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Abstract

Logic Programs with Ordered Disjunction (LPODs) extend classical logic programs with the
capability of expressing preferential disjunctions in the heads of program rules. The initial se-
mantics of LPODs, although simple and quite intuitive, is not purely model-theoretic. As a
result, certain properties of programs appear non-trivial to formalize in purely logical terms.
For example, the current characterization of strong equivalence for LPODs, does not coincide
with logical equivalence in some specific logic. This comes in sharp contrast with the well-known
characterization of strong equivalence for classical logic programs, which coincides with logical
equivalence in the logic of here-and-there. In this paper we obtain a purely logical characteriza-
tion of strong equivalence for LPODs as logical equivalence in a four-valued logic. Moreover, we
provide a new proof of the coNP-completeness of strong equivalence for LPODs, which has an
interest in its own right since it relies on the special structure of such programs. Our results are
based on the recent logical semantics of LPODs, a fact which we believe indicates that this new
semantics may prove to be a useful tool in the further study of LPODs.

KEYWORDS: ordered disjunction, strong equivalence, logic of here-and-there, answer sets

1 Introduction

Logic Programs with Ordered Disjunction (LPODs) (Brewka 2002; Brewka et al. 2004b)

extend classical logic programs with the capability of expressing preferential disjunctions

in the heads of program rules. The head of an LPOD rule is a formula C1 × · · · × Cn

intuitively understood as follows: “I prefer C1; however, if C1 is impossible, I can accept

C2; · · · ; if all of C1, . . . , Cn−1 are impossible, I can accept Cn”. The meaning of LPODs is
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expressed by theirmost-preferred answer sets (Brewka 2002; Brewka et al. 2004b), namely

a subset of their answer sets which satisfies in the best possible way the preferences in

the head of program rules. Due to their elegance and expressiveness, LPODs are widely

accepted as a concise and powerful formalism for preferential reasoning, both in logic

programming and in artificial intelligence.

Although simple and quite intuitive, the original semantics of LPODs (Brewka 2002;

Brewka et al. 2004b) is not purely model-theoretic. More specifically, the most-preferred

answer sets of a program cannot be determined by just examining the set of models of

the program. Instead, one has to additionally use an ordering relation which relies on

the syntax of the source program. There have been reported in the literature (Balduccini

and Mellarkod 2003; Brewka et al. 2004b; Charalambidis et al. 2021) cases where the

original semantics of LPODs produces counterintuitive results. Another consequence of

this semantics, is that certain properties of LPODs appear nontrivial to formalize in

purely logical terms. In this paper we identify one such case, namely the problem of

characterizing the notion of strong equivalence for LPODs.

The concept of strong equivalence for logic programs was introduced by Lifschitz et al.

(2001) and has proven to be an essential and extensively studied property in ASP. Two

logic programs P1 and P2 are termed strongly equivalent under a given semantics if

for every logic program P , P1 ∪ P has the same meaning as P2 ∪ P under this given

semantics. Obviously, when two logic programs are strongly equivalent, we can replace

one for the other inside a bigger program without any change in the observable behavior

of this program. Lifschitz et al. (2001) demonstrated that two programs are strongly

equivalent under the answer set semantics (Gelfond and Lifschitz 1988) if and only if

they are equivalent in the logic of here-and-there (Pearce 1996; 1999). The importance of

this result stems from the fact that it relates the observable behavior of programs with

a purely logical notion, namely that of logical equivalence.

Due to the significance of strong equivalence, it appears as a natural endeavor to

study this concept for various extensions of logic programs. Shortly after the inception

of LPODs, an exhaustive study of various notions of strong equivalence for LPODs was

undertaken by Faber et al. (2008). Although the results of Faber et al. (2008) are accu-

rately developed, they fall short of characterizing strong equivalence of LPODs as logical

equivalence in some specific logic. This comes in sharp contrast with the aforementioned

characterization of strong equivalence for classical logic programs as logical equivalence

in the logic of here-and-there. We believe that this is not an inherent shortcoming of the

work of Faber et al. (2008), but instead a possibly unavoidable consequence of the fact

that the original semantics of LPODs is not purely model-theoretic.

Recently, a purely model-theoretic semantics for LPODs was developed by Charalam-

bidis et al. (2021), who undertook a question initially posed by Cabalar (2011). More

specifically, as it is demonstrated by Charalambidis et al. (2021), the most-preferred an-

swer sets of an LPOD can be obtained as the least models of the program under a novel

four-valued logic, using an ordering relation that is independent of the syntax of the pro-

gram. It is also demonstrated that the shortcomings of LPODs that have been observed

in the literature (Balduccini and Mellarkod 2003; Brewka et al. 2004b; Charalambidis

et al. 2021), are remedied by resorting to this new approach, and it is claimed that

this new semantics may prove helpful in formalizing, in purely logical terms, properties,

and transformations of LPODs. It is therefore natural to wonder if this new semantic
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characterization leads to a purely logical definition of strong equivalence for LPODs. The

present paper investigates exactly this question. More specifically, the main contributions

of the present paper are as follows:

• Following the work of Faber et al. (2008), we consider two alternative definitions of

strong equivalence for LPODs, which can be supported under the model-theoretic

framework developed by Charalambidis et al. (2021). We demonstrate that both of

them coincide with the notion of logical equivalence of programs in the four-valued

logic of Charalambidis et al. (2021). Our characterization gracefully extends the

results of Lifschitz et al. (2001) for normal logic programs.

