
NORMAL OPERATORS ON THE 
BANACH SPACE !?(-«>,«>). PART I 

GREGERS L. KRABBE 

1. Introduction. Let $5R2 be the Boolean algebra of all finite unions 
of subcells of the plane. Denote by <op the algebra of all linear bounded 
transformations of Z/(— °°, °°) into itself. Suppose for a moment that p = 2, 
and let 3%p be an involutive abelian subalgebra of $p\ if S%p is also a Banach 
space and if Tv Ç ^ , then: 

(i) The family of all homomorphic mappings of $$R2 into the algebra 8%p 

contains a member EP
T such that 

(1) Tp=f\.E?(d\).. 

Suppose, henceforth, that 1 < p < oo . The main result of this article (Theorem 
6.14) shows that property (i) remains valid for a suitable algebra &P. 

Let 35 be the class of all bounded functions whose real and imaginary 
parts are piecewise monotone. In § 2 will be defined an isomorphism / —» [Af]p 

whose domain includes 35 and whose range (t)p is a normed involutive abelian 
subalgebra of <%,. Theorem 6.14 will show that a member Tp of (t)P has the 
property (i) whenever Tv = [*f]p for some / in 35. The relation (1) involves 
a Riemann-Stieltjes integral defined in the strong opera tor-topology of &p 

(see 6.11). The set-function EP
T need not be countably additive: we do not 

restrict ourselves to u spectral resolutions' in the sense of Dun ford (1). The 
values of EP

T are self-adjoint (4, p. 22), idempotent members of (t)p. 
It is easily seen that the Hilbert transformation and the Dirichlet operators 

all have the property (i). For less trivial examples, let ^ # : be the set of all 
bounded Radon measures; if A £ ^f1, then the convolution operator A*p is 
defined as the mapping x —> A*x of Lp(—o^i oo) into itself. In the special 
case A Ç Ll(— <*>, °°), the operator A*p is denned for all x in Lp(— oo, oo) by 
the relation 

X co 

A(d - p)x(P)d$. 
-oo 

In case the Fourier transform of A belongs to 35, then the operator Tp = A*p 

satisfies property (i). Consequently, all the classical convolution operators 
(Picard, Poisson, Weierstrass, Stieltjes, Fejér, etc.) have property (i). Explicit 
determination of EP

T is readily inferred from § 6; in the case p = 2 our results 
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coincide with the ones given by Dunford (2, p. 63) for operators T of this 
type. The completion of the algebra {A*p: A £ ^ f 1 } is an (^4*)-subalgebra 
of (t)p (see 3.2). 

Let V p be the operator defined by the relation 
n 

\7px = — (derivative of x) 
ZTT 

for all x in a suitable subset of Lv{— °°, œ); this unbounded operator also 
has the property (i). Although details regarding such operators will be reserved 
for a subsequent article (see 7.0), it may be pertinent to remark here that 
a relation of the type 

T, = £f(fi)g (d0) 

holds for any Tv in (t)p such that Tv = [A/]P for some function / of locally 
bounded variation. For example, take a in (—<», °°), and let Rp be the 
translator defined by Rpx{6) = x(B — a) for all x in Lp(— oo, oo); then 

Rp = f" e^'É? (dO). 

2. The basic function-algebra. Let %+ denote the set of all complex-
valued measurable functions defined on (— oo, oo). Note that g+ is an algebra 
with multiplication f-g = {d —»/(0)g(0)}. The customary identification of 
equivalent functions is implied henceforth. 

Let L + be the intersection of the family {Lp{— œ , oo): 1 < p < °°}. The 
Fourier transform ^z of a function z in L+ is defined as the function / such 
that j | / — /n|| 2 -^ 0, where n-*c° and 

« J - r e 
fn(6) = eM"pz(p)di3 ( - oo < 0 < œ ). 

We denote by (/+) the set of all linear mappings of L+ into itself. If T Ç (/+), 
then 

| r | p = su p{| |7x| |p: x Ç l + and ||x||p < 1}. 

Let S denote the set of all T in (t+) such that |2"|p 9
e °° whenever 1 < p < °°. 

If G Ç 55+, then t(g) is defined as the set of all T in S such that 

(2) V(Tx) = g-^x for all x in L + . 

2.1. Definition. Let g denote the algebra of all bounded members of §+. 
Our basic operator-algebra is the set 

(t) = W { ; ( g ) : g € g} . 

