NORMAL OPERATORS ON THE
BANACH SPACE L*(— »,). PART I

GREGERS L. KRABBE

1. Introduction. Let BR? be the Boolean algebra of all finite unions
of subcells of the plane. Denote by &, the algebra of all linear bounded
transformations of L?(— =, «) into itself. Suppose for a moment that p = 2,
and let #, be an involutive abelian subalgebra of &,: if %, is also a Banach
space and if T, € Z%,, then:

() The family of all homomorphic mappings of BR? into the algebra X,
contains a member £, such that

(1) T, = f)\-E,,T(d)).

Suppose, henceforth, that 1 < p < «. The main result of this article (Theorem
6.14) shows that property (i) remains valid for a suitable algebra Z,.

Let © be the class of all bounded functions whose real and imaginary
parts are piecewise monotone. In § 2 will be defined an isomorphism f — [Af],
whose domain includes ® and whose range (¢), is a normed involutive abelian
subalgebra of &,. Theorem 6.14 will show that a member 7, of (¢), has the
property (i) whenever T, = [Af], for some f in ©. The relation (1) involves
a Riemann-Stieltjes integral defined in the strong operator-topology of ¢,
(see 6.11). The set-function E,” need not be countably additive: we do not
restrict ourselves to ‘‘spectral resolutions” in the sense of Dunford (1). The
values of E,7 are self-adjoint (4, p. 22), idempotent members of (¢),.

It is easily seen that the Hilbert transformation and the Dirichlet operators
all have the property (i). For less trivial examples, let _#! be the set of all
bounded Radon measures; if A€ 4!, then the convolution operator A4x, is
defined as the mapping x — Axx of L?(— o, ) into itself. In the special
case 4 € L'(— o, »), the operator 4, is defined for all x in L?(— », =) by
the relation

Aupe® = |46 - 812315,

In case the Fourier transform of 4 belongs to D, then the operator 73, = Ax,
satisfies property (i). Consequently, all the classical convolution operators
(Picard, Poisson, Weierstrass, Stieltjes, Fejér, etc.) have property (i). Explicit
determination of E,7 is readily inferred from § 6; in the case p = 2 our results
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coincide with the ones given by Dunford (2, p. 63) for operators T" of this
type. The completion of the algebra {4«,: 4 € _#'} is an (4%*)-subalgebra
of (), (see 3.2).

Let V, be the operator defined by the relation

1

5 (derivative of x)

for all ¥ in a suitable subset of L?(— =, «); this unbounded operator also
has the property (i). Although details regarding such operators will be reserved
for a subsequent article (see 7.0), it may be pertinent to remark here that
a relation of the type

Vpx =

7, = | 105 @)

holds for any 77, in (¢), such that 7, = [Af], for some function f of locally
bounded variation. For example, take « in (— ®, ©), and let R, be the
translator defined by R,x(f) = x(# — «) for all x in L?(— », «); then

R, = f R (d9).

—c

2. The basic function-algebra. Let {, denote the set of all complex-
valued measurable functions defined on (— «, ). Note that §, is an algebra
with multiplication f-g = {8 — f(0)g(8)}. The customary identification of
equivalent functions is implied henceforth.

Let L* be the intersection of the family {L?(— o, ®):1 < p < =}. The
Fourier transform ¥z of a function z in L* is defined as the function f such
that ||f — fullo — 0, where n — = and

fa(0) = f;e?”mz(ﬁ)dﬁ (— 0 <0< »).

We denote by (¢) the set of all linear mappings of L* into itself. If 7" € (¢1),
then

|T], = supf|[Tx|l,:x € L+ and |lx[|, < 1}.

Let & denote the set of all 7 in (¢*) such that |T|, ¥ «© whenever1 < p < o,
If G € §4, then £(g) is defined as the set of all 7" in & such that

2) V(Tx) = g-Tx for all x in L*.

2.1. Definition. Let § denote the algebra of all bounded members of §..
Our basic operator-algebra is the set

() =\ ltle:g € §}.