• We provide a new proof of the coNP-completeness of strong equivalence for LPODs,

which has an interest in its own right, since it relies on the special structure of such

programs. More specifically, the proof demonstrates coNP-hardness by a direct

(and quite simple) reduction from 3SAT, without resorting to the well-known (and

more involved) coNP-hardness result of Lin (2002) for strong equivalence of normal

logic programs.

The rest of the paper is organized as follows. Section 2 provides the mathematical prelim-

inaries that will be needed throughout the paper. Section 3 presents the characterization

results for strong equivalence of LPODs. In Section 4 the coNP-completeness of strong

equivalence for LPODs is established. Section 5 discusses related work and gives pointers

for future work. The proofs of certain results have been moved in the supplementary

material corresponding to this paper at the TPLP archives.

2 Background

In this section we present the necessary background that will be used throughout the

paper. We start by defining the syntax and the semantics of the four-valued logic intro-

duced by Charalambidis et al. (2021) and discuss how this logic can be used to redefine

the semantics of LPODs.

Similarly to the paper by Faber et al. (2008), we do not consider strong negation, for

reasons of simplicity.

Definition 1

Let Σ be a nonempty, countably infinite, set of propositional atoms. The set of well-

formed formulas is inductively defined as follows:

• Every element of Σ is a well-formed formula,

• If φ1 and φ2 are well-formed formulas, then (φ1∧φ2), (φ1∨φ2), (not φ1), (φ1 ← φ2),

and (φ1 × φ2) are well-formed formulas.

We will use capital variables, like A, B, C, D, and their subscripted versions, to denote

atoms; we will use L, and its subscripted versions, to denote literals (namely, atoms or

negated atoms).

In order to define the semantics of well-formed formulas, we use the set V =

{F, F ∗, T ∗, T} of truth values, which are ordered as follows:

F < F ∗ < T ∗ < T.
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Definition 2

An interpretation I is a function from Σ to V . We can extend I to apply to formulas, as

follows:

I(not φ) =

{
T if I(φ) ≤ F ∗

F otherwise

I(φ← ψ) =

{
T if I(φ) ≥ I(ψ)
F otherwise

I(φ1 ∧ φ2) = min{I(φ1), I(φ2)}
I(φ1 ∨ φ2) = max{I(φ1), I(φ2)}

I(φ1 × φ2) =

{
I(φ2) if I(φ1) = F ∗

I(φ1) otherwise
.

It is straightforward to see that the meanings of “∨”, “∧”, and “×” are associative, and

therefore we can write I(φ1∨· · ·∨φn), I(φ1∧· · ·∧φn), and I(φ1×· · ·×φn) unambiguously

(without the need of extra parentheses). Moreover, given literals L1, . . . , Ln, we will often

write L1, . . . , Ln instead of L1 ∧ · · · ∧ Ln.

LPODs are sets of formulas of a special kind, specified by the following definition.

Definition 3

An LPOD is a finite set of rules of the form:

C1 × · · · × Cn ← A1, . . . , Am,not B1, . . . ,not Bk.

where n ≥ 1, m, k ≥ 0, and the Ci, Aj , and Bl are atoms.

We will use capital letters like P , Q, and their subscripted versions, to denote LPODs.

Definition 4

An interpretation I is a model of an LPOD P if every rule of P evaluates to T under I.

Two LPODs are termed logically equivalent if they have the same models.

Charalambidis et al. (2021) defined the semantics of LPODs, namely the precise char-

acterization of their most-preferred answer sets, based on the above four-valued logic.

More specifically, the most-preferred answer sets of an LPOD are generated using a two-

step procedure. In the first step, a subset of the models of the program is selected using a

minimization procedure according to an ordering relation � defined below. These models

are called answer sets of the given LPOD, because they can also be produced using a

reduct-based approach similar to the one defined in the paper by Brewka et al. (2004b).

In the second step, a subset of the answer sets is selected using a minimization procedure

that examines the set of atoms that have the value F ∗ in each answer set. These two

steps are formally defined below.

Definition 5

The ordering ≺ on truth values is defined as follows: F ≺ F ∗, F ≺ T ∗, F ≺ T , and

T ∗ ≺ T . Given two truth values v1, v2, we write v1 � v2 if either v1 ≺ v2 or v1 = v2.