If T Ç (/), then vT will denote the unique g in $ such that J1 £ /(g). The 
set {vT: T £ (t)} is denoted by %y. 
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2.2. Remarks. The definition of vT is justified by the fact that g = O 
whenever g- fe = O for all x in L+. Note that g v is the set of all g in % such 
that 0 9* t(g). It is easily checked that (t) is an abelian subalgebra of <% 
and that {T-±vT\ maps (2) isomorphically onto g v ; in particular 

(3) W(T^T^) = ( v r ^ ) . ( v r ^ ) when p ) G (*). 

2.3. Notation. If x G LP(-CQ, QQ), let x- = { 0 - > * ( - 0)}, while 

5 = {0->x(0)} and ~ x = {<9->:*;(- 0)}. 

2.4. Remarks. If 7" G ^ we define ^ J ' a s the operator {x G Z + —> ~T~x} ; 
observe that \T\P = \~T\P (this follows from \\x\\p = | |~# | | P ) . If T G /(g), 
then it is easily checked that ^ T G /(<7). Therefore, the mapping [T —» ^ T } 
of (0 into itself is an involution (10, p. 108). 

2.5. The following terminology is found in Hille (4, p. 22): a member T 
of S is "self-adjoint" if T = ~T. It is clear that 7" will be self-adjoint if 
and only if the function vT" is real-valued. 

3. The basic operator-algebra. From now on, p is a fixed number 
(1 < p < oo). Let (fp denote the Banach space of all bounded linear trans­
formations of Lp(— oo, oo) into itself. Since L+ is dense in Lp(— œ, oo), each 
T in $ has a unique, continuous extension Tp in ^ . Consequently, the 
algebra (0 is isomorphic to (t)p = {Tp: T G (0} under the mapping {7"—> Tp}. 
Note that | Tp\p = \ T\p. From 2.4 it follows that (0P is a normed involutive 
subalgebra (10, p. 110) of Sp- in the sense that \TP\P = \~TP\P. Note further 
that {i)p contains the identity operator Ip = {x G Lp( — oo, oo) —-»#}, and the 
completion (i)p* of (Op is a (*)-algebra in the sense of (4, p. 22). The title 
of this article was suggested by the fact that all members of (t)p are "normal" 
(4, p. 22). 

3.1. Application. Let ^Jil be the algebra of all bounded Radon measures 
on (—oo, oo). If A G t /# 1 , then A* is defined as the mapping {x—> A*x} of 
L+ into itself (where A*x = convolution of A and x; see (9)). In 3.2 it will 
be shown that the completion of ^/p = {A*p: A G ^Z/1} is an (A*)-subalgebra 
of (t)P* (see (4, Definition 1.15.3)). It is known that A* G <£ If *(dA) is 
the function g defined by 

g(fi) = J e2*mdA(p) ( - » < 0 < ») , 

then ^(^4*x) = Sir (d4 ) • \fo; (this can be seen from (9, p. 133, (II)), where 
V(dA)-isdenoted (YA)). But *{dA) G g, whence ,4* G (Oandwl* = *(<M). 
Consequently: 

3.2. If Tp = ^*p and ^ G ^ \ *A*w Tp G (OP awd v r = V(dA). Thus 
^ C (OP- TO show that the completion of s/p is an (^4*)-algebra, suppose 
that Tp = A*p is self-adjoint; from 2.5, 3.2, and (9, (i)) it follows that the 
spectrum of Tp is real. 
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3.3. Definitions. If / G g v , we denote by [hf] the inverse image o f / under 
the mapping {T —>vT}; in other words, [A/] is the member T of (£) such 
t h a t / = vT. If £ ' = />/(£ - 1) and V = Z / ( - oo, œ ) , then 

J oo 

x-y and (x|;y) = (x, y) 
-oo 

whenever (x, y) G L p X £ p ' . Suppose 1 < w < 2 and set w = u/(u — 1). If 
z G Lu, then FM(z) is defined as the function y such t h a t \\y — yn\\w —• 0, 
where w —» °° and 

y„(0) = fV2"'^(/3) rfjs (- - < 0 < »). 
«'-re 

3.4. Remark. Let L° denote the set of all s tep functions on (— 00, 00) 
having compact support . Suppose x G L°; it is easily seen t h a t ^ x G L + and 
F w (^x) = x whenever 1 < zi < 2. 

3.5. LEMMA. Suppose 1 < w < 2. If g G g v , /Aew 

[Ag]x = F w (g -^x) = F2(g-^ fx) w/ze^ x G L°. 

