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MAXIMUM AVERAGE DISTANCE
IN COMPLEX FINITE DIMENSIONAL NORMED SPACES

JUAN C. GARCIA-VAZQUEZ AND RAFAEL VILLA

A number r > 0 is called a rendezvous number for a metric space (M, d) if for any
n

n 6 N and any x\,... xn € M, there exists x € M such that (1/n) ^2 d(xi,x) = r.
t=i

A rendezvous number for a normed space X is a rendezvous number for its unit
sphere. A surprising theorem due to O. Gross states that every finite dimensional
normed space has one and only one average number, denoted by r(X). In a
recent paper, A. Hinrichs solves a conjecture raised by R. Wolf. He proves that
r(X) ^ r(l") = 2 — 1/n for any n-dimensional real normed space. In this paper,
we prove the analogous inequality in the complex case for n ^ 3.

1. INTRODUCTION

A number r > 0 is called a rendezvous number for a metric space (M, d) if for any
n 6 N and any xi,...xn € M, there exists x € M such that

1 "

ni=i

In 1964, Gross [4] proved that every compact connected metric space has one and only
one rendezvous number. In this case, the unique rendezvous number is denoted by
r(M,d), and it is said that (M, d) has the average distance property. The general
inequalities £>/2 ^ r ^ D can be easily checked for any rendezvous number r of
a metric space with diameter D. Moreover, for a compact metric space, the second
inequality is r < D (see [10]).

Consider a normed space X. It is known (see [2] or [13]) that the unit ball of
X has the average distance property, with 1 as the unique rendezvous number. A
much more interesting case is the unit sphere S(X) of X. li X is a finite dimensional
normed space, a direct application of Gross's theorem implies that S(X) has the average
distance property, and its rendezvous number, called the rendezvous number of X, is
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denoted simply by r(X). In this case we also know that 1 < r(X) < 2 (see [15]).
Calculations for these numbers in classical spaces have been carried out:

(1) r( tf) = 2 - 1/n; r(/£,) = 3/2 (see [13])
(2) r(*!J) = (2" - 2 r (n /2 ) 2 ) / (v /^ r (2n - 1/2)) (-> v ^ as n -4 oo) (see [8])

(3) r ( ^ ) -> 21/*1 as n -> oo (see [7])

Since X \-i r(X) is continuous on the Minkowski compactum of normed spaces
of fixed dimension n (see [l]), it follows that there is an n-dimensional normed space
Xo such that r(X) ^ r(Xo) < 2 for any n-dimensional normed space X. It was
conjectured by Wolf in [13] that the maximum, for n ^ 2, is attained for £". Thus the
conjecture can be written

r(X) < 2 - i

for any n-dimensional normed space X. The same author proved the inequality for
n = 2 [13], for any X with a 1-unconditional basis ([14]) and for any X isometrically
isomorphic to a subspace of Ll[0,1] ([17]). Moreover, he proved that equality holds in
these three cases if and only if X is isometrically isomorphic to £". A general upper
bound

was proved in [1]. The conjecture was finally solved positively by Hinrichs in [6], using
properties of the John ellipsoid.

All the previous results are related to real spaces. In [3], the values for some
complex spaces are computed. In particular, in that paper it is shown that

n

(where | • | denotes the complex modulus). The goal of this article is to show the
inequality

r(X) ^ r(

for any n-dimensional complex normed space X. This will be proved for n ^ 3, using

the same techniques developed in [6], but with more elaborate computations. The

inequality should hold for n = 2, and probably the same computations should work,

sharped in a smart way.

For more information about generalisations of Gross's theorem, and some properties

of rendezvous numbers of finite dimensional normed spaces, we refer the reader to [5,

9, 12, 16, 18]. A survey of contributions to this topic is given in [2].

Given a normed space X, we denote by B and S its unit ball and its unit sphere

respectively By 5!? w e denote the Euclidean unit ball in C".
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2. PREVIOUS RESULTS

We shall prove the following result.

THEOREM 1. Let X be a complex n-dimensional normed space, with n ^ 3.
Then r(X)^ r (£?(€)).

In the proof, we use properties of the John ellipsoid. We recall briefly the properties
we shall use (see [11] for proofs).

