j for all (i, j) ∈ {0, 1, . . . ,N} × {0, 1, . . . ,M}?

Question 2.2. Can we define a fractal function f on I × J which is similar to a linear
FIF such that f (xi, y j) = zi j for all (i, j) ∈ {0, 1, . . . ,N} × {0, 1, . . . ,M}?

Denote K = I × J × R. One may define Wi j : K → K as follows:

Wi j(x, y, z) = (ui(x), v j( y), Fi j(x, y, z))
= (aix + bi, c jy + d j, ei jx + fi jy + gi jxy + si jz + ki j),

where the constant si j, called the vertical scaling factor, can be arbitrary chosen in
(−1, 1), while other constants ai, bi, c j, d j, ei j, fi j, gi j, ki j are determined by si j and the
equations

Wi j(x0, y0, z00) = (xi−1, y j−1, zi−1, j−1), Wi j(xN , y0, zN0) = (xi, y j−1, zi, j−1),
Wi j(x0, yM , z0M) = (xi−1, y j, zi−1, j), Wi j(xN , yM , zNM) = (xi, y j, zi j).

Using the technique introduced in [1], we can prove that there exists a unique
nonempty compact subset G of K satisfying G =

⋃N
i=1

⋃M
j=1 Wi j(G). However, in

general, G is not the graph of a continuous function on I × J. Dalla [9] showed that if
each of the sets

{(x0, y j, z0 j) : j = 0, 1, . . . ,M}, {(xN , y j, zN j) : j = 0, 1, . . . ,M},
{(xi, y0, zi0) : i = 0, 1, . . . ,N}, {(xi, yM , ziM) : i = 0, 1, . . . ,N}

is collinear, then G is the graph of a continuous function on I × J. This result corrected
a construction by Xie and Sun [22].

Another attempt is to introduce a new ‘IFS’ {K, W̃i j : 1 ≤ i ≤ N; 1 ≤ j ≤ M}, where
W̃i j(x, y, z) = (ui(x), v j(y), F̃i j(x, y, z)) and

F̃i j(x, y, z) =


Fi+1, j(x0, y, z) x = xN , i = 1, 2, . . . ,N − 1, j = 1, 2, . . . ,M,
Fi, j+1(x, y0, z) y = yM , i = 1, 2, . . . ,N, j = 1, 2, . . . ,M − 1,
Fi j(x, y, z) otherwise.
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Figure 1. Functions ui on I.

However, it is easy to see that, in general, F̃i j is not continuous on K. For example, for
fixed (y′, z′) ∈ J × R and (i, j) ∈ {1, 2, . . . ,N − 1} × {1, 2, . . . , M}, we generally do not
have

lim
x→xN

F̃i j(x, y′, z′) = F̃i j(xN , y′, z′).

It follows that {K, W̃i j : 1 ≤ i ≤ N, 1 ≤ j ≤ M} is not an IFS. As a result, we remark that
the method introduced by Chand and Kapoor [8] is not feasible.

In this paper, we will try to answer Questions 2.1 and 2.2 in Sections 3 and 4,
respectively. In Section 3 we extend the fold-out technique used in [14, 17]. In
Section 4 we define bilinear FISs.

3. General construction of fractal interpolation surfaces

Let I, J and {(xi, y j, zi j) ∈ R3 | i = 0, 1, . . . , N; j = 0, 1, . . . , M} be the same as in
Section 2.2. For convenience, we write ΣN = {1, 2, . . . , N}, ΣN,0 = {0, 1, . . . , N},
∂ΣN,0 = {0,N} and intΣN,0 = {1, 2, . . . ,N − 1}. Similarly, we can define ΣM , ΣM,0, ∂ΣM,0
and intΣM,0.

Denote Ii = [xi−1, xi] and J j = [y j−1, y j] for i ∈ ΣN and j ∈ ΣM . For any i ∈ ΣN , let
ui : I → Ii be a contractive homeomorphism satisfying

ui(x0) = xi−1, ui(xN) = xi if i is odd, (3.1)
ui(x0) = xi, ui(xN) = xi−1 if i is even, and (3.2)
|ui(x′) − ui(x′′)| ≤ αi|x′ − x′′| ∀x′, x′′ ∈ I, (3.3)

where 0 < αi < 1 is a given constant. Clearly, this implies that u1(x0) = x0, u1(xN) =