Proof. From x G L° it follows t h a t ^ x G £ + (see 3.4): therefore g-^fx G £?/ 

H I 2 . T h u s FM (g-^x) = F 2 ( g - ^ x ) = F2^([gA]x); the last equali ty being 
obtained by sett ing T = [Kg] in (2). T h e conclusion now follows from 3.4. 

3.6. LEMMA. / / Tv G {t)v and q = p/(p — 1), then 

(TpX-y y) = (x, Tqy) when (x, ;y) G Lp X ZA 

Proof. Set £ ( x , y) = {Tpx\ y) and J3'(x, y) = (x, T^y). Both J3 and 5 ' are 
continuous bilinear functionals on LP X La. Since the space L° is dense in 
both LP and Lq (see 3.4), it will therefore suffice to show t h a t B and B' coincide 
on L° X L°. T o t h a t effect, we will need the Parseval formula in the following 
two equivalent forms: 

(4) (x l5 X2-) = <¥*i, *x2> ((Xi, x2) G L 2 X L 2 ) , 

(4') <*?!, ̂ 2} - <yi-, F2y2) ( ( y i > y2) G L 2 X L2) 

(see (11, Theorem 49 or 75); recall t h a t LP = Lv{- co, 00)). Set g = v 7 \ 
and suppose t h a t (x, y) G LQ X Z#°. F rom (4) and (2), therefore, we have : 

(Tx-,y) = (g-^x-, ^y) = (^x-, g^-y). 

W e now apply (4') with y\ = xm and y2 = g-^ry: 

{Tx-,y) = <x, Y2(g-*y)) = (x, 7 » ; 

the last equali ty comes from 3.5 and T = [Kg]. 
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3.7. Remark. The positive sesquilinear Hermitean form {(x,y) —> (x\y)} on 
L+ X L+ (see 3.3) makes L+ into an inner-product space. From 3.6 it can 
easily be derived t h a t ~T is the Hilbert adjoint of T: 

(Tx\y) = (x\~Ty) when x G L+ and y G L+ 

We will make no use of these properties. 

3.8. Definition. Suppose — • o o < a < o o . I f < £ ( = g ) then ra</> will denote the 
function g defined for all 0 in (— °°, °°) by the relation g(d) = <£(0 — a). 

3.9. T H E O R E M . Suppose — oo < a < oo. / /</>£ g v ***» r«</> 6 $ v 

Proo/ . Let ^« be the function { 0 - + e 2 ^ « } . Set 7™ = [A</>], and let T be 
the operator defined by the relation 

Tx = ¥«• 7™ (*«•*) (all x in Z+). 

Note t ha t | r | p = \T(1)\P, and therefore 2" G ë- Since g = ra</> G g, it will 
suffice to show tha t (2) holds; bu t this follows easily from a repeated appli­
cation of the relation ra(^<£) = ^ ( ^ a •</>). 

4. T w o l a t t i c e s of projectors . The Hilbert transformation H is defined 
for all x in L+ by the relation 

(Hx)(6) = f^^^xtfW (~ °° < e < °°)> 
the integral being taken in the Cauchy principal value sense. I t is well known 
t h a t H G S3. The fact t h a t H G / ( - i - s g n ) is explicitly s tated in (12, p. 22) 
and (3, p. 8) ; it can be extracted from (11, pp. 120-125). T h u s H G it) and 
H — — i'Sgn G 5v- Since ^v 1S a linear space containing the function 
p = {0-> 1}, it follows t ha t go = 2~1{P + sgn) G gv-

Suppose t ha t a and ft belong to the closed interval [— °°, °°]. Let If (a, ft) 
denote the characteristic function of the open interval (a, ft), and set 
</>« = If (a, co ) . Recall t ha t go = 2~1(I° + sgn) G gv>

 a n d n o t e t h a t 

go = I#°(Q> °°)- From 3.9 it can therefore be inferred t ha t rago = </>« G 5v-

4.1. Remark. We now know tha t g v contains the function If (a,oo) when­
ever a G [— °°, °°]. Again using the fact t ha t g v is an algebra containing 7°, 
we deduce t ha t g v contains any function of the form If (a, ft), where 
— oo < a < / 3 < < » . 

4.2. Notation. Let V denote the set of all complex-valued functions defined 
on (— °°, °°) such t h a t \f\v 7e °°, where \f\v denotes the total variation o f / 
on (— °°, °°). We will write 

ll/IU = s u p { | / ( 0 ) | : - c o < * < « > } , 
and 

ll/llo = ll/IL + l/l.. 
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4.3. LEMMA. If Ll C\ V denotes the set of all g in Ll( — °oT oo) such that 
g G V, then L1 C\V C 5 v Moreover, there exists a number cv > 0 with the 
property that, if g £ Ll C\ V, then 

(5) | [Ag] |„<2-^ |g | B . 