Given interpretations I1, I2 of a program P , we write I1 � I2 if for all atoms A in P ,

I1(A) � I2(A). We write I1 ≺ I2 if I1 � I2 but I1 
= I2.

It is easy to verify that � is a partial order.
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Definition 6

An interpretation I of LPOD P is called solid if for all atoms A in P , it is I(A) 
= T ∗.

Definition 7

An interpretationM of an LPOD P will be called an answer set of P ifM is a �-minimal

model of P and M is solid.

Definition 8

Let P be an LPOD and let M1 and M2 be answer sets of P . Let M∗
1 and M∗

2 be the

sets of atoms in M1 and M2, respectively that have the value F ∗. We say that M1 is

preferred to M2, written M1 �M2, if M
∗
1 ⊂M∗

2 .

Definition 9

An answer set of an LPOD P is called most-preferred if it is minimal among all the

answer sets of P with respect to the � relation.

Example 1 (taken from the paper by Charalambidis et al. (2021))

Consider the following program whose declarative reading is “I prefer to buy a Mercedes

than a BMW. In case a Mercedes is available, I prefer a gas model to a diesel one. A gas

model of Mercedes is not available”.

mercedes × bmw ←
gas mercedes × diesel mercedes ← mercedes

false ← gas mercedes, not false

The last clause is a standard technique in ASP in order to state that an atom

(gas mercedes in our case) is not true. The above program has two answer sets, namely:

{(mercedes, T ), (bmw, F ), (gas mercedes, F ∗), (diesel mercedes, T ), (false, F ∗)}
{(mercedes, F ∗), (bmw, T ), (gas mercedes, F ∗), (diesel mercedes, F ∗), (false, F ∗)}

According to the � ordering, the most-preferred answer set is the first one because

it minimizes the F ∗ values. It is worth noting that under the original semantics of

LPODs (Brewka 2002; Brewka et al. 2004b) two answer sets are produced that are

incomparable (and therefore they are both considered as “most-preferred”).

3 A logical characterization of strong equivalence for LPODs

In this section we establish a new, purely logical characterization of strong equivalence for

LPODs. Our investigation has as a starting point the work of Faber et al. (2008), in which

an exhaustive study of different forms of strong equivalence for LPODs was performed.

Not all forms of strong equivalence studied by Faber et al. (2008) are applicable in our

case. An explanation of this state of affairs and a detailed comparison of our technique

with that of Faber et al. (2008) is given in Section 5. In our work, we examine two notions

of strong equivalence, namely strong equivalence under the most-preferred answer sets,

and strong equivalence under all the answer sets1. We demonstrate that these notions

1 These two notions roughly correspond to the relations ≡i
s,× and ≡s,× defined in the paper by Faber

et al. (2008).
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can be captured by establishing logical equivalence in the four-valued logic of Section 2

of the programs involved.

Definition 10

Two LPODs P1 and P2 are termed strongly equivalent under the most-preferred answer

sets if for every LPOD P , P1 ∪ P and P2 ∪ P have the same most-preferred answer sets.

Theorem 1

Two LPODs P1 and P2 are strongly equivalent under the most-preferred answer sets if

and only if they are logically equivalent in four-valued logic.

Proof

(⇐) Assume that P1 and P2 are logically equivalent in four-valued logic. Then, every

four-valued model that satisfies one of them, also satisfies the other. This means that

for all programs P , P1 ∪ P has the same models as P2 ∪ P . But then, P1 ∪ P has the

same most-preferred answer sets as P2 ∪ P (because the most-preferred answer sets of

a program depend only on the set of all the models of the program). Therefore, P1 ∪ P
and P2 ∪ P are strongly equivalent under the most-preferred answer sets.

(⇒) Assume that P1 and P2 are strongly equivalent. Suppose that P1 has a model M

which is not a model of P2. Without loss of generality, we may assume that M(A) = F ,

for every atom A in Σ that does not occur in P1 ∪ P2.

We will show that we can construct an interpretation M ′, and a program P such that

M ′ is a most-preferred answer set of one of P1 ∪ P and P2 ∪ P but not of the other,

contradicting our assumption of strong equivalence.

First, we construct two sets of atoms that will help us define P . In particular, we

construct two sets of atoms T and F each one containing a new atom for every A in P such

thatM(A) = F ∗. More formally, let T = {tA |M(A) = F ∗} and F = {fA |M(A) = F ∗},
where all tA and fA do not appear in P1 and P2. We define M ′ as:

M ′(A) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
T M(A) = T ∗

T A ∈ T
F ∗ A ∈ F
M(A) otherwise

.

We claim that M ′ is a model of P1. To verify this, take any rule in P1 of the form

C1 × · · · × Cn ← A1, . . . , Am,not B1, . . . ,not Bk.