u2(xN) = x1, u2(x0) = u3(x0) = x2 and so on (see Figure 1). Similarly, for any j ∈ ΣM ,
let v j : J → J j be a contractive homeomorphism satisfying

v j(y0) = y j−1, v j(yM) = y j if j is odd, (3.4)
v j(y0) = y j, v j(yM) = y j−1 if j is even, and (3.5)
|v j(y′) − v j(y′′)| ≤ β j|y′ − y′′| ∀y′, y′′ ∈ J, (3.6)

where 0 < β j < 1 is a given constant. By the definitions of ui and v j, it is easy to check
that

u−1
i (xi) = u−1

i+1(xi), ∀i ∈ intΣN,0, and
v−1

j (y j) = v−1
j+1(y j), ∀ j ∈ intΣM,0.
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Figure 2. Ii × J j.

Now we will rewrite (3.1)–(3.6) for simplicity. Let τ : Z × {0,N,M} → Z be defined
by

τ(i, 0) =

{
i − 1, τ(i,N) = τ(i,M) = i if i is odd,
i, τ(i,N) = τ(i,M) = i − 1 if i is even.

Then ui(xk) = xτ(i,k) for all i ∈ ΣN and k ∈ ∂ΣN,0. Similarly, v j(yk) = yτ( j,k) for all j ∈ ΣM
and k ∈ ∂ΣM,0.

For example, if both i and j are odd,

(xi−1, y j−1, zi−1, j−1) = (xτ(i,0), yτ( j,0), zτ(i,0),τ( j,0)) = (xτ(i−1,0), yτ( j,0), zτ(i−1,0),τ( j,0)),
(xi, y j, zi j) = (xτ(i,N), yτ( j,M), zτ(i,N),τ( j,M)) = (xτ(i+1,N), yτ( j,M), zτ(i+1,N),τ( j,M))

(see Figure 2).
Denote K = I × J × R. For each (i, j) ∈ ΣN × ΣM , let Fi j : K → R be a continuous

function satisfying

Fi j(xk, y`, zk`) = zτ(i,k),τ( j,`), ∀(k, `) ∈ ∂ΣN,0 × ∂ΣM,0, and (3.7)
|Fi j(x, y, z′) − Fi j(x, y, z′′)| ≤ γi j|z′ − z′′|, ∀(x, y) ∈ I × J and z′, z′′ ∈ R, (3.8)

where 0 < γi j < 1 is a given constant.
Now, for each (i, j) ∈ ΣN × ΣM , we define Wi j : K → Ii × J j × R by

Wi j(x, y, z) = (ui(x), v j(y), Fi j(x, y, z)). (3.9)

Then {K,Wi j : (i, j) ∈ ΣN × ΣM} is an IFS. By definition, for any (i, j) ∈ ΣN × ΣM , we
have

Wi j(xk, y`, zk`) = (xτ(i,k), yτ( j,`), zτ(i,k),τ( j,`)), ∀(k, `) ∈ ∂ΣN,0 × ∂ΣM,0.

Theorem 3.1. Let {K,Wi j : (i, j) ∈ ΣN × ΣM} be the IFS defined as in (3.9). Assume that
{Fi j : (i, j) ∈ ΣN × ΣM} satisfies the following matching conditions:

(1) for all i ∈ intΣN,0, j ∈ ΣM and x∗ = u−1
i (xi) = u−1

i+1(xi),

Fi j(x∗, y, z) = Fi+1, j(x∗, y, z), ∀y ∈ J, z ∈ R, and (3.10)

(2) for all i ∈ ΣN , j ∈ intΣM,0 and y∗ = v−1
j (y j) = v−1

j+1(y j),

Fi j(x, y∗, z) = Fi, j+1(x, y∗, z), ∀x ∈ I, z ∈ R. (3.11)

https://doi.org/10.1017/S0004972715000064 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972715000064


440 H.-J. Ruan and Q. Xu [6]

Then there exists a unique continuous function f : I × J → R such that f (xi, y j) =

zi j for all (i, j) ∈ ΣN,0 × ΣM,0 and G =
⋃

(i, j)∈ΣN×ΣM
Wi j(G), where G = Graph( f ) =

{(x, y, f (x, y)) : (x, y) ∈ I × J} is the graph of f . We call G the FIS and f the FIF
with respect to the IFS {K,Wi j : (i, j) ∈ ΣN × ΣM}.