If T € (¢), then vT will denote the unique g in §§ such that T € ¢(g). The
set {vI: T € (1)} is denoted by Ty.
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2.2. Remarks. The definition of vT is justified by the fact that g = O
whenever g-¥x = O for all x in L*. Note that §y is the set of all g in § such
that @ # t(g). It is easily checked that (f) is an abelian subalgebra of &
and that {T"—vT} maps (¢) isomorphically onto {y; in particular

(3) V(TOTW) = (vI®). (vI'®) when 7™ € ().

2.3. Notation. If x€IL°(—w,»), let x ={0—>x(—0)}, while
Z={0—>x(0)} and ~x = {§ > x(— 0)}.

2.4. Remarks. If T' € & we define ~T as the operator {x € LT — ~T ~x};
observe that |T|, = |~T], (this follows from ||x||, = ||~x]||,). If T € ¢(g),
then it is easily checked that ~7" € £(§). Therefore, the mapping {T — ~T}
of (¢) into itself is an involution (10, p. 108).

2.5. The following terminology is found in Hille (4, p. 22): a member T
of & is “self-adjoint” if T = ~T. It is clear that T will be self-adjoint if
and only if the function vT is real-valued.

3. The basic operator-algebra. From now on, p is a fixed number
(1 < p < ). Let &, denote the Banach space of all bounded linear trans-
formations of L?(— «, «) into itself. Since L* is dense in L?(— o, «), each
T in & has a unique, continuous extension T, in ¢, Consequently, the
algebra (¢) is isomorphic to (£), = {T,: T € (£)} under the mapping {T — T,}.
Note that |T,|, = |T],. From 2.4 it follows that (¢), is a normed involutive
subalgebra (10, p. 110) of &,. in the sense that |T,|, = |~T},|,. Note further
that (), contains the identity operator I, = {x € L?(— », ») — x}, and the
completion (£),* of (¢), is a (*)-algebra in the sense of (4, p. 22). The title
of this article was suggested by the fact that all members of (¢), are ‘‘normal’’
(4, p. 22).

3.1. Application. Let _#' be the algebra of all bounded Radon measures
on (—ow,®), If A € _#7, then A4 is defined as the mapping {x— A#*x} of
L+ into itself (where A%x = convolution of 4 and x; see (9)). In 3.2 it will
be shown that the completion of %, = {As,: 4 € _#1} is an (4*)-subalgebra
of (t),* (see (4, Definition 1.15.3)). It is known that Ax € & If ¥(dA4) is
the function g defined by

6@ = [ @aae) (@ <b< =),

then ¥(4dxx) = ¥(dA)-¥x (this can be seen from (9, p. 133, (II)), where
¥(dA) isdenoted (YA4)). But ¥(d4) € §, whence Ax € () andvAdsx = ¥(d4).
Consequently:

32. If T, = A, and A€ _#*, then T, € (t), and vI = ¥(dA). Thus
&, C (t),. To show that the completion of % is an (4*)-algebra, suppose
that T, = As, is self-adjoint; from 2.5, 3.2, and (9, (1)) it follows that the

spectrum of 7, is real.
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3.3. Definitions. If f € Ty, we denote by [Af] the inverse image of f under
the mapping {7 — vT}; in other words, [Af] is the member T of (¢) such
that f =vT. If p' = p/(p — 1) and L? = L?(— o, »), then

(x,9) = fwx-y and  (x]y) = (x, %)

—a0

whenever (x,y) € L? X L”. Suppose 1 < u < 2 and set w = u/(u — 1). If
z € L* then Y,(2) is defined as the function y such that ||y — y,/l. — 0,
where n — » and

w(0) = J‘_nne_hmz(ﬁ) g (== <0< =)

3.4. Remark. Let L° denote the set of all step functions on (— ®, )
having compact support. Suppose x € L% it is easily seen that ¥x € L* and
Y.(¥x) = x whenever 1 < u < 2.

3.5. LEMMA. Suppose 1 < u < 2. If g € Fy, then
(Aglx = YV, (g-¥x) = V,o(g- ¥x) when x € L.

Proof. From x € L° it follows that ¥x € L* (see 3.4): therefore g- ¥x € L
M L2 Thus V,(g-¥x) = Ve(g-¥x) = V¥ ([gAlx); the last equality being
obtained by setting 7" = [Ag] in (2). The conclusion now follows from 3.4.

