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Abstract. Using extensive ground-based spectroscopy, we isolate the E+A population in three
intermediate redshift clusters (z = 0.33, 0.58 and 0.83) and study their physical properties
using HST/WFPC2 imaging. Our analysis includes galaxy colors, luminosities, Hubble types,
and quantitative structural parameters as well as measured and estimated internal velocity
dispersions. We find E+A galaxies make up a non-negligible fraction (∼ 7 − 13%) of cluster
members at these redshifts, and their diverse nature indicates a heterogeneous parent population.
From their velocity dispersions and half-light radii, we infer that the descendants of the E+A’s
in our highest redshift clusters are massive early-type galaxies, and we estimate that � 30%
of the E-S0 members have undergone an E+A phase. We also find the characteristic E+A
mass decreases with decreasing redshift; this is similar to the decrease in luminosity of rapidly
star-forming field galaxies since z ∼ 1, i.e. galaxy “down-sizing”.

1. Introduction
Post-starburst galaxies (“E+A”; Dressler & Gunn 1983) in clusters may provide the

crucial link in the morphological transformation of spiral galaxies into the elliptical/S0
systems that dominate the cluster population at the current epoch (see Butcher & Oemler
1978). Characterized by strong Balmer absorption and little or no [OII]λ3727 emission,
E+A’s also are referred to as k+a/a+k (Franx 1993; Dressler et al. 1999, hereafter D99)
or Hδ-strong galaxies (Couch & Sharples 1987). Despite the short window of visibility of
the post-starburst phase (< 1.5 Gyr; Couch & Sharples 1987; Barger et al. 1996), E+A
members can contribute up to 20% of the total cluster population (D99), and have been
found in virtually every spectroscopic cluster survey from 0 < z < 1.3.

Here we summarize results presented in Tran et al. (2003b) on the E+A population
in three intermediate redshift clusters: CL 1358+62 (z = 0.33), MS 2053–04 (z = 0.59),
and MS 1054–03 (z = 0.83). We have completed extensive spectroscopic surveys (>
130 confirmed members in each field) and obtained HST/WFPC2 mosaics of the three
clusters (R ∼ 1h−1 Mpc) to characterize their galaxy populations. By pairing wide-field
HST/WFPC2 imaging with deep ground-based spectroscopy, we can study in detail the
nature of E+A galaxies in clusters at z > 0.3.

First we isolate the E+A galaxies in the three clusters to measure the fraction of mem-
bers that are also E+A’s. This has important ramifications on whether the majority of
cluster members undergo an E+A phase or if only a small fraction do. Because our analy-
sis includes colors, magnitudes, half-light radii, bulge-to-total fractions, degree of galaxy
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Figure 1. The Hubble types of the E+A galaxies in each cluster; we consider only the E+A’s
brighter than MBe = −19.1 + 5 log h. The morphological types of {E, E/S0, S0, S0/Sa, Sa, Sb,
Sc} are assigned values of {−5,−4,−2, 0, 1, 3, 5}; intermediate values are also used. We do not
show the two E+A mergers in MS1054. The E+A galaxies span the range in morphological type
to include even early-type members (Type< −2). However, cluster E+A’s tend to be systems
with disks (Type� 1).

asymmetry, Hubble types, and internal velocity dispersions (measured and estimated),
we can determine whether E+A galaxies can include even the most massive members,
and if they have a heterogeneous parent population. In addition, we can use their sizes
and internal velocity dispersions (σ) to determine what their descendants will be. By an-
alyzing clusters at three different redshifts, we can also determine whether the luminosity
and internal velocity dispersion distributions of the cluster E+A’s evolves with redshift.
We use H0 = 100 km s−1 Mpc−1, ΩM = 0.3, and Λ = 0.7.

2. Results
From over 1200 redshifts obtained in the three cluster fields, we isolate ∼ 500 mem-

bers. We select E+A galaxies from our cluster sample as members having strong Balmer
absorption [(Hδ+Hγ)/2 � 4Å] and no [OII]λ3727 emission (> −5 Å). We also apply
a signal to noise cut (S/N � 20) on the Hδ and Hγ fluxes and use a magnitude limit
(MBe � −19.1 + log h) to ensure we are not including any passive galaxies that are
scattered into the E+A regime due to observational errors. For uniformity, we consider
only members brighter than this cut when comparing the E+A population between the
clusters. We find 14 cluster galaxies that satisfy our strict E+A selection criteria.

2.1. E+A fraction

For members brighter than MBe = −19.1 + 5 log h, we obtain E+A fractions of 7 ± 4%,
10 ± 6%, and 13±5% at z = 0.33, 0.58, & 0.83 respectively; errors are determined by
assuming a Poisson distribution for the E+A galaxies. Considering the low E+A fraction
in Coma (Caldwell et al. 1993), these results show the E+A fraction evolves strongly with
redshift. They also suggest the E+A fraction continues to increase at z > 0.5. However,
larger samples at z > 0.3 are needed to determine if this increase is real or if the trend
flattens at z > 0.3.
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Figure 2. The color-magnitude diagram for all cluster members brighter than
MBe = −19.1 + 5 log h; the cluster members that are E+A’s are circled. The color-magnitude
relation (dotted line) is normalized to the E/S0 members and its slope is from van Dokkum et
al. (2000). E+A galaxies in the two lower redshift clusters are faint (MBe � −19.5+5 log h) but
they can be up to a magnitude brighter in MS1054 (z = 0.83).