Proof. An operator Tg corresponds to g so that | | (rg)x| |p < 2""1c2?|^|»||x||p 

for all x in L° (see (8, 3.3 and 3.7), where g = a). Since L° is dense in L+ , it 
follows that Tg has an extension T+ with !T+ G (t+) and iP+lp < 2_1cp|g|P, 
whence T+ G ^ Since g G S» it remains to show that T+ G t(g). From (8, 
7.2 (14)) it follows that 

^(B2(x,g)) = g>^x (when x G £°). 

From the definition (8, §5) of Bv(x, g) it results immediately that B2(x, g) = 
(Tg)x whenx G L°; consequently 52(x, g) = T+xwhenx G L+. Thus T+Ç_t(g), 
which concludes the proof. 

4.4. Remark. Let " < " be the relation defined on $ by: 

yd) ^ y(2) ^ yd) = yd)y(2)# 

A family ^ will be called an "<f-tower" if ( ^ < ) forms a lattice of self-
adjoint (see 2.5), idempotent members of S satisfying the following two 
conditions: 

(ii) The order-type of (0>, < ) is the order-type of some closed subinterval 
of [ -oo, » ] ; 

(iii) IfPC0> then O £ &> and O < P < l £ & 

4.5. Both families {[Mf(a, <»)]:« G [ - «>, oo ]} and {[Mf(-n,n)]: 
0 < n < °o} are # towers; in Part II it will be shown that they are the 
spectral resolutions pertaining to two unbounded operators. 

Set \f/n = 7#°(— n, n). We here examine more closely the #tower 
{[Wn] • 0 < n < oo}. Suppose 0 < n < oo, and let Xn be the function defined 
by 

XnW = (sin 2Trne)/ir6 ( - oo < 0 < oo). 

The Dirichlet operator J(w) is defined for all x in L+ by the relation 

Xn(0 - 0)*(/3) d/5. 

I t is well known that J(n) G S (see (6)), and from (11, Theorem 65) we see 
that V(JWx) = *(xn*x) = (*x«) •(**)• But ^xn = ^«; therefore/<"> = M„] . 

4.6. LEMMA. If f £ V and ypn = J#°( — », »), /Ac» 

|[Af]|p < 2 - ^ s u p { | ^ . / | , : 0 < » <ooj . 

Pr06>/. Clearly Aw = \J/n-f £ L1 r\ V; from 4.3 therefore 

(6) \[Ahn]\p < 2 - ^ p sup{ |^ . / |„ : 0 < n < « } = V -
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Suppose x € L+ , and note that 

(7) lim||[Afl* - JW([Af]x)\\P =0 (n ->«>) 

(see, for example, (6 (lb")) or (8, 5.2)). In 4.5 we saw that jw = [A^n]; 
therefore J™ o [A/] = [ A ( ^ . / ) ] = [AA»] (from (3)). Accordingly, (6) now 
states that | | / ( W ) ( [ A / W I I P < V I M U which (from (7)) gives the conclusion 
\\[*f]x\\p < kp'\\x\\p. 

4.7. THEOREM. If f G V, then f Ç g v and 

(8) |[A/]|„ < ^ | | / | | o . 

Proof. Suppose 0 < n < °° throughout, and set an = (— n, n), while 
CLrT = {— °°, — «] and aw

+ = [», «>). Note first that An = Ifan vanishes 
outside of a„, so that |An|p < 211/H^ + \f\v. In the notation of 4.6, we can 
write hn — i/n-f; consequently, the relation (8) follows from 4.6. It remains 
to show that / G g v . Define fw = hn + g<n\ where 

gw = / ( - *)/#°(o»-) +/(n)/#°(a»+). 
Since g(w) is a linear combination of members of %y ( s e e 4.1), it follows that 
g(n) G 5 v S i n c e hn £ L1 r\ V and 4.3, this in turn necessitates that/<n) € gv . 
Set r « = [A/W] and apply (8): 

(9) |7™ - j w | , < cp\\f™ -/<w>||0 (m > 0). 

Let z/(g; a) denote the total variation of g on a; observe that »(/ — f(n); a) = 
*K/î a) when a = aw~ or a = an

+. Moreover, / — f(n) vanishes on an, and there­
fore 

11/ - fw\L < 1/ - / w l . = »(f; a»-) + v(f\ a,+). 
Since / G F, this inequality implies that 

(10) 0 = l i m | | / - / W | | o = l i m | | / - / w | U ( » - * » ) . 