If M(A1, . . . , Am,not B1, . . . ,not Bk) ≥ T ∗, then it is also M(C1× · · · ×Cn) ≥ T ∗, since
M is a model of P1. Then, there exists j ≤ n such that M(Ci) = F ∗ for all i < j, and

M(Cj) ≥ T ∗. It follows that M ′(Ci) = F ∗ for all i < j, and M ′(Cj) = T , which implies

M ′(C1 × · · · × Cn) = T . Therefore, M ′ satisfies the rule in this case.

If M(A1, . . . , Am,not B1, . . . ,not Bk) = F ∗, then there exists Ai such

that M(Ai) = F ∗. By the definition of M ′, M ′(Ai) = F ∗, and thus

M ′(A1, . . . , Am,not B1, . . . ,not Bk) ≤ F ∗. Since M is a model of P1 it satisfies

the given rule and thus M(C1 × · · · × Cn) ≥ F ∗. If M(C1 × · · · × Cn) = F ∗, then for all

Ci,M(Ci) = F ∗, which implies thatM ′(Ci) = F ∗ and thereforeM ′(C1×· · ·×Cn) = F ∗.
If M(C1 × · · · × Cn) > F ∗, then there exists j ≤ n such that for all i < j, M(Ci) = F ∗
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and M(Cj) > F ∗, which implies that for all i < j, M ′(Ci) = F ∗ and M ′(Cj) > F ∗, and
therefore M ′(C1 × · · · × Cn) > F ∗. In both cases, M ′ satisfies the given rule.

If M(A1, . . . , Am,not B1, . . . ,not Bk) = F , then either there exists Ai such that

M(Ai) = F or there exists Bj such that M(Bj) ≥ T ∗. It follows, by the definition of M ′,
thatM ′(Ai) = F orM ′(Bj) = T and as a resultM ′(A1, . . . , Am,not B1, . . . ,not Bk) = F .

Therefore M ′ satisfies the rule in this case. Thus, M ′ is a model of P1.

We proceed by distinguishing two cases that depend on whether M ′ is a model of P2

or not.

Case 1 : M ′ is not a model of P2. We take:

P = {A←|M ′(A) = T} ∪ {A× tA ←| tA ∈ T } ∪ {fA ← not fA, A | fA ∈ F}

We claim that every model N of {A × tA ←| tA ∈ T } ∪ {fA ← not fA, A | fA ∈ F}
has the following property:

for every atom A, if M ′(A) = F ∗, then N(A) 
= F. (P1)

In order to prove our claim we distinguish two cases for atoms such that M ′(A) = F ∗:
the atoms where M(A) = F ∗ and the atoms in F . For the first case, assume that for

some A it is M(A) = F ∗ and N(A) = F . But then there exists a rule A × tA ← in

P which is not satisfied by N , which is a contradiction. So, for all such atoms A it

should be N(A) ≥ F ∗. For the second case, assume that for some fA, it is N(fA) = F .

Then, the rule fA ← not fA, A is not satisfied by N (since N(A) ≥ F ∗), which is also a

contradiction. Therefore, our claim holds.

Now, it is easy to see that M ′ is a model of P and therefore a model of P1 ∪ P .
Moreover, it is a most-preferred answer set of P1∪P . Indeed, let N be a model of P1∪P
and N ≺M ′. SinceM ′ does not assign any T ∗, there exists A such that eitherM ′(A) = T

and N(A) ≺ T or M ′(A) = F ∗ and N(A) = F . In the first case, P contains a fact A←,

which is not satisfied by N . In the second case, N does not satisfy property P1. In both

cases, N is not a model of P , which is a contradiction. It follows that M ′ is �-minimal

model of P1 ∪ P .
Assume now that there exists some N which is a most-preferred answer set of P1 ∪ P

and N �M ′. There must exist some atom A such thatM ′(A) = F ∗ and N(A) 
= F ∗. We

will show in the following that it should be N(A) = T for those atoms. First, notice that

N(A) 
= T ∗ because since N is most-preferred it is also solid. Also, it must be N(A) 
= F ,

since N is a model of P and thus it satisfies property P1. Therefore, N(A) = T for the

atoms such that M ′(A) = F ∗ and N(A) 
= F ∗.
However, we now claim that N is not �-minimal. Indeed, we can construct N ′ from

N that is also a model of P1 ∪ P and N ′ ≺ N . Define N ′ as:

N ′(A) =

{
T ∗ if A ∈ F and N(A) = T

N(A) otherwise
.