2.2. Morphology
The cluster E+A’s in our sample span the range in Hubble type (Fig. 1) and bulge-
to-total fraction (B/T ; see Tran et al. 2001, 2003a) to include both spirals and E/S0’s.
However, the majority of E+A’s have measurable disks, consistent with results from
previous cluster E+A studies (Wirth & Koo 1994; Couch et al. 1994, 1998; Caldwell et
al. 1999; D99). Their average bulge-to-total fraction of ∼ 0.4 reflects their tendency to
be disk-dominated systems.

The observed range in B/T and Hubble type of the E+A population is similar to the
heterogeneous morphologies found in studies of lower redshift cluster E+A’s (z � 0.3).
It also confirms suggestions in earlier studies that E+A’s must have a wide variety of
progenitors (Zabludoff et al. 1996; D99). We also note that the earliest-type E+A’s are in
our most distant cluster; it may be that more massive cluster members, i.e. early-types,
had their E+A phase at higher redshift.

2.3. Color-magnitude diagram
In Fig. 2, we show the color-magnitude (CM) distribution of all cluster galaxies and E+A
candidates brighter than our magnitude limit of MBe = −19.1 + 5 log h; all members,
including the E+A candidates, have been corrected for simple passive evolution (see
van Dokkum et al. 1998). In all three clusters, we find bright E+A galaxies (MBe �
−19.1+5 log h). Even more striking are the very luminous E+A’s at z = 0.83: these E+A’s
are up to a magnitude brighter than their lower redshift counterparts and cover a larger
magnitude range. Note the cluster E+A’s tend to be bluer than the red sequence. The
E+A luminosity range, particularly at z = 0.83, indicates that they have a heterogeneous
parent population. The fact that the brightest E+A’s in this sample are in our most
distant cluster suggests that the cluster E+A population evolves with redshift.

2.4. Internal velocity dispersions
Having demonstrated that E+A’s at higher redshift can be as luminous as the brightest
cluster members, we now determine if these brighter E+A’s are also massive galaxies,
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Figure 3. Histogram of internal velocity dispersions (measured and estimated) for E+A mem-
bers brighter than MBe = −19.1+5 log h. The characteristic E+A mass (as traced by σ) increases
with redshift to include even E+A galaxies with σ > 200 km s−1 in MS1054 (z = 0.83). This
trend is similar to the observed decrease, since z ∼ 1, in the maximum luminosity of field galaxies
undergoing rapid star formation (“down-sizing”; Cowie et al. 1996).

or whether they are simply low luminosity/mass members that are temporarily bright-
ened. By determining the E+A mass distribution, we can characterize what the E+A
progenitors are and also constrain what their descendants at lower redshift can be. We
use internal velocity dispersion as a tracer of the mass where we have obtained direct
σ measurements for 120 cluster members (Kelson et al. 2000a, 2001; van Dokkum et al.
1998), and we estimate σ for the rest of the sample using the Fundamental Plane (see
Kelson et al. 2000b).

Figure 3 shows the distribution of internal velocity dispersions (measured and esti-
mated σ) for cluster members brighter than MBe = −19.1+5 log h. The range in velocity
dispersion for E+A galaxies increases at higher redshift: E+A’s at z = 0.33 have smaller
velocity dispersions (σ � 150 km s−1) than at z = 0.58 (σ � 200 km s−1) and z = 0.83
(σ � 250 km s−1). Considering the robustness of the spectroscopic data and high quality
of the WFPC2 imaging, any E+A’s with σ > 200 km s−1 (measured or estimated) in
the two lower redshift clusters would have been easily detected if they existed.

We find that the half-light radii (∼sizes) and dispersions of E+A’s at z = 0.83 are
comparable to those of the massive early-type members in all three clusters. In contrast,
none of the E+A’s at z = 0.33 could be considered a cluster giant. It is apparent that
the progenitors of the lower redshift E+A’s are very different from those at z = 0.83.
The observed trend of decreasing internal velocity dispersion with decreasing redshift is
consistent with the “down-sizing” of the E+A population.

3. Conclusions
From a sample of ∼ 500 spectroscopically confirmed cluster members in three clusters

at z = 0.33, 0.59 and 0.83, we isolate 14 E+A galaxies and find E+A’s make up a non-
negligible component of the cluster population (∼ 7 − 13%) at intermediate redshifts.
Although most of them are disk-dominated systems, E+A’s span the range in morpho-
logical type to include even early-type members. They can be more luminous than L∗

and can have internal velocity dispersions in excess of 200 km s−1. We find the E+A’s

https://doi.org/10.1017/S1743921304001048 Published online by Cambridge University Press

https://doi.org/10.1017/S1743921304001048


E+A galaxies in intermediate redshift clusters 487

with the highest internal velocity dispersions and luminosities are in our most distant
cluster. This galaxy “down-sizing” is similar to the observed decrease in luminosity of
rapidly star-forming field galaxies since z ∼ 1 (Cowie et al. 1996).

Our study indicates the high dispersion (σ > 200 km s−1) E+A’s at z = 0.83 are the
logical progenitors of massive early-types at lower redshift. We estimate � 30% of cluster
E-S0’s at z = 0.83 have had an E+A phase. We consider this a lower limit as evolution in
the E+A fraction and characteristic mass as well as the conversion of spirals into early-
types can increase the true fraction to 100%. These results show that the E+A phase
can play an important role in the transformation of star-forming galaxies into early-type
members.
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