Proof. Let C(I × J) be the set of all continuous functions on I × J. Define T :
C(I × J)→ C(I × J) as follows: given p ∈ C(I × J),

Tp(x, y) = Fi j
(
u−1

i (x), v−1
j (y), p(u−1

i (x), v−1
j (y))

)
, (x, y) ∈ Ii × J j, (3.12)

for all (i, j) ∈ ΣN × ΣM . From (3.10) and (3.11), we know that Tp is well defined on
the boundary of Ii × J j for all (i, j) ∈ ΣN × ΣM . It follows that T : C(I × J)→ C(I × J)
is well defined.

Let C∗(I × J) = {p ∈ C(I × J) : p(xi, y j) = zi j, for all (i, j) ∈ ΣN,0 × ΣM,0} and let
p ∈ C∗(I × J). For any (i, j) ∈ ΣN,0 × ΣM,0, choose k ∈ ∂ΣN,0 and ` ∈ ∂ΣM,0 such that
i = τ(i, k) and j = τ( j, `). By the definition of τ, xk = u−1

i (xi) and y` = v−1
j (y j). Using

(3.7) and (3.12),

Tp(xi, y j) = Fi j(xk, y`, p(xk, y`)) = Fi j(xk, y`, zk`) = zτ(i,k),τ( j,`) = zi j.

It follows that T is a map from C∗(I × J) to C∗(I × J).
For any p ∈ C∗(I × J), we define |p|∞ = max{p(x, y) : (x, y) ∈ I × J}. From (3.8),

we can easily see that T is contractive on the complete metric space (C∗(I × J), | · |∞).
Thus there exists a unique function f ∈ C∗(I × J) such that T f = f , that is,

f (x, y) = Fi j(u−1
i (x), v−1

j (y), f (u−1
i (x), v−1

j (y))), (x, y) ∈ Ii × J j. (3.13)

Now, let G = Graph( f ). By (3.9) and (3.13),⋃
(i, j)∈ΣN×ΣM

Wi j(G)

=
⋃

(i, j)∈ΣN×ΣM

{(ui(x), v j(y), Fi j(x, y, f (x, y))) : (x, y) ∈ I × J}

=
⋃

(i, j)∈ΣN×ΣM

{
(
x, y, Fi j(u−1

i (x), v−1
j (y), f (u−1

i (x), v−1
j (y)))

)
: (x, y) ∈ Ii × J j}

=
⋃

(i, j)∈ΣN×ΣM

{(x, y, f (x, y)) : (x, y) ∈ Ii × J j} = G.

Assume that f̃ ∈ C∗(I × J) satisfies G̃ =
⋃

(i, j)∈ΣN×ΣM
Wi j(G̃), where G̃ = Graph( f̃ ).

Then we must have

Fi j(x, y, f̃ (x, y)) = f̃ (ui(x), v j(y)), ∀(x, y) ∈ I × J,

so that f̃ satisfies T f̃ = f̃ . Since T is contractive on (C∗(I × J), | · |∞), we know that
f̃ = f . This completes the proof of the theorem. �
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Remark 3.1. The main difficulty of constructing FISs is the continuity. All other
aspects are similar to the classical arguments in [1, 3].

Generally, the IFS {K,Wi j : (i, j) ∈ ΣN × ΣM} is not hyperbolic. However, we can
still show that G = Graph( f ) is the attractor of the IFS. The spirit of the proof follows
from [1, 3]. In the rest of this section, we will use d(· , ·) to denote the Euclidean metric.
For any two nonempty compact subsets B,C of Rk, we define their Hausdorff metric
by

dH(B,C) = max
{
max
x∈B

min
y∈C

d(x, y),max
y∈C

min
x∈B

d(x, y)
}
.

For any closed subset X of Rk, letH(X) be the family of all nonempty compact subsets
of X. It is well known that (H(X), dH) is a complete metric space. For details about
the Hausdorff metric, see [2, 10].

Define L :H(I × J)→H(I × J) by

L(B) =
⋃

(i, j)∈ΣN×ΣM

{(ui(x), v j(y)) : (x, y) ∈ B}, B ∈ H(I × J).

It is clear that L is contractive onH(I × J), and I × J is the attractor of L.

Theorem 3.2. Let f be the fractal interpolation function with respect to the IFS
{K,Wi j : (i, j) ∈ ΣN × ΣM} and G = Graph( f ). Then for any A ∈ H(K),

lim
n→∞

dH(Wn(A),G) = 0,

where W0(A) = A and Wn+1(A) = W(Wn(A)) for any n ≥ 0.