3.6. LEmMA. If T, € (t), and ¢ = p/(p — 1), then
<T27x'9 y) = <xv T(Iy> when (xyy) E Lﬂ X Lq'

Proof. Set B(x,y) = (Tyx-, y) and B'(x,v) = {(x, Tyy). Both B and B’ are
continuous bilinear functionals on L? X L% Since the space L° is dense in
both L? and L? (see 3.4), it will therefore suffice to show that B and B’ coincide
on L° X L° To that effect, we will need the Parseval formula in the following
two equivalent forms:

4) (x1, X2y = (Pxy, Vixa) ((x1, x2) € L2 X L?),
4" (Ty1, y2) = (y17, Yaye) ((y1, 92) € L2 X L?)

(see (11, Theorem 49 or 75); recall that L? = LP(— o, ©)). Set g = vT,
and suppose that (x,y) € L® X L° From (4) and (2), therefore, we have:

We now apply (4') with y; = x and y, = g- ¥y
(T, y7)y = (x, YValg-¥y)) = (x, Ty);

the last equality comes from 3.5 and 7" = [Ag].
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3.7. Remark. The positive sesquilinear Hermitean form { (x, ) — (x|y)} on
L+ X L* (see 3.3) makes L* into an inner-product space. From 3.6 it can
easily be derived that ~T is the Hilbert adjoint of T':

(Txly) = (x|~Ty) when x € L* and y € L+
We will make no use of these properties.

3.8. Definition. Suppose —© < a <o, If ¢ € §, then 7,¢ will denote the
function g defined for all 6 in (— =, =) by the relation g(8) = ¢ (6 — «).

3.9. THEOREM. Suppose — o < a <. If ¢ € Ty then 1.0 € Fy.

Proof. Let ¥, be the function {6 — e} Set T = [A¢], and let T be
the operator defined by the relation

Tx = Vo TO(V,-x) (all x in L*).

Note that |7, = |T®|,, and therefore 7 € & Since g = 7.¢ € §, it will
suffice to show that (2) holds; but this follows easily from a repeated appli-
cation of the relation 7,(V¢) = ¥ (¥,-9¢).

4. Two lattices of projectors. The Hilbert transformation H is defined
for all x in L* by the relation

w0 = [ s (e <<,

the integral being taken in the Cauchy principal value sense. It is well known
that H € & The fact that H € ¢(—1<-sgn) is explicitly stated in (12, p. 22)
and (3, p. 8); it can be extracted from (11, pp. 120-125). Thus H € (¢) and
H = — i-sgn € Fy. Since Fy is a linear space containing the function
I° = {6 — 1}, it follows that go = 271(J° 4 sgn) € Fy-

Suppose that @ and 8 belong to the closed interval [— «, «]. Let I4%(e, 8)
denote the characteristic function of the open interval (a, 8), and set
¢a = I#°(a, ). Recall that go = 2"1(J°+ sgn) € Fy, and note that
g0 = I4°(0, ). From 3.9 it can therefore be inferred that 7ago = ¢o € Fy.

4.1. Remark. We now know that §y contains the function I#°(a, ) when-
ever a € [— o, ]. Again using the fact that {y is an algebra containing 79,
we deduce that {y contains any function of the form I#°(a, 8), where
—o <a< B <.

4.2. Notation. Let V denote the set of all complex-valued functions defined
on (— o, ®) such that [f|, # «, where |f|, denotes the total variation of f
on (— », @). We will write

flle = sup{|f(O)]: —e <O <=},

Wilo = [Ille + [£]s-

and
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4.3. LEMMA. If L* N\ V denotes the set of all g in L'(— o, o) such that
g€V, then L\ V C §y. Moreover, there exists a number ¢, > 0 with the
property that, if g € L* MV, then

(5) [[agl], < 27%¢,g|,

Proof. An operator Tg corresponds to g so that ||[(Tg)x||, < 27'¢,lgl.l|*|»
for all x in L° (see (8, 3.3 and 3.7), where g = a). Since L is dense in L, it
follows that Tg has an extension T4 with T € (¢%) and [Ty, < 27%,|gls
whence T’y € & Since g € §, it remains to show that 7 € {(g). From (8,
7.2 (14)) it follows that

¥ (Bza(x, g) = g-¥x (when x € L9).