From (9) and (10) it can be inferred that the sequence {Tp
(n)}n is a Cauchy 

sequence in Sp, and it accordingly converges (when n—*co) to a member 
Tp of 4 . Therefore, p G (1, œ ) a n d x Ç L+ implies that 0 = l im| |7> - T^x\\p 

{n—>co); but this in turn implies that {T(n)x}n converges in measure to 
Tpx. Since measure-limits are uniquely defined, the outcome can be stated 
as follows: p Ç (1, <») and # 6 L + implies that 7"2x = Tpx(z Lp. From this 
we infer that T2 G S (see § 2). 

The proof is now concluded by showing that T2 € t(f). Suppose x £ L+, 
set <t> = ^ ( r 2 x ) —f-^x and note that 

|^ | | 2 <|r 2 -rw| 2 |W| 2 + il/-/^IUIW|2. 

From (10) it follows that <£ = O = ^(T2x) - / • * * . This shows that 
T 2 e /( /) , whence / g gv . 

4.8. COROLLARY. F C Sv-
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5. Two convergence theorems. Let F be a function defined on a set S. 
If (5, ^>) is a directed set, then the net (F, )>>) is also denoted {F(s) : s £ S, ]£>} 
(our terminology and notation come from (5, p. 65)). If F maps into a set 
Ï , then (F, ^>) is called a net in 1. If (F, ^ ) is a net in a Hausdorff space #, 
then we write 

x = Xlim{F(s):s G S , » } 

to indicate that (F, » ) converges to a point x in ï (see (5, p. 68)). Let % 
denote the strong operator-topology of the algebra Sv which was defined 
in § 3. For example, suppose that F(s) G S (for all 5 in S) and T G $\ then 
F(s) and T admit continuous extensions F(s)p and Tv, respectively (see § 3; 
F(s)p G <?p and Tv G <§). Accordingly, the statement 

(11) Tv = ^\\m{F{s)v\ s G S, » } 

means that the net {F(s)p: 5 f 5, » } converges to Tv in the strong operator-
topology of Sp (see (4, p. 53)). 

5.1. Definition. Let (F, » ) be a net in & If F G ^ then 

F = ^ l i m { F ( s ) : s G S,»} 

is written to mean that relation (11) occurs whenever 1 < p < œ. 

5.2. Remark. If {/(s) : 5 G 5, >̂>} is a net in [0, oo), then 

oo ^ lim sup{/(s) : 5 f 5, » } 

if and only if there exists a number NQ > 0 and an element So of 5 such that 
f(s) < iVo whenever 5 G 5 and 5 ̂ > s0. 

5.3. THEOREM. Suppose g G 3 v a w ^ ^ î ^ ( 5 ) : 5 G 5, » } be a net in V. Set 
Hp = Lp ( — oo 1 oo ) and suppose further that the relation 

(12) [hg]x = ï2Hm{[AG(5)]x: 5 G 5, » } 

holds for all x in L°. If 

(13) «> 3*limsup{||G(s)||0:s G 5 , » } , 

then 

[Ag] = ^ l i m { [ A G ( 5 ) ] : 5 G 5 , » } . 

Pm?/. Suppose 1 < p < oo. We must prove (11) for T= [Ag] and 
F(s) = [AG(s)]\ that is, we must show that 

(14) Tvx = % lim{ F(s)px: s G 5, » } 

for all x in Hv. From (13), 5.2, and 4.7 follows the existence of a number A7
0 

and an element sQ of 5 such that, if 5 G S and 5 » s0, then 

(iv) \F(s)Q\q < NQcq 
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whenever 1 < q < oo. It will be convenient to describe (iv) by saying that 
the net {F{s)q:s G S, y>} is e.u.b. (eventually uniformly bounded) in S^ 
Consequently, the net {F(s)p:s £ S, ^>} is e.u.b. in <g. It is easily verified 
that the Banach-Steinhaus theorem (4, p. 41) applies not only to uniformly 
bounded sequences in d?p, but also to e.u.b. nets in ép. Let us suppose for a 
moment that (14) holds for all x in L°; since L° is dense in %p, the Banach-
Steinhaus theorem implies that (14) holds for all x in %P1 and the theorem 
is proved. 