First, we need to establish that N ′ ≺ N , that is, there exists atom A such that N ′(A) ≺
N(A). By the assumption N �M ′ we know that there exists atom A such that N(A) 
=
M ′(A) and we have established that M ′(A) = F ∗ and N(A) = T . The first case is for

the atom A to be A = fB ∈ F for some B, and it is straightforward that N(fB) = T and

N ′(fB) = T ∗. The second case is for A to be an atom such that M(A) = F ∗; then there

exists a rule fA ← not fA, A in P which must be satisfied by N . But since N(A) = T ,
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and N is solid, the only way to satisfy this rule is when N(fA) = T . By definition of N ′,
N ′(fA) = T ∗. Therefore, N ′ ≺ N . It is also easy to see that N ′ is a model of P1 ∪ P
because it satisfies all rules fA ← not fA, A and fA does not occur in any other rule of

P1 ∪ P .
Therefore,M ′ is a most-preferred answer set of P1∪P . This contradicts the assumption

of strong equivalence because M ′ is not even a model for P2 ∪ P .
Case 2 : M ′ is a model of P2. Let D be an atom in Σ − (T ∪ F) that does not occur in
P1 ∪ P2. Such an atom always exists, since Σ is a countably infinite set and T , F , P1,

and P2 are finite; moreover, M(D) = F , by our assumption about M . We take

P ={A← |M(A) = T}∪
{A× tA ← | tA ∈ T } ∪ {fA ← not fA, A | fA ∈ F}∪
{B ← A | A 
= B and M(A) =M(B) = T ∗}∪
{D ← not A |M(A) = T ∗}

.

It is easy to see that M ′ satisfies every formula in P , and therefore it is a model of both

P1 ∪ P and P2 ∪ P . We will show that M ′ is a most-preferred answer set of P2 ∪ P but

not a most-preferred answer set of P1 ∪ P .
We proceed by showing that M ′ is a �-minimal model of P2 ∪P . Assume there exists

a model N of P2 ∪ P such that N ≺M ′.
We first show that there exists an atom A such that M(A) = T ∗ and N(A) = T .

Consider an arbitrary atom C. If M(C) = T , then it is also N(C) = T , because P

contains C ← and N is a model of P . If M(C) = F ∗, then by the construction of M ′

it is M ′(C) = F ∗. Since N is a model of P , by property P1 we obtain N(C) 
= F . This

implies N(C) = F ∗, because N ≺ M ′. If M(C) = F , then by the construction of M ′

it is M ′(C) = F , and since N ≺ M ′ we get N(C) = F . Therefore, if M(C) 
= T ∗,
then M(C) = N(C). There should be, however, an atom A that occurs in P2 such that

N(A) 
= M(A) because N is a model of P2 and M is not. Obviously, for that atom it

must be M(A) = T ∗ and N(A) 
= T ∗. Now, notice that there exists a rule D ← not A

in P where M(D) = F and must be satisfied by N since it is also a model of P . Since

M(D) = F implies N(D) = F , the only remaining possibility is N(A) = T .

We next show that there exists an atom B such that M(B) = N(B) = T ∗. Since
N ≺M ′, there exists B such that N(B) ≺M ′(B). The last relation immediately implies

M ′(B) 
= F . Notice also that, by the construction of M ′, it is M ′(B) 
= T ∗. Moreover, it

cannot beM ′(B) = F ∗, since in that case from N(B) ≺M ′(B) we would obtain N(B) =

F , which contradicts property P1. Therefore, the only remaining value is M ′(B) = T .

For that atom, it cannot be M(B) = T because then it would also be N(B) = T (since

B ← is a rule in P and N is a model of P ), which would contradict N(B) ≺ M ′(B).

It follows by the construction of M ′ that M(B) = T ∗. We claim that N(B) = T ∗, that
is, it cannot be N(B) = F . Since M(B) = T ∗ there exists a rule D ← not B where

M(D) = F . Since, M(D) = F , we get N(D) = F . If we assume that also N(B) = F

then N does not satisfy this rule which is a contradiction. Therefore, N(B) = T ∗.
Since M(A) = M(B) = T ∗ there exists rule B ← A in P that is not satisfied by N

because we have showed that N(B) = T ∗ and N(A) = T . Therefore, N is not a model

of P2 ∪ P , which is a contradiction.
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We conclude that M ′ is �-minimal model of P2 ∪ P . Following an identical reasoning

as in the final paragraph of the proof of Case 1, we can show that M ′ is a most-preferred

answer set of P2 ∪ P . In order to conclude the proof, it suffices to show that M ′ is not a
most-preferred answer set of P1 ∪ P . We define M ′′ as:

M ′′(A) =

⎧⎪⎪⎨⎪⎪⎩
T A ∈ T
F ∗ A ∈ F
M(A) otherwise

.

M ′′ is not a model of P2 because M is not a model of P2. By definition, M ′′ �M ′. But
M ′′ 
= M ′ because M ′ is a model of P2 and M ′′ is not. Therefore, M ′′ ≺ M ′. Observe

that M ′′ agrees with M for all A that appear in P1 and since M is a model of P1, M
′′ is

also a model of P1. M
′′ also satisfies the rules of P , and therefore it is a model of P1 ∪P .