From the definition (8, §5) of B,(x, g) it results immediately that Bs(x, g) =
(Tg)x whenx € L% consequently By(x, g) = Tyxwhenx € L. Thus T4 €t(g),
which concludes the proof.

4.4. Remark. Let ‘<’ be the relation defined on & by:
TW L TO & TO = TOTO,

A family & will be called an “&tower” if (# <) forms a lattice of self-
adjoint (see 2.5), idempotent members of & satisfying the following two

conditions:
(ii) The order-type of (P <) 1is the order-type of some closed subinterval
Of [_ @, m];

(i) If P € P thnO € Pand O < P<L1¢ 2

4.5. Both families {[Al§%(a,®)]:a € [—®,o]} and {[A[4(— n, n)]:
0 < n<<w} are &towers; in Part II it will be shown that they are the
spectral resolutions pertaining to two unbounded operators.

Set ¢, = I4°(— n,n). We here examine more closely the &-tower
{(M,]:0 < < »}. Suppose 0 < # < », and let x, be the function defined
by

x-(0) = (sin 27nb) /76 (—o <0 <w).

The Dirichlet operator J™ is defined for all x in L* by the relation

T2)@) = | xa0 = 8)(s) ds.
It is well known that J™ € & (see (6)), and from (11, Theorem 65) we see
that ¥ (J™x) = ¥(x,*x) = (¥x,) - (¥x). But ¥y, = ¢,; therefore J®™ = [Ay,].
4.6. LEMMA. If f € V and ¢, = I4°(— n, n), then
[[Afllo < 27, sup{[¥nfls: 0 <7 <o}
Proof. Clearly hy, = ¥n-f € L* M\ V; from 4.3 therefore
(6) [[AZ]], < 270, sup{lyn-flo:0 <n <o} = k.
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Suppose x € L*, and note that
) lim([[Aflx — T ([Aflx)][, = O (n — o)
(see, for example, (6 (1b”)) or (8, 5.2)). In 4.5 we saw that J® = [Ay,];
therefore J™ o [Af] = [A(Yy-f)] = [Mh,] (from (3)). Accordingly, (6) now
states that [|J® ([Aflx)|], < &,/||x||,, which (from (7)) gives the conclusion
[ [Aflxl], < kzz,”x“p-

4.7. THEOREM. If f € V, then f € Ty and

(©)) HAfll> < collflfo-
Proof. Suppose 0 < n < o throughout, and set a, = (— #, n), while
a,” = (—», —mn] and a," = [n, ®»). Note first that k, = I4%, vanishes

outside of a,, so that ||, < 2||f||« + |f].- In the notation of 4.6, we can
write %, = ¢,-f; consequently, the relation (8) follows from 4.6. It remains
to show that f € §y. Define f® = h, + g™, where

g = f(= n) 14 (a,") + f(n) 14 (aT).

Since g™ is a linear combination of members of Jy (see 4.1), it follows that
g™ € Fy. Since b, € L' M V and 4.3, this in turn necessitates that f® € Fy.
Set 7™ = [Af®] and apply (8):

(9) |T® = T, < 6l[f® — f™]lo (m > 0).

Let v(g; a) denote the total variation of g on a; observe that v(f — f®;q) =
v(f; a) when a = a,” or a = a,*. Moreover, f — f™® vanishes on a,, and there-
fore

[If = fPle < |f =™ = v(f; &) + o (fi ar).
Since f € V, this inequality implies that
(10) 0 = lim|[f — f®|[o = lim|[f — f®|[, (n—w).