Given a complex n-dimensional normed space X — (Cn, || • ||), there is a unique el-
lipsoid of maximal volume contained in B. By an affine transformation, we may assume
that this ellipsoid is the Euclidean ball {x € Cn : \x\ ^ l } . For x = (xi , . . .xn) e Cn ,
|x| will denote the standard Euclidean norm |x| = ^(x,x), where (x,y) denotes the
complex scalar product. Then there exist m contact points vi,...vm G Cn and real
scalars c i , . . . cm > 0 satisfying

\\vk\\ = \vk\ = 1 for k - l , . . . n ; = n,
fc=i

x =

fc=i

or equivalently \x\2 =

\{x,vk)\ ^ 1 for all x € B,

\\x\\ s? |x| ^ ^ | | x | | for all x e X.

for all x £ X

In order to prove

eie--
n de,

we shall need some properties of the function f(t) — 1/(2TT) | O * |e*e - t\ d9 which we
state in the following two lemmas. The first one is just a verification.

LEMMA 1. The function f : R -* R is convex, even, 1-Lipschitz and increasing
in [0,1-oo). Moreover

/(0) = l, / ' ( 0 ) = 0 , /"(0) = l/2.

LEMMA 2 . The function g(t) - 1 - t + f{t) is decreasing in [0,1].

PROOF: Let t\ <t2- The inequality g{t\) ^ 9(^2) is equivalent to /
^ t2 - t\, which is true since / is 1-Lipschitz.

- f(t\)
D

REMARKS. (1) Lemma 1 implies the inequality r(£") < r(£"(C)), since /(1/n)
> /(0) = 1. Moreover, asymptotically r(£?(C)) = r ( ^ ) + l/(4n2) + o(n~3).

(2) A consequence of Lemma 2 is that the sequence r(^"(C)) = g{l/n) is increasing
(its limit equals 2).
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3. P R O O F OF THEOREM 1

Theorem 1 will be deduced from the following inequality:

(1)

for any x € 5 . Fix x € S, and let r = \x\. We know that 1 < r < s/n. Let P
be the ortogonal projection onto s p a n ^ x } , namely Pz = r~2(z,x)x. Let Q be the
complementary projection, Qz = z — Pz. We may assume, changing vk by e~lQfct;fc if
neccesary, that (x, Pvk) = \x\ \Pvk\. In this case, set

tk = (x,Pvk) = (x,vk) = \x\ \Pvk\ > 0.

We shall use the following properties of these numbers, which can be easily checked (see
[6, Lemma 2 and Lemma 6] for proofs).

171

LEMMA 3 . For any k = 1 , . . . m , 0 ̂  tk < 1. We aiso have J2 ckt\ — r2.
fc=i

Consider K be the convex hull of B% U {ei9x : 6 € [0, 2TT]} . It is clearly a ball in
C", whose norm is given by the expression:

2f N , ii\Qz\22{r2-l)\Pz\

I H\Pz\ + \A"2-1|Q2|), if \Qz\2 ^ (r2 - \)\Pz\2

This is shown by reducing it to the real case proved in [6]. Since B% C K C B, we
clearly have ||z|| ^ || |^|| | ^ \z\. Therefore, in order to prove (1), it is enough to prove

(2)

To estimate the above integrals, we have to evaluate the Euclidean norms of P(vk - eiBx)

- Pvk - ei0x and Q(vk - eiex) = Qvk:

\P(vk- eiex)\2 = \Pvk - eiex\2 = ^+r2- 2X(Pvk,e
iex) = J§ + r2 - 2tkcos6

\Q(vk - eiex)\2 = ^

We shall use the following two lemmas. Let 7 be the number (l +
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LEMMA 4 . If r2 ^ 2 then

Q(Vk-e
iBx)\2^(r2-l)\p(vk-e

iex)\

for any 1 ̂  k ̂  m and any 6 € [0, 2TT] .

LEMMA 5 . If r2 ^ 7 then

for any 1 ̂  fc < m and any 6 € [;r/2, 3TT/2] .

Accordingly, the proof will be divided into three cases. In the most important one,
the first case, computations also work for n = 2. In the other two cases they are valid
only for n ̂  3, but probably inequality (2) is also true for n = 2.

CASE 1. r2 ̂  2. Lemma 4 implies

h c "!•"
for any 1 ̂  k ^ m. The vectors
space, spancfx}. Hence

r 1̂  - ̂ i *
and e*8a; are in the same 1-dimensional vector

Thus

where

(3)

hr{t) =

The following lemma does the job.

LEMMA 6. For r2 ̂  2, the function /ir : [0,1/r2] -»• R is concave.

PROOF: We have to show that h'r(t) = l(2y/i)f'(y/i) - (rVr2 - l/2\/l - tr2) is
a decreasing function in (0,1/r2). Letting t — s2, we have to prove that
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is decreasing. Differentiation with respect to s and symplification give the following
inequality to prove:

s3

*/"(*) - /'(«) < r3Vr* - 1 YTm 0<s<1/r< V>/2. .

In order to get this inequality, we shall use repeatedly the following elementary
property: given two derivable functions F, G : [a, b] -> R such that F(a) — G(a) and
F'{x) ^ G'(x) for all x e [a, b], then F ^ G in [a, 6].