Proof. For any A ∈ H(K), we define

AXY = {(x, y) ∈ I × J : there exists z ∈ R such that (x, y, z) ∈ A}.

It is clear that AXY ∈ H(I × J). Let En = {(x, y, f (x, y)) : (x, y) ∈ Ln(AXY )}. Since I × J
is the attractor of L,

lim
n→∞

dH(Ln(AXY ), I × J) = 0.

Thus, noticing that f is uniformly continuous on I × J,

lim
n→∞

dH(En,G) = 0. (3.14)

Let
tn = sup{| f (x, y) − z| : (x, y, z) ∈ Wn(A)}, ∀n ≥ 1.

By the definition of Hausdorff metric, we have dH(En,Wn(A)) ≤ tn. Given n ≥ 1, for
any (x, y, z) ∈ Wn(A), there exists (x∗, y∗, z∗) ∈ Wn−1(A) and (i, j) ∈ ΣN × ΣM such that

(x, y, z) = (ui(x∗), v j(y∗), Fi j(x∗, y∗, z∗)).

Let γ = max{γi j : (i, j) ∈ ΣN × ΣM}. By (3.8) and (3.13),

| f (x, y) − z| = |Fi j(x∗, y∗, f (x∗, y∗)) − Fi j(x∗, y∗, z∗)|
≤ γ| f (x∗, y∗) − z∗| ≤ γtn−1

https://doi.org/10.1017/S0004972715000064 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972715000064


442 H.-J. Ruan and Q. Xu [8]

so that tn ≤ γtn−1. Since γ < 1, we have limn→∞ tn = 0 so that

lim
n→∞

dH(En,Wn(A)) = 0.

Combining this with (3.14), we see that the theorem holds. �

4. Bilinear fractal interpolation surfaces

Let g, h, s be continuous functions on I × J satisfying

g(xi, y j) = zi j, ∀ (i, j) ∈ ∂ΣN,0 × ∂ΣM,0,

h(xi, y j) = zi j, ∀ (i, j) ∈ ΣN,0 × ΣM,0, and
s∗ = max{|s(x, y)| : (x, y) ∈ I × J} < 1.

Recall that K = I × J × R. For each (i, j) ∈ ΣN × ΣM , we define Fi j : K → R by

Fi j(x, y, z) = s(ui(x), v j(y))(z − g(x, y)) + h(ui(x), v j(y)), (4.1)

where ui ∈ C(I) and v j ∈ C(J) satisfy (3.1)–(3.6). Then for all (i, j) ∈ ΣN × ΣM and
(k, `) ∈ ∂ΣN,0 × ∂ΣM,0,

Fi j(xk, y`, zk`) = h(ui(xk), v j(y`)) = h(xτ(i,k), yτ( j,`)) = zτ(i,k),τ( j,`)

so that (3.7) holds. Since s∗ < 1, we can easily see that (3.8) holds.
Given i ∈ intΣN,0 and j ∈ ΣM , let x∗ = u−1

i (xi) = u−1
i+1(xi). For any y ∈ J and z ∈ R,

Fi j(x∗, y, z) = Fi+1, j(x∗, y, z) = s(xi, v j(y))(z − g(x∗, y)) + h(xi, v j(y))

so that (3.10) holds. Similarly, (3.11) holds for all i ∈ ΣN , j ∈ intΣM,0 and y∗ = v−1
j (y j) =

v−1
j+1(y j).

By Theorem 3.1, we have the following result.

Theorem 4.1 [17]. Let {K,Wi j : (i, j) ∈ ΣN × ΣM} be the IFS defined by (3.9), where Fi j
is defined by (4.1) for (i, j) ∈ ΣN × ΣM . Then there exist a unique continuous function
f such that f (xi, y j) = zi j for all (i, j) ∈ ΣN,0 × ΣM,0 and G =

⋃
(i, j)∈ΣN×ΣM

Wi j(G), where
G = Graph( f ) = {(x, y, f (x, y)) : (x, y) ∈ I × J} is the graph of f .

The function s in the above theorem is called the vertical scaling factor function of
the FIF f . We remark that all s are constant functions in examples in [17]. In order to
solve Question 2.2, we will present a class of FISs which are easily constructed and in
which s is a piecewise bilinear function.