From (9) and (10) it can be inferred that the sequence {7,™}, is a Cauchy
sequence in &,, and it accordingly converges (when #n — ) to a member
T, of &,. Therefore,p € (1, ©)and x € L* implies that 0 = lim|| T,x — 7"™x]|,
(n —«); but this in turn implies that {7®™x}, converges in measure to
T,x. Since measure-limits are uniquely defined, the outcome can be stated
as follows: p € (1, ») and x € Lt implies that Tex = T,x€ L?. From this
we infer that Ty € & (see § 2).

The proof is now concluded by showing that T € {(f). Suppose x € L+,
set ¢ = ¥(Tx) — f- ¥x and note that

llgll: < [T2 = T®[:flxllz 4 [If = F@lollx]]2.

From (10) it follows that ¢ = O = ¥(Tex) — f-¥x. This shows that
T, € t(f), whence f € Fy.

4.8. COoROLLARY. V C $y.
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5. Two convergence theorems. Let F be a function defined on a set S.
If (S, >) is a directed set, then the net (F, >>) is also denoted { F(s):s € S, >}
(our terminology and notation come from (5, p. 65)). If F maps into a set
%, then (F,>>) is called a net in %. If (F,>>) is a net in a Hausdorff space %,
then we write

x = Xlm{F(s):s € S, >}

to indicate that (F, >>) converges to a point x in ¥ (see (5, p. 68)). Let .7,
denote the strong operator-topology of the algebra &, which was defined
in § 3. For example, suppose that F(s) € & (for all s in.S) and T € &; then
F(s) and T admit continuous extensions F(s), and T,, respectively (see § 3;
F(s), € &, and T, € &). Accordingly, the statement

(11) T, = Z, im{F(s),:s € .8,>]

means that the net { F(s),: s € S, >} converges to T, in the strong operator-
topology of &, (see (4, p. 53)).

5.1. Definition. Let (F,>) be a net in & If T" € (& then
T = 7 lim{F(s):s € S,>}
is written to mean that relation (11) occurs whenever 1 < p < o,
5.2. Remark. 1f {f(s):s € S,>} is a net in [0, =), then
o # lim sup{f(s):s € S, >}

if and only if there exists a number Ny > 0 and an element sy of S such that
f(s) < No whenever s € S and s >> s,.

5.3. THEOREM. Suppose g € Fy, and let {G(s):s € S, >} be a net in V. Set
X, = LP(— o, ©) and suppose further that the relation

(12) [Agle = X2 lim{[AG(s)]x:s € S, >}
holds for all x in L° If

(13) o = lim sup{||G(s)]|o: s € S, >},
then
[Ag]l = 7 lim{[AG(s)]: s € S, >].

Proof. Suppose 1 < p <. We must prove (11) for T = [Ag] and
F(s) = [AG(s)]; that is, we must show that

(14) Tox = %, im{ F(s),x:5s € .S, >}

for all x in X,. From (13),5.2, and 4.7 follows the existence of a number N,
and an element s, of .S such that, if s € .S and s> s, then

(iv) [F(s)ola < Nocq
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whenever 1 < ¢ < «. It will be convenient to describe (iv) by saying that
the net {F(s),;:s € S,>} is e.ub. (eventually uniformly bounded) in &.
Consequently, the net {F(s),:s € .S,>} is e.wb. in ¢&. It is easily verified
that the Banach-Steinhaus theorem (4, p. 41) applies not only to uniformly
bounded sequences in ¢&,, but also to e.u.b. nets in &,. Let us suppose for a
moment that (14) holds for all x in L°; since L° is dense in ¥,, the Banach-
Steinhaus theorem implies that (14) holds for all x in ¥,, and the theorem
is proved.

Suppose x € L% and set y(s) = 7x — F(s)x; in view of our preceding
remark, it will suffice to show that

) 0 = lim{||y(s)||: s € S, >}.

If p = 2, there is nothing to prove, since (v) is then our hypothesis (12). If
p # 2 there clearly exists a number ¢ with 1 < ¢ < » such that p lies between
2 and ¢; there exists therefore a number m such that

}):%mju%u—m) and 0<m<1.