Suppose x £ L°, and set y(s) = Tx — F(s)x; in view of our preceding 
remark, it will suffice to show that 

(v) 0 = l i m { | b W | | 1 , : 5 e 5 , » } . 

If p = 2, there is nothing to prove, since (v) is then our hypothesis (12). If 
p 9^ 2 there clearly exists a number q with 1 < q < co such that p lies between 
2 and q; there exists therefore a number m such that 

~-=-m + -(l~m) and 0 < m < 1. 
£ 2 q 

From the logarithmic convexity of the norm we see that 

\\yU)\\f> < (\\y(s)\U)m • Q\Tx - F(s)x\\ty-». 

Accordingly, we can infer from (iv) that, if s ^> sot then 

IbWII, < (\\y(s)\U)m • a m , + N*,] . \\x\\Qy-m. 
Consequently, (v) results from the hypothesis (12). 

5.4. COROLLARY. Suppose g € 5v and ^ {G(s):s £ S, ^>} be a net in V 
satisfying (13). If 

(15) 0 = l i m { | | g - G ( s ) | U : s e S , > > } , 
then 
(16) [Ag] = 3T lim {[AG(s)]: s £ 5, » } . 

Proof. In view of 5.3, it will suffice to establish (12). Take x in L°; from 
3.5 it follows that 

\\[Ag]x - [AG(s)]x\\2 = \\Y2([g - G(s)] • ¥*) | |* 

But [g — G(s)] ' ^fx is in L+ (see 3.4). Since F2 is an isometric mapping, we 
see that 

(17) [|[Ag]* - [AG(S)]X\U < \\g - G(s)\\m . | |**||2. 

The conclusion (12) now results from (15), (17), and °° ^ ||fejJ2. 

6. The main result. From now on, R = (— co,œ) and R = [— <»,<»] = 
R\J {-oo, oo }; if a and 0 lie in 5 , then (a, /3] = {0 G R: a < 6 < p). The 
space R2 = R X R consists of all points X = (Xi, X2) such that Xi Ç Ë and 
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X2 G R. The usual embedding {a —•> (a, 0)} of R into .R2 will be assumed. 
Accordingly, R C. R2', if a and /? belong to i?2, then (a, 0] is the Cartesian 
product («i, 0i] X («2, jS2], with the exception (a, 0] = (a b ft] X {0} = (<xu /Si] 
in the case a = «i and fi = ft. 

6.1. Definitions. If Ç C ^2> then 33<2 will denote the family of all finite 
unions of members of 21(2 = {(«, £]*• («, ft € <2 X Q}. 

6.2. The Boolean algebra S A will consist of all symmetric differences 
B + N = (BKJ N) - (B r\N), where B £ $8R and iV is a subset of i? 
having zero measure. 

6.3. The following notations will be used consistently. If g G g, then 
gi = (real part of g) and g2 = (imaginary part of g). If o- 6 33B2, then 
(g 6 °0 = Ie € ^ : #W £ *}» except that (g 6 cr) = (gi 6 <r) whenever g = gx. 

6.4. The set ^ A will consist of all functions g in g such that (g G a) G S A 
whenever a- G 2I#2. 

6.5. If T G (/) and g = vT 6 $A> then the set-function ET is defined for 
all o- in 33JS2 by the relation 

ET(a) = [A/#o(g G cr)]. 

Recall that $ = If(g Go") is a function such that \f/(6) = 1 whenever 
0 G (g G o"), while ^(0) = 0 otherwise. Note that \p G F; in this connection, 
it should also be mentioned that 2ÏB, $8R, and S A are Boolean set-algebras. 
Since the verification of these facts is routine, it will be omitted. Both 0 and 
R2 belong to $8R2; it is clear that 

ET(0) = O and ET(R2 - a) = I - ET(a) 

whenever a G $8R2. In fact, ET is an isomorphism into (t) of the Boolean 
set-algebra $5R2; if o-' and a" are in 33Ë2, then 

ET{a'\J a") = Er(o-/) V E T ( 0 

and 

£r(^no = £V)A £r(0 
(the operations " V " and " A " are defined in (1, p. 219)). 

6.6. Orientation. The following is aimed at defining two-dimensional 
Stieltjes integrals of commonplace type. In order to implement a later proof 
(6.14), an order-preserving notation for range partitions will first be described. 

6.7. Let 3 be the family of all strictly monotone-increasing functions Z 
whose domain D(Z) is a finite set of consecutive integers, and whose range 
{Zv: v G D(Z)} is a subset of R. If Z G 3 , we denote by Z* the set {v G D(Z): 
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v > min D(Z)} and write Z(y] = (Z,-i, Z„] whenever v £ Z*. In case 
Çt C R, then 3Qt will denote the family of all Z in S such that 

ftCW{ZW:^ Z*}. 

