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Identifying the precise composition of a mixed material is important in various applications. For instance, 

in nuclear forensics analysis, knowing the process history of unknown or illicitly trafficked nuclear 

materials when they are discovered is desirable to prevent future losses or theft of material from the 

processing facilities. Motivated by this open problem, we describe a novel machine learning approach to 

determine the composition of a mixture from SEM images. In machine learning, the training data 

distribution should reflect the distribution of the data the model is expected to make predictions for, which 

can pose a hurdle. However, a key advantage of our proposed framework is that it requires reference 

images of pure material samples only. Removing the need for reference samples of various mixed material 

compositions reduces the time and monetary cost associated with reference sample preparation and 

imaging. Moreover, our proposed framework can determine the composition of a mixture composed of 

chemically similar materials, whereas other elemental analysis tools such as powder X-ray diffraction (p-

XRD) have trouble doing so. For example, p-XRD is unable to discern mixtures composed of triuranium 

octoxide (U3O8) synthesized from different synthetic routes such as uranyl peroxide (UO4) and 

ammonium diuranate (ADU) [1]. In contrast, our proposed framework can easily determine the 

composition of uranium oxides mixture synthesized from different synthetic routes, as we illustrate in the 

experiments. 

Fig. 1 shows an overview of our proposed approach, which is divided into three steps as highlighted with 

the dashed rectangles. For the first step (Fig. 1a), we develop a model to generate a synthetic dataset of 

mixed materials using real images of pure materials only. Our image synthesis model is based on the 

texture synthesis work proposed by Gatesy et al. [2], which generates a new image with the same texture 

as a given reference image by minimizing the differences between second-order statistics of features 

(Gram matrix) of the generated and reference images [2]. We define each pure material as a texture. A 

new synthetic mixture image is initialized as an image of white noise. We then minimize the differences 

between the Gram matrix of this image and the weighted sum of Gram matrices of the pure reference 

images. In the second step (Fig. 1b), we train a convolutional neural network (CNN) to estimate mixture 

compositions from SEM images using synthetic images generated from the first phase. After the training 

process, the mixture composition estimation model is deployed to estimate the composition of a mixture. 

This step is shown in Fig. 1c. 

We utilized mixtures of U3O8 made from ADU, uranyl hydroxide (UH), and sodium diuranate (SDU) to 

validate the proposed method. We refer to these U3O8 materials simply by their precipitation route, e.g., 

a U3O8 sample made from ADU is simply referred to as ADU for the rest of this paper. First, we used the 

image synthesis model to obtain the necessary dataset for training the mixture composition estimation 

model. In this experiment, the image synthesis model takes SEM images of ADU, UH, and SDU as input 

and produces images of the mixtures of prescribed percentages. Next, we used the synthetic images to 

train the mixture composition estimation model, which is tasked with estimating the percentage of ADU, 

UH, and SDU presence in an SEM image. Then, the mixture composition estimation model was tested on 

a set of real mixture images to validate the performance of the proposed framework. The set of real mixture 

images used for testing consists of six compositions: 100%ADU,100%UH, 100%SDU, 50%ADU-
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50%UH, 50%UH-50%SDU, 33%ADU-33%UH-33%SDU. We also compared against a best-case CNN 

mixture composition estimation model that uses real samples of mixed materials for training. In other 

words, instead of synthesizing images, another set of real mixture images was used to train the mixture 

composition estimation model. The number of compositions of training samples is the same for the two 

experiments. Fig. 2 shows the mixture composition estimation model results. As seen in that figure, the 

estimated composition of the mixtures produced by the model is in good agreement with the ground truth 

compositions. More importantly, the performance of the mixture composition estimation model when 

trained with real images and when trained with synthetic images is comparable. This result demonstrates 

that our image synthesis model generates realistic images that can be used to replace real images for 

purposes of training a mixture composition estimation model. 

In this work, we demonstrated that a novel framework can be used to determine the composition of a 

mixture. The main advantage of our proposed framework is that it does not require reference mixed 

samples. This advantage eliminates the costly reference mixture sample acquisition process, which can be 

prohibitive when the mixture is composed of large number of materials. Furthermore, our proposed 

framework can be applied to other types of mixtures beyond nuclear materials [3]. 

https://doi.org/10.1017/S1431927621008990 Published online by Cambridge University Press

https://doi.org/10.1017/S1431927621008990


2524  Microsc. Microanal. 27 (Suppl 1), 2021 

 

 

 
Figure 1. Fig. 1. An overview of our proposed composition of mixture estimation framework. (a) In the 

first phase of this framework, an image synthesis model takes SEM images of pure materials (e.g., ADU, 

UH, and SDU) composed in the desired mixtures as input and generates mixture images. (b) The synthetic 

images, obtained from (a), are then utilized to train the mixture composition estimation model, which 

provides an estimated percentage of each pure material presence in a mixture. (c) After the training 

process, the mixture composition estimation model can be deployed to estimate the composition of a 

mixture. 
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Figure 2. Fig. 2. Results of the mixture composition estimation model when trained with real images and 

with synthetic images. The table shows the mean of five repetitions of model training. The mean estimated 

compositions of the mixtures in the test set are shown in columns 2-7. The coefficient of determination 

(R^2) and root-mean-square error (RMSE) between the estimated and ground truth compositions are also 

shown. 
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