Therefore, M ′ is not a most-preferred answer set of P1 ∪ P .

We now consider the second notion of strong equivalence that is applicable in our

setting.

Definition 11

Two LPODs P1, P2 are termed strongly equivalent under all the answer sets, if for every

LPOD P , P1 ∪ P and P2 ∪ P have the same answer sets.

Theorem 2

Two LPODs P1, P2 are strongly equivalent under all the answer sets if and only if they

are logically equivalent in four-valued logic.

The proof of the above theorem follows the same steps as that of the proof of Theorem 1,

omitting the parts of the proof related to �-minimization.

Corollary 1

Two LPODs P1, P2 are strongly equivalent under the most-preferred answer sets if and

only if they are strongly equivalent under all the answer sets.

We feel that the above corollary highlights an interesting fact: it states that assessing

the observable behaviour of two programs with respect to the most-preferred answer sets,

suffices to determine strong equivalence of the programs.

Due to the above corollary, in the following we will often talk about “strong equivalence

of LPODs” without specifying the exact type of equivalence (since they coincide).

Example 2

One can easily verify (using a four-valued truth table or a case analysis) that the pro-

grams:

a × b ←
a ← ,

and the program that consists of just the following fact:

a ←,

are strongly equivalent. Similarly, one can verify that the programs given in Example 3

of the paper by Faber et al. (2008), namely:
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c × a × b ←
a ← c

b ← c

c ← a,b

,

and:

c × a × b ←
c × c × b × a ←
a ← c

b ← c

c ← a,b

,

are also strongly equivalent. Notice that the above two programs are also strongly equiv-

alent under the relations ≡i
s,× and ≡s,× defined in the paper by Faber et al. (2008) (see

the discussion in Example 3, page 441, of the aforementioned paper).

We now demonstrate that our characterization of strong equivalence, when restricted to

normal logic programs, retains the spirit of the initial characterization of strong equiva-

lence for such programs 2 (Lifschitz et al. 2001). More specifically, we show that in order

to characterize strong equivalence for normal logic programs, it suffices to look at their

models that contain only the truth values F , T ∗, and T .
We define strong equivalence for normal programs in the standard way (Lifschitz et al.

2001). The “standard answer set semantics” is the usual stable model semantics (Gelfond

and Lifschitz 1988) of normal logic programs.

Definition 12

Two normal logic programs P1 and P2 are termed strongly equivalent under the standard

answer set semantics, if for every normal logic program P , P1 ∪ P and P2 ∪ P have the

same standard answer sets.

The following definition and theorem characterize strong equivalence of normal programs

in our setting.

Definition 13

An interpretation I of an LPOD P is called three-valued if for all atoms A in P , it is

I(A) 
= F ∗. A three-valued model of P is a three-valued interpretation of P that is also

a model of P .

Theorem 3

Let P1 and P2 be normal logic programs. Then, P1 and P2 are strongly equivalent under

the standard answer set semantics if and only if they have the same three-valued models.

4 The complexity of strong equivalence for LPODs

In this section we examine the complexity of strong equivalence under our new charac-

terization. Since the two versions of strong equivalence that we have examined have an

2 Actually, the syntax of the programs treated in the paper by Lifschitz et al. (2001), is broader than
that of normal logic programs.
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identical characterization (see Theorems 1 and 2), the same complexity applies in both

cases.

Our proof establishes coNP-hardness by a direct (and quite simple) reduction from

3SAT, which uses the special structure of LPODs in a crucial way. The corresponding

proof by Faber et al. (2008) utilizes the more involved coNP-hardness result of Lin (2002)

for strong equivalence of normal logic programs 3. In this respect, we feel that the proof

that follows, apart from the fact that it applies to our new characterization of strong

equivalence, also has an interest in its own right due to its different approach.

Theorem 4

Strong equivalence of LPODs is a coNP-complete problem.

Proof

Let P1, P2 be two LPODs that are not strongly equivalent. Then, without loss of gener-

ality, there exists a four-valued interpretation I that is a model of P1, but not a model

of P2. Assume that the ground atoms that occur in P1 ∪ P2 are A1, A2, . . . , Am, and

consider the certificate C = [A1, I(A1), A2, I(A2), . . . , Am, I(Am)]. C has size polynomial

to the size of (P1, P2); moreover, given P1, P2, and C, it can be verified in polynomial

time that P1 and P2 are not strongly equivalent. Thus, deciding whether two programs

are strongly equivalent is in coNP.

We next prove that strong equivalence of LPODs is also a coNP-hard problem, using

a polynomial time reduction of 3SAT to the complement of this problem.

Let φ =
∧n

i=1 ci be a propositional formula in conjunctive normal form, where ci =

Li,1 ∨ Li,2 ∨ Li,3 and Li,j is a literal (i.e. either a variable or the negation of a variable).