6.8. Definition. Suppose g Ç g, and denote by [g] the closed cell [— X, X], 
where Xt = ||gi|U for t = 1,2 (see 4.2). The family S[g] consists of all ordered 
pairs (Z, g) whose first member Z = (Z1? Z2) lies in 3 k l ] X cBfe], and such 
that 1 is a function on Z* = Zi* X Z2* whose values i(v) lie in Z" = Z ^ ] X 
Z2(^2J whenever v = (^1,̂ 2) 6 Z*. 

6.9. Definition. Suppose T Ç (*) and v r € gA. If s = (Z, g) Ç Sly 7], then 
we write 

( £ ^ ) = E 3 ( ^ ( 2 ' ) (« = Z*). 

6.10. THEOREM. Suppose T Ç (£) and vT Ç 5A- -ty Jftere a w ^ a number 
k0 > 0 sttcfe /AaJ | v ( £ r : s)|*, < &o||v(£r: s ) !^ whenever s £ S[vT], then the 
following Stieltjes integral exists: 

(18) J\-ET(dk) = ^ l i m { C E r : s ) : s Ç S [ v r ] , » } . 

(i) r = J\.£r(dx). 
6.11. Remarks. The set SfvT] is directed by the partial ordering "*2>" (see 

(5, p. 79) and 6.12). The meaning of the relation (1) will now be explicitly 
formulated. If 1 < p < °°, then the net 

b - E i(p)ET{Z')J\p:(Zti) 6 5[vr],» 

converges to zero for all x in LP(R) (compare (18) with 5.1). Consequently, 
(1) implies that the net 

J E i{v)ET{Z\:{Z,D €5[vr],»} 
\ veca 1 

converges to Tv in the weak opera tor-topology (this again comes from (18) 
and 5.1); Tv is therefore a i'scaled" member of $v (see (7, p. 450)). 

6.12. Proof of 6.10. If Q C R2, let \Q\ denote the diameter of Q. Set g = vT 
and S = S[g]. Suppose s = (Z, g) Ç 5. We define ||$|| = max{\Z'\:v G Z*}. 
The partial ordering is defined by: s' ^> s «=> \\s'\\ < \\s\\ whenever s' £ S. 
Set G (s) = v(ET: s); from 6.9 and 6.5 we note that 

(19) G(s) = E îW/#(g € Z') (« = Z*). 

Clearly G(s) £ V (see 6.5). It is easily seen that 

(20) \\g - G(s)\\m < |H| . 
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But oo 5̂  ||g||œ and therefore oo ^ lim sup{||G(5)||00: 5 Ç 5, ^>} (see 5.2), 
from which our hypothesis ||G(s)||0 < (&o + 1)|I^C^)||oo yields the relation 
(13) of 5.3. Since (20) implies (15) in 5.4, the net {G(s):s G 5, » } satisfies 
all the conditions of 5.4. The conclusion now results from (16), T = [Ag] and 
(ET:s) = [AG(s)]. 

6.13. Definition. A function / is "piecewise monotone" if there exists a 
member Z of £R such t h a t / is monotone on Z(v] for all v in Z* (see 6.7). 

6.14. THEOREM. Let g be a bounded function whose real and imaginary parts 
are piecewise monotone. Then g G 3?A and [Ag] is a member T of (t) such that 

(1) T = f\-ET(d\) 

in the sense of 6.10-6.11. 

COROLLARY. Suppose that A is a bounded Radon measure on R, and let g be 
the Fourier transform of A. If Tv is the convolution operator A*v, then T satisfies 
(1) whenever g satisfies the hypothesis of 6.14. 

Proof. Observe that g = ^(dA) in the notation of 3.1; from 3.2 therefore 
vT = g, and the conclusion now comes from 6.14. 

6.15. Remark. Suppose J G $IË, and let / belong to the set @(7) of all 
real-valued functions that are monotone increasing on / . If a = (a, oo) or 
a = [a, oo ), then / r\ (f G a) is a connected subset of R; therefore J C\ (f £ a) 
G 6A . 

6.16. Consider now the case a = (a, 13] G 2ÏË; then J C\ (f G <r) G SA- This 
can be seen by noting that ( / G <r) is the set-theoretic difference J C\ (f G ai) 
— J C\ ( / £ 0-2), where o"i = (a, oo) and c2 = (jS, oo); since 6 A is a Boolean 
ring, the conclusion follows from 6.15. 