From the logarithmic convexity of the norm we see that
@)l < (ly@ll™ - ([T — F(s)x[[)*=™
Accordingly, we can infer from (iv) that, if s>> s, then
Hy &)l < (lyOll™ - ([Tl + Nocgl - ]|
Consequently, (v) results from the hypothesis (12).

5.4. COROLLARY. Suppose g € Ty and let {G(s):s € S,>} be a net in V
satisfying (13). If

(15) 0 = lim{|lg — G(s)||o:s € S, >},
then
(16) (Ag] = 7 lim {[AG(s)]:s € S, >}.

Proof. In view of 5.3, it will suffice to establish (12). Take x in L°; from
3.5 it follows that

ll[Agle — [AG(9)]xll2 = [ YV2(lg — G(s)] - ¥x)[2.

But [g — G(s)] - ¥x is in L* (see 3.4). Since Y, is an isometric mapping, we
see that

(17) ([iagle — [AG(9)]xl]2 < [lg = G(9)|]w - || ]2
The conclusion (12) now results from (15), (17), and « = ||¥x||..
6. The main result. From now on, R = (—»,®) and B = [— =, »] =

RU{—w®, @}; if o and 8 lie in R, then (o, 8] = {# € R:a < 8 <,8}: The
space R? = R X R consists of all points A = (A1, \2) such that A\; € R and
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X2 € R. The usual embedding {a — (o, 0)} of R into R? will be assumed.
Accordingly, R C R?; if « and 8 belong to R?, then (a, 8] is the Cartesian
product (a1, B1] X (as, B2], with the exception (e, 8] = (e, B1] X {0} = (e, B1]
in the case @« = a; and 8 = Bi1.

6.1. Definitions. 1f Q C R?, then BQ will denote the family of all finite
unions of members of AQ = {(e, B]: (&, B) € Q X Q}.

6.2. The Boolean algebra G, will consist of all symmetric differences
B+ N=(BUN)—- (BNN), where B¢ BR and N is a subset of R
having zero measure.

6.3. The following notations will be used consistently. If g € §, then
g1 = (real part of g) and g; = (imaginary part of g). If ¢ € BR? then
(g € g) = {0 € R:g(0) € o}, except that (g € ¢) = (g1 € o) whenever g = g,.

6.4. The set Fa will consist of all functions g in § such that (g € o) € G4
whenever ¢ € AR

6.5. If T € (¢) and g = vT € JFa, then the set-function ET is defined for
all ¢ in BR? by the relation

E*(0) = [M{*(g € o)].
Recall that ¢ = I4°(g € ¢) is a function such that ¢(8) = 1 whenever
6 € (g€ a), while y(8) =0 otherwi§e. N9te that ¢ € V; in this connection,
it should also be mentioned that AR, BR, and €, are Boolean set-algebras.

Since the verification of these facts is routine, it will be omitted. Both @ and
R? belong to BR?; it is clear that

ET(@) =0 and ET(R*— o) =1— E%(o)

whenever ¢ E_%Rg. In fact, ET is an_isomorphism into () of the Boolean
set-algebra BR?; if ¢’ and ¢’ are in BR?, then

ET(d' Ud") = ET(¢")V ET(c")
and

ET(c' N\ d") = ET(c') N ET(c")
(the operations “V'" and “A” are defined in (1, p. 219)).

6.6. Orientation. The following is aimed at defining two-dimensional

Stieltjes integrals of commonplace type. In order to implement a later proof
(6.14), an order-preserving notation for range partitions will first be described.

6.7. Let 3 be the family of all strictly monotone-increasing functions Z
whose domain D(Z) is a finite set of consecutive integers, and whose range
{Z,:v € D(Z)} isasubsetof R. If Z € 3, we denote by Z* the set {v € D(Z):
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v > min D(Z)} and write Z()] = (Z,-1, Z,] whenever » € Z*. In case
Q. C R, then 30Q. will denote the family of all Z in 8 such that

Q. CY{Z]:v € Z*}.

6.8. Definition. Suppose g € §, and denote by [g] the closed cell [— X, A],
where A\, = ||g||o for ¢ = 1,2 (see 4.2). The family S[g] consists of all ordered
pairs (Z, 3) whose first member Z = (Zy, Z») lies in 3[g:1] X 3[gz], and such
that 3 is a function on Z* = Z;* X Z,* whose values 3(») lie in Z* = Z;(»;] X
Z>(ve] whenever v = (vy, v2) € Z*,