For convenience, we may assume that the variables that occur in φ are elements of Σ.

We will construct two programs P1, P2, such that φ is satisfiable if and only if P1 and

P2 are not strongly equivalent.

For every literal L we define L̃ as follows:

L̃ =

{
L if L = C, for some C ∈ Σ

not C if L = ¬C, for some C ∈ Σ
.

Let A, B be two propositional variables in Σ that do not occur in φ and let Q be

Q = {A← L̃i,1, L̃i,2, L̃i,3 | 1 ≤ i ≤ n}.

The LPODs P1 and P2 are defined as follows:

P1 = Q ∪ {A×B ←},

P2 = Q ∪ {A×B ←} ∪ {A←}.
Assume that φ is satisfiable and let J be a two-valued interpretation such that J(φ) =

T . We define the four-valued interpretation I as follows:

I(A) = F ∗

I(B) = T

3 As remarked by one of the reviewers, the coNP-completeness of strong equivalence for standard ASP
programs was first shown in the paper by Pearce et al. (2001).

https://doi.org/10.1017/S1471068422000242 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068422000242


Strong Equivalence of LPODs: A Logical Perspective 719

I(C) = F, if C occurs in φ and J(C) = T

I(C) = T, if C occurs in φ and J(C) = F.

Consider an arbitrary rule A← L̃i,1, L̃i,2, L̃i,3 in Q. Then, Li,1∨Li,2∨Li,3 is a clause in

φ; since J satisfies φ, it holds J(Li,j) = T , for some j ∈ {1, 2, 3}. Therefore, I(L̃i,j) = F ,

which implies that I satisfies the rule A← L̃i,1, L̃i,2, L̃i,3. Moreover, I(A× B) = T . We

conclude that I is a model of P1; however, I is not a model of P2, since I(A) = F ∗.
Therefore, P1 and P2 are not logically equivalent in the four-valued logic, which implies

that they are not strongly equivalent.

Conversely, assume that P1 and P2 are not strongly equivalent. Then, P1 and P2 are

not logically equivalent in our four-valued logic. Since P1 ⊂ P2, there exists a four-valued

interpretation I that is a model of P1, but not a model of P2. We define the following

two-valued interpretation for the variables in φ:

J(C) =

{
T if I(C) ≤ F ∗

F if I(C) ≥ T ∗ .

We will show that J satisfies φ. We first prove some properties of I.

Since I is a model of P1, it must be either I(A) = T , or I(A) = F ∗ and I(B) = T , so

that the rule A×B ← is satisfied. However, in the former case, I should also be a model

of P2 (since P2 − P1 = {A←}), which is a contradiction. Therefore, only the latter case

is possible, that is, I(A) = F ∗.
Consider an arbitrary clause ci = Li,1 ∨ Li,2 ∨ Li,3 in φ. Since I is a model of P1, I

satisfies the rule A← L̃i,1, L̃i,2, L̃i,3 inQ ⊂ P1. Therefore, min{I(L̃i,1), I(L̃i,2), I(L̃i,3)} ≤
I(A) = F ∗, which implies that there exists a j ∈ {1, 2, 3} such that I(L̃i,j) ≤ F ∗. But
then, J(Li,j) = T . We conclude that φ is satisfiable.

5 Related and future work

The work on strong equivalence, started with the pioneering results of Lifschitz et al.

(2001), but has since been extended to various formal systems. In particular, strong

equivalence has been abstractly studied as a property across a variety of preferential

formalisms (Faber et al. 2013). To our knowledge however, the only existing work on the

strong equivalence of LPODS is the paper by Faber et al. (2008). In that work the authors

present an exhaustive study of several notions of strong equivalence for LPODs. More

specifically, given LPODs P , Q, they consider the following notions of strong equivalence:

1. P ≡s Q holds iff the standard answer sets of P and Q coincide under any extension

by ordinary (namely, normal) programs.

2. P ≡s,× Q holds iff the standard answer sets of P and Q coincide under any exten-

sion by LPODs.

3. P ≡σ
s Q holds iff the σ-preferred answer sets of P and Q coincide under any

extension by ordinary programs, where σ ∈ {i, p, c} and the indices i, c, and p

correspond to the inclusion, Pareto, and cardinality orderings, respectively (see the

paper by Brewka et al. (2004b) for formal definitions of these orderings).