Firstly, we define ui and v j to be linear functions satisfying (3.1), (3.2), (3.4) and
(3.5) for all i ∈ ΣN and j ∈ ΣM . We define g to be the bilinear function on I × J
satisfying

g(xi, y j) = zi j, ∀(i, j) ∈ ∂ΣN,0 × ∂ΣM,0.

Equivalently,

g(x, y) =
1

(b − a)(d − c)
((b − x)(d − y)z0,0 + (x − a)(d − y)zN,0

+ (b − x)(y − c)z0,M + (x − a)(y − c)zM,N).
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Figure 3. Bilinear FIS in Example 4.1.

Then we define h : I × J → R to be the function such that h|Ii×J j is bilinear for all
(i, j) ∈ ΣN × ΣM and

h(xi, y j) = zi j, ∀(i, j) ∈ ΣN,0 × ΣM,0.

Let {si j | (i, j) ∈ ΣN,0 × ΣM,0} be a given subset ofRwith |si j| < 1 for all i, j. We define
s : I × J → R to be the function such that s|Ii×J j is bilinear for all (i, j) ∈ ΣN × ΣM and

s(xi, y j) = si j, ∀(i, j) ∈ ΣN,0 × ΣM,0.

For all (i, j) ∈ ΣN × ΣM , we define Fi j : I × J × R→ R by (4.1). Then the fractal
interpolation function f determined by {K,Wi j : (i, j) ∈ ΣN × ΣM} is called a bilinear
FIF. We call G = Graph( f ) a bilinear FIS. Also si j, (i, j) ∈ ΣN,0 × ΣM,0, are called
vertical scaling factors of f .

Clearly, a bilinear FIS is determined by interpolation points {(xi, y j, zi j) : (i, j) ∈
ΣN,0 × ΣM,0} and vertical scaling factors {si j : (i, j) ∈ ΣN,0 × ΣM,0}. This property is
similar to the linear FIF in the one-dimensional case.

Example 4.1. Let N = M = 3. Let xi = i/N and y j = j/M, for all i ∈ ΣN,0 and j ∈ ΣM,0.
Let Z = (zi j)(i, j)∈ΣN,0×ΣM,0 and S = (si j)(i, j)∈ΣN,0×ΣM,0 be chosen as

Z =


3 0 2 4
0 2 3 1
1 0 1 3
4 1 2 5

 , S =


0.2 0.3 0.4 0.8
0.1 0.5 0.9 0.2
0.3 0.2 0.4 0.3
0.5 0.4 0.8 0.2

 .
The corresponding bilinear FIS is shown in Figure 3.

Example 4.2. Let p(x, y) = sin(π(x2 + y2)), x, y ∈ [0, 1]. See Figure 4 for the graph of
p. Let N = 3 and M = 2. Define xi = i/N and y j = j/M, for all i ∈ ΣN,0 and j ∈ ΣM,0.
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Figure 4. The graph of p in Example 4.2.
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Figure 5. The bilinear FIS in Example 4.2.

Various algorithms can be devised to obtain S = (si j)(i, j)∈ΣN,0×ΣM,0 so that the
corresponding FIS fits the graph of p as well as possible. Here, by using a genetic
algorithm (see [13] for details), we obtain

S =

 0.035 −0.458 −0.130 0.837
0.018 0.472 0.402 −0.289
−0.442 0.99 −0.231 −0.99

 .
The corresponding bilinear FIS is shown in Figure 5.

5. Further remarks
In this section, we give some remarks on further work.

Question 5.1. How can we obtain the box dimension of a bilinear FIS?
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It seems that the method in [5] is helpful, where Barnsley and Massopust obtained
the box dimension of a one-dimensional bilinear FIF with xi = i/N for all i =

0, 1, . . . ,N. However, dealing with FISs is more involved.

Question 5.2. How can we construct recurrent FISs on rectangular grids which can
be easily generated? In particular, we hope that vertical scaling factors are easily
determined (for example, by a genetic algorithm) when we want to use recurrent FISs
to fit given data.

From Example 4.1, we expect that bilinear FISs will be used to generate some
natural scenes. However, in order to fit given data more effectively, we need recurrent
FISs. In [6, 7], Bouboulis, Dalla and Drakopoulos presented nice methods to generate
recurrent FISs, although the restrictive conditions for continuity are hard to check.
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