Both sides of the inequality above are null for s = 0, so what is left to show is that

/"'(«) ^ Zr3y/^1 — g ^ .

Differentiating under the integral sign gives

/'«(,)=zi r _j£
w

 2TT y0 ( 1 +

and hence /'"(0) = 0. Therefore, both sides of the inequality are equal (null) for s = 0,
and using the property again, we are reduced to proving

fiv(s) < 3r 3 i / r 2 1 +

The function r € (v/2,1/s) •-• S r 3 ^ ^ 7 ! ^ + 4 r V / ( l - r2
5

2)7 / 2) is increasing, and

so the second term in the inequality is greater than or equal to

' (1-25 2 ) 7 / 2 '

and thus it remains to prove that

Differentiation again under the integral sign shows that

""Jo (l + s2 + 2scos0) ' 27rVo (l + s2H-2scos0) '

The second term in the right side of the inequality is negative, so

sin2 6

0 ( l + s 2 + 2scos0)5/2
d6
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sin2 6

2scos0)5/2

12 r

ft Jo

8 3 + s2

2scos0)5/2

dO

d6

" • ( 1 - s 2 ) 3 '

Finally, the proof is completed by showing that the latter is less than or equal to

L±£L_.

(1 - 2s2)7/2

To deduce inequality (2), average (3) and use Lemma 6 to obtain

Using Lemma 3, we have

= hr(l/nr2) = f(l/ry/n) + J l - l J l ^ l ^ f(l/ry/n)
V T V ^

Finally, Lemma 2 and the inequality r ^ y/n yield

as desired.

CASE 2. 7 ^ r2 < 2.

By Lemma 5, for 6 G [TT/2, 3TT/2] ,

- eiex\\\ = -[\Pvk - eiBx\ + y/r2 - l\Qvk\]

7?

r2
l - 4 v 1 - %

r2 V r2

In an other case,

D

\vk - eiex\ = y/l + r2-2tkcos6.
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Set / = [TT/2,3TT/2] and Ic = [0,2n]\I. Then

ei0— / \\\vk-e
wx\\\d0

2n Jo

— f v/l + r2 -2tkcos0d9+— / \ / l + -4 - 2%cos0d8
2TT JJC 2n Ji V r4 r2

2 V r2

Now use || • ||jr,i ^ || • 11̂,2 in both integrals for the probability measure (d6)/-n to get

2

Applying the inequality \/a + x ^ y/a + (x/2y/a) in both square roots we obtain that
the latter expression is at most

VI + r2 +1 t t2 t
2 ny/TTr2 4r4 •nr2

The expression above is a convex parabola as a function of t € [0,1], and so its maximum
is attained at one of the extreme points of the interval. For t — 0, it equals

and for t = 1,

(4)

Let s = r2. The function

^TT^+l y/3+1
2 2 '

fT^ + i l l / l l
2 4r4 7r VVTT72 r2

is convex. Computing at the extreme points of the interval yields

1.40451...

1.4039...
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and therefore the maximum is attained at s = 7 , and (4) is (recall that 7 2 = 7 + 1)
. Hence

Multiplication by Ck/n, summation over k = 1 , . . . m , and Cauchy-Schwarz inequality

give

2n

For ra = 3 , the latter is (7 + l ) / 2 + l / (47 2 ) + l/(2%/3) ~ 1.69318... < r (

~ 1.69464... . For n ^ 4, the bound above is < ( 7 + l ) / 2 + l (472) + l / (2 \ /2)

~ 1.75806... < r(t\(C)) ~ 1.76569... < r ( ^ ( C ) ) . For n = 2, the estimate equals to

(7 + l ) /2 + l / (47 2 ) + 1 / 4 ~ 1.65451... , but r (^ (C)) ~ 1.56354... , so this calculation

does not prove (2) in the case n = 2.

The only point remaining is the convexity of the function given by (5). Differenti-

ating twice, we get

> ~ ( 1 + 7)"3/2 + h~4 - ^-(1 + 7)"5/2 + - 2 - 3 =* 0.20187... > 0.o 2 4TT TT

C A S E 3. l ' < r2 ^ 7 .

The inequality ||| • ||| ^ | • | gives

2TT JO 2TT JO 2n Jo

Finally, apply again the inequality || • H î ^ || • ||L2 for the probability measure (l/2w)d0

to obtain

f — /
1/2

/l + 2 ^ y/TT^f = 7-

Since 7 ~ 1.61803... and r(^(C)) ~ 1.69464... , we have the inequality 7 <
for n ^ 3. Again the argument does not work for n = 2.
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