4. P ≡σ
s,× Q holds iff the σ-preferred answer sets of P and Q coincide under any

extension by LPODs, where σ ∈ {i, p, c}.
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Considering the above notions, the study of Faber et al. (2008) is certainly broader

than the present work. We have not considered cases (1) and (3) above because in the

standard definition of strong equivalence (Lifschitz et al. 2001) both the programs under

comparison and the context programs, all belong to the same source language (in our

case, LPODs). Of course, there may exist application domains where relations like ≡s

and ≡σ
s might be of interest. In such a case, it might prove interesting to extend the

present work in this direction. Case (2) above is covered by our Theorem 2. Finally,

from case (4) above, we cover only the subcase where σ is the inclusion preference. The

subcases of Pareto and cardinality preferences are not covered because the semantics

of Charalambidis et al. (2021) on which the present work is based, is defined using the

relation �, which is the model-theoretic version of the inclusion preference of Brewka

(2002) and Brewka et al. (2004b). It is important, however, to stress that the inclusion

preference is probably the most fundamental among the three orderings and the initial

paper introducing LPODs (Brewka 2002), used only this one. The Pareto and cardinality

preferences were proposed subsequently in order to remedy the shortcomings of the initial

semantics of LPODs (Brewka et al. 2004b, see the discussion in page 342). Notice also that

the cardinality preference can not be generalized in a direct way to first-order programs

whose ground instantiation consists of an infinite number of rules.

Recapitulating, the two notions of strong equivalence that we cover in the present

paper (Theorems 1 and 2), correspond to the relations ≡i
s,× and ≡s,× defined in the

paper by Faber et al. (2008). In our case, both notions of strong equivalence coincide,

because they have a unique characterization as logical equivalence in our four-valued logic.

On the other hand, the relations ≡i
s,× and ≡s,× do not coincide (Faber et al. 2008, see

Theorem 21). This means that our approach and that of Faber et al. (2008) are different:

there exist programs that are strongly equivalent with respect to one of the approaches

and not strongly equivalent with respect to the other approach. This was expected since

the two approaches are based on markedly different semantics. Although it does not seem

straightforward to establish a formal relation between our framework and that of Faber

et al. (2008), we can find examples where the two approaches give different results.

Example 3

Consider the following two programs given in Example 2 of the paper by Faber et al.

(2008):

c × a × b ←
c ← a,b

d ← c,not d

,

and:

c × b × a ←
c ← a,b

d ← c,not d

.

It is intuitively clear that in the first program a is preferred over b, while in the second

program b is preferred over a. Despite this difference, the two programs are strongly

equivalent under the ≡s,× semantics of Faber et al. (2008). Under our characterization

the two programs are not strongly equivalent. To see this, consider the interpretation

I = {(a, T ), (b, F ), (c, F ∗), (d, F ∗)}, which is a model of the first program but not a

model of the second. Therefore, the two programs are not logically equivalent in our

four-valued logic, and consequently they are not strongly equivalent in our setting.
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Although our study does not cover all the notions of strong equivalence examined

in Faber et al. (2008), we believe that it has important advantages. Our work character-

izes strong equivalence as logical equivalence in the four-valued logic of Charalambidis

et al. (2021). This result extends in a smooth way the well-known characterization of

strong equivalence for normal logic programs (Lifschitz et al. 2001). Notice that the cor-

responding characterization of the inclusion preferred strong equivalence in Faber et al.

(2008) is much more involved and uses certain binary functions over the sets of models

of the programs that rely on the syntax of the given programs (see Faber et al. (2008),

Definition 8 and Theorem 19). We believe that this is not an inherent shortcoming of

the work of Faber et al. (2008), but instead a possibly unavoidable consequence of the

fact that the original semantics of LPODs (Brewka 2002; Brewka et al. 2004b) is not

purely model-theoretic. The simplicity of our characterization makes us believe that it

can be extended to broader classes of programs, such as for example to LPODs with

strong negation and to disjunctive LPODs (Charalambidis et al. 2021).

One important aspect that we have not examined in this paper, is the possible practical

use of the proposed strong equivalence characterization. To our knowledge, all major ASP

systems are two-valued, and it is therefore a legitimate question of how our four-valued

framework can be embedded in such systems. We believe that a promising direction for

future work would be to define a notion of collapsed strong equivalence for LPODs:

Definition 14

Two LPODs P1 and P2 are termed collapsed strongly equivalent under the most-preferred

answer sets if for every LPOD P , the most-preferred answer sets of P1 ∪ P and P2 ∪ P
become identical when F ∗ is collapsed to F .

Notice that in the above definition we do not need to collapse T ∗ to T because, by

Definition 7, answer sets do not contain the T ∗ value. The logical characterization of

collapsed strongly equivalent LPODs is probably an interesting question that deserves

further investigation.

Finally, a very interesting question raised by one of the reviewers is whether the

techniques developed in the paper by Charalambidis et al. (2021) can also be used to

derive a novel and simpler semantics for Qualitative Choice Logic (QCL) (Brewka et al.

2004a). Notice that QCL has also recently been investigated with respect to strong equiv-

alence (Bernreiter et al. 2021), so the work developed in the present paper may be also

relevant in this more general context.

Supplementary material

To view supplementary material for this article, please visit http://doi.org/10.1017/

S1471068422000242.
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