6.9. Definition. Suppose T € (¢) and vT € Fa. If s = (Z,3) € S[vT], then
we write

(E":5) = 2 3(@)E"(Z") (0 = Z*%).

vew

6.10. THEOREM. Suppose T € (t) and vI € Fa. If there exists a number
ko > 0 such that \V(ET:s)|, < ko||[V(ET: 5)|| whenever s € SVT], then the
following Stieltjes integral exists:

(18) XN-ET@d\) = 77 lim {(ET:5):s € SvT], >}.
Moreover,
1) T = [A-E7(d\).

6.11. Remarks. The set S[vI] is directed by the partial ordering ‘> (see
(5, p. 79) and 6.12). The meaning of the relation (1) will now be explicitly
formulated. If 1 < p < o, then the net

{HT"x — 2 sMET (2N, (Z,3) € ST, >>}

Vew

converges to zero for all ¥ in L?(R) (compare (18) with 5.1). Consequently,
(1) implies that the net

{Z 3(ET(Z"),: (Z,3) € SvT], >>}

Vew

converges to T, in the weak operator-topology (this again comes from (18)
and 5.1); T, is therefore a ‘“‘scaled” member of &, (see (7, p. 450)).

6.12. Proof of 6.10. If Q C R?, let |Q| denote the diameter of Q. Set g = vT
and S = S[g]. Suppose s = (Z,3) € .S. We define ||s|] = max{|Z’]:» € Z*}.
The partial ordering is defined by: s’ >>s & ||s'|| < ||s||] whenever s’ € S.
Set G(s) = v(ET:s); from 6.9 and 6.5 we note that

(19) G(s) = ;0 s g €2 (o= 2%.
Clearly G(s) € V (see 6.5). It is easily seen that
(20) lle = GO)lo < sl
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But o # ||g||l, and therefore o  lim sup{||G(s)||o:s € S, >} (see 5.2),
from which our hypothesis ||G(s)||o < (ko + 1)||G(5)|| yields the relation
(13) of 5.3. Since (20) implies (15) in 5.4, the net {G(s):s € S, >} satisfies
all the conditions of 5.4. The conclusion now results from (16), 7" = [Ag] and
(ET:5) = [AG(9)].

6.13. Definition. A function f is ‘‘piecewise monotone’’ if there exists a
member Z of 3R such that f is monotone on Z(v] for all » in Z* (see 6.7).

6.14. THEOREM. Let g be a bounded function whose real and imaginary parts
are piecewise monotone. Then g € FTa and [Ag] ts a member T of (f) such that

(1) T = [X-ET(d\)
in the sense of 6.10-6.11.

COROLLARY. Suppose that A is a bounded Radon measure on R, and let g be
the Fourier transform of A. If T, is the convolution operator Axy, then T satisfies
(1) whenever g satisfies the hypothesis of 6.14.

Proof. Observe that g = ¥(dA4) in the notation of 3.1; from 3.2 therefore
vI = g, and the conclusion now comes from 6.14.

6.15. Remark. Suppose J € AR, and let f belong to the set &(J) of all
real-valued functions that are monotone increasing on J. If ¢ = («, ©) or
o = [a, @), then J N (f € o) is a connected subset of R; therefore J N (f € o)
€ GCa.

6.16. Consider now the case ¢ = (o, 8] € UR; then TN (f € o) € C4. This
can be seen by noting that (f € o) is the set-theoretic difference J M (f € o)
— JN\ (f € 02), where 01 = (a, ©) and g2 = (8, ); since €4 is a Boolean
ring, the conclusion follows from 6.15.

6.17. Definition. 1f J € AR, then IM(J) will be the set of all bounded
functions whose real and imaginary parts are both monotone on J.