6.17. Definition. If J G 2l#, then m(J) will be the set of all bounded 
functions whose real and imaginary parts are both monotone on / . 

6.18. LEMMA. If J £ $tR and g G 5DÎ(J), then J C\ (g G a) G 6 A whenever 
a G %R2. 

Proof. Since a G 3ï^2, we can write a = ai X o"2, where {ai, a2} C 21^, so 
that J r\ (g £ a) = J r\ (gx e en) r\ (g2 G <r2). Set i = 1, 2. The proof will 
therefore be concluded by establishing that / O (gL G ct) G 6A- Since this 
was proved in 6.16 for the case gL G ®(J0, it will suffice to consider the case 
where gt is decreasing on J. But then / = — g, G ®(J) , and the arguments 
in 6.16 (together with 6.15), give the conclusion J F\ (gL G O G 6A-

6.19. Definition. If Q C ^ 2 , then U<2 will denote the set of all mappings F 
of Q into i?2 such that, if X' = (A/, A2') G Ç and X" = (A/', X2") G (?, then 
X/ < Xt" implies 7\(X') < Ft(\") whenever t = 1 and also when t = 2. 

6.20. LEMMA. Suppose] Ç, %R and g £ Wl(J). If F £ U[g)then (Fog) em(J). 
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Proof. The composition {F o g) is the function h such that h (fi) = F(g(6)) 
for ail 6 in R. In case 6' < 6" and g1(d') < gi(0")>set\' = g(fif) and X" = g(0")î 
thenX/ < Xi"andFi(g(0')) < Fi (g (B")). Therefore hx G ®(J). The remaining 
cases can be similarly derived. 

6.21. Remark. Let h G g and / = (a, /3] G 21ft. Denote by »(A; J) the total 
variation of h on [a, /3] P\ ft. If A G 2)?(/) (see 6.17), it is easily verified that 
v(h;J)<8\\h\\m. 

Proof of 6.14. Set i = 1, 2. By hypothesis there exist two members IIi 
and ÏI2 of $ft (see 6.7) such that gt is monotone on each ÏIt(/ct] when KL G IIt*. 
For any K = (K1} K2) in II* = Hi* X n2*, we write UK = III(KI] H II2(/C2]. Note 

that n« G a s and g G aR(n«). 
Observe first that g G F, and therefore g G g v (by 4.8). Thus Ag = 71 G (*) 

and vT = g. The property g G 5 A is proved as follows. Take any o- in 2lft2, 
and note that (g G a) = U{IP Pi (g G o\): « G n*}; since S A is a Boolean 
ring, the conclusion (g G <r) G SA is now inferred from 6.18. 

Next, take any s = (Z, $) in S[g], set G(5) = v(ET:s) and note that 

(21) |G(s)|„ < E v(G(s);TlK), 
K = l 

where {1, 2, 3, . . . , m) = II*. From Definition 6.8, there exist functions Z t 

in S such that i(v) G Zv = Zi(vx] X Z2(v2\ for all *> = (z>i, *>2) in Zi* X Z2* 
(the index-sets Z* are defined in 6.7). If X G [g], denote by v[\] the v in Z* 
such that X G Z", and let F be the function defined by F(\) = %(v[\]) for all 
X in [g]. From the isotonicity of the correspondences set up in 6.7 it now 
follows that F G U[g] (see 6.19). On the other hand, it is easily checked that 
G(s) = (Fog) (see (19)). From 6.20 therefore: G(s) G 2W(J) whenever 
j e aft. 

Suppose K G n*. Since G(s) G 2)Î(IP), it results from 6.21 that v(G(s); 
IP) < 8HGWIU, and from (21) therefore: \G(s)\v < Sm\\G(s)\\œ. In view of 
6.10, the proof of 6.14 is completed. 

7.0. Added in proof. Part II of this article has appeared in the Journal 
of Math, and Mechanics, Vol. 10 (1961), 111-134. 

7.1. Remark, (added March 9, 1961). The set V (defined in 4.2) is strictly 
included in the set Vp of all functions having generalized higher f3-variation ; 
it can be proved that Vp C Sty- This last assertion is clearly stronger than 
our Corollary 4.8; it is implicit in a remark on p. 242 of an article by I. I. 
Hirschman, Jr. "On multiplier transformations", Duke Math. J., 26 (1959), 
221-242. At the time the present article was written, I was unaware of Pro­
fessor Hirschman's remark. 
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