6.18. LEMMA. If J € AR and g € M(J), then TN (g € o) € G4 whenever
o € AR

Proof. Since ¢ € AR?, we can write ¢ = o, X 09, where {0y, 0} C AR, so
that JTM (g € 0) =T M (g1 € 1) M (g2 € 02). Set « = 1,2. The proof will
therefore be concluded by establishing that J M (g, € ¢.) € G4. Since this
was proved in 6.16 for the case g, € ®&(J), it will suffice to consider the case
where g, is decreasing on J. But then f = — g, € &(J), and the arguments
in 6.16 (together with 6.15), give the conclusion J M (g, € ¢,) € C,.

6.19. Definition. If Q C R?, then UQ will denote the set of all mappings F
of Q into R? such that, if N = A/, N’) € Q and N = (A", \Y) € Q, then
N <A implies F,(\") < F.(\"") whenever « = 1 and also when ¢ = 2.

6.20. LemMMA. Suppose J € AR and g € M(J). If F € Ulg) then (Fog) € M(J).

https://doi.org/10.4153/CJM-1961-042-0 Published online by Cambridge University Press


https://doi.org/10.4153/CJM-1961-042-0

NORMAL OPERATORS ON LP(— ®, «) 517

Proof. The composition (F o g) is the function % such that £() = F(g(0))
forall@in R. Incase 8’ < 6" and g,(6") < g1(8”),set N = g(6’) and \"' = g(8"');
then Ny’ < \/"and Fi(g(0")) < Fi(g(8'")). Therefore hy € ®(J). The remaining
cases can be similarly derived.

6.21. Remark. Let h € §F and J = (a, 8] € AR. Denote by v(k; J) the total
variation of 2 on [a, Bl Y R. If & € M(J) (see 6.17), it is easily verified that
v(h; J) < 8|4]] o

Proof of 6.14. Set « = 1,2. By hypothesis there exist two members II;
and II, of 3R (see 6.7) such that g, is monotone on each II,(k,] when «, € II*.
For any k = (ki, 2) in IT* = II,* X II.*, we write II* = II;(k;] M Ma(ks]. Note
that II* € AR and g € M(1I¥).

Observe first that g € V, and therefore g € §y (by 4.8). ThusAg = 7" € (¢)
and vT" = g. The property g € Fa is proved as follows. Take any ¢ in AR?,
and note that (g € ¢) = U{II*MN (g € 0):x € II*}; since €4 is a Boolean
ring, the conclusion (g € o) € G4 is now inferred from 6.18.

Next, take any s = (Z, ) in S[g], set G(s) = v(ET:s) and note that

m

21) G®)e < X 2(Glo); 1Y,
where {1,2,3,...,m} = II*. From Definition 6.8, there exist functions Z,

in 8 such that 3(») € Z, = Z;(v1] X Z2(v2] for all » = (v1, vs) in Z;* X Zy*
(the index-sets Z* are defined in 6.7). If X € [g], denote by »[\] the » in Z*
such that N € Z¥, and let F be the function defined by F(\) = 3(v[\]) for all
N in [g]. From the isotonicity of the correspondences set up in 6.7 it now
follows that F € ll[g] (see 6.19). On the other hand, it is easily checked that
G(s) = (Fog) (see (19)). From 6.20 therefore: G(s) € M(J) whenever
J € AR.

Suppose « € II*. Since G(s) € M(II¥), it results from 6.21 that »(G(s);
%) < 8/|G(5)||w, and from (21) therefore: |G(s)|, < 8m||G(s)||.. In view of
6.10, the proof of 6.14 is completed.

7.0. Added in proof. Part II of this article has appeared in the Journal
of Math. and Mechanics, Vol. 10 (1961), 111-134.

7.1. Remark. (added March 9, 1961). The set V (defined in 4.2) is strictly
included in the set V3 of all functions having generalized higher g-variation;
it can be proved that Vs C §y. This last assertion is clearly stronger than
our Corollary 4.8; it is implicit in a remark on p. 242 of an article by I. I.
Hirschman, Jr. “On multiplier transformations”, Duke Math. J., 26 (1959),
221-242. At the time the present article was written, I was unaware of Pro-
fessor Hirschman’s remark.
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