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ON SPLITTING AN INFINITE RECURSIVELY 
ENUMERABLE CLASS 

J. B. FLORENCE 

1. I n t r o d u c t i o n . By an RE {recursively enumerable) sequence we mean a 
sequence V(0), V(l), . . . of uniformly RE sets, a? denotes the class of all RE 
sets. If <g C ^ , ^ is an RE class if either V = 0 or & = {F(x) |x G N} for 
some i ? £ sequence F (0 ) , F ( l ) , . . . . 

Let *€ be an infinité i?J3 class. For n ^ 2, we say tha t ^ has an n-split 
if ^f is the union of n disjoint infinite RE classes. *$ has a 1-split if ^ has an 
infinite RE subclass 2) such tha t *$ — 2 is infinite. ^ has a 0-split if ^ has 
a proper infinite RE subclass. Clearly if m > n and *€ has an m-split, then 
^ has an w-split. Young [3] proved the existence of infinite RE classes with 
no 0-split (for a generalisation see [1]). If k ^ 1, an RE class *€ is said to be 
k-RE (Pour-El and Pu tnam, [2]) if there is an RE sequence 7 ( 0 ) , V(l), . . . 
which enumerates *€ with a t most k occurrences of each set. 

The main results of this paper are as follows: 
(a) For each n ^ 0 there is an RE class ^f, whose members form a part i t ion 

of N into finite sets, such tha t ^f has an n-split bu t no (n + 1)-split. Note 
t ha t any infinite RE class which contains a finite set must have a 0-split. 

(b) If & is an infinite RE class of finite sets of bounded cardinality, then *€ 
has an w-split for all n. 

(c) A k-RE class must have a 1-split, but there is a 2-RE class of finite sets 
with no 2-split. 

(d) Every infinite RE class *$ can be split in the sense tha t there is an RE 
class Q such tha t both <% C\ 9 and <% - 2f are infinite. 

N denotes the set of natural numbers and Sub TV denotes the class of finite 
subsets of N. If A C N, Â denotes the complement of A. We will assume a 
fixed listing of N X N, tha t defined by the pairing function 

(ij) = 2 < ( 2 j + l ) - 1. 

T h u s the ordered pair corresponding to n is (in(n), T2(n)) where 

iri(n) = the exponent of 2 in n + 1 

T2(n) = (n + l ) / * * ™ * 1 - I 

2. No RE c lass i s cohes ive . If <é ç ^ , l e t J f ^ ) = the class of all finite 
subsets of members of *%. Theorems 7 and 8 of Pour-El and Pu tnam [2] are 
special cases of the following result. 
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T H E O R E M 1. Let ^ \ = {V{x)\x G A) where 7 ( 0 ) , 7 ( 1 ) , . . . is an RE se­
quence and A G 2 2 , and let %?2 be an RE class such that^f^i) C / ( ? 2 ) . 
Then *%\ \J *$2 is an RE class. 

Proof. If ^ 2 = 0, then <%x = 0 and ^ \ U 9% = 0, T h u s we can assume 
tha t ^ 2 = {£7(x)|x G N} where £7(0), £7(1), . . . is an RE sequence. Since 
A G S2, there is a recursive relation i? such t ha t x £ A <=ï Jy\/zR(x, y, z). 
We will define an RE sequence T(0), T(l), . . . in such a way t h a t 

T((x, y)) = 7 ( x ) if VzR(x, y, z) and 

T((x, y)) = a member of ^ 2 if 3 z~l i?(x, 3/, s ) . 

Then ^ ! U ^ 2 = {T(x) |x t N} \J cé\ and ^ \J <g 2 is an i ? £ class. 
Instructions for enumerating T(n), n = (x, y). Consider the following 

procedure: 
Stage 0. Set m(0) = 0. Enumera te 7 ( 0 ) , 7 ( 1 ) , . . . until a number, i{\) say, 

is pu t into V(x). Then enumera te £7(0), £7(1), . . . until ra(l) is found with 
i ( l ) G £7(m(l)) . P u t i ( l ) into T{n). 

Stage 1. Enumera te 7 ( 0 ) , 17(1), . . . until a new number , i{2) say, is pu t 
into V{x). Then enumerate £7(0), C7(l), . . . until ra(2) is found with 
{ i ( l ) , i (2)} C £7(m(2)). P u t i (2) into 7 » . 

Note t ha t each stage consists of two searches, either of which may be non-
terminat ing; then of course the next stage will never be reached. 

T o enumera te T(n) a l ternate between following the above procedure and 
checking tha t R(x, y, 0) , R(x, y, 1), . . . . If z is ever found such t ha t 
~| R(x, y, z), and a t tha t t ime m(0) , . . . , m(k) are defined, make T(n) = 
U(m{k)). 

Case 1. 3z~ | R(x, y, z). Then T(n) = U(m) for some m, i.e., Tin) G ^ 2 . 
Case 2. \/zR(x, y, z). Then 7 ( x ) G ^ \ and so for every finite subset F of 

7 ( x ) there is m with F C £7(m). I t follows t h a t 7\w) = 7 ( x ) . 

T H E O R E M 2. If & is an infinite RE class, then there is an RE class 2) such that 
both *$ C\ 3) and ^ — Q are infinite. 

Proof. Suppose <£ = {7 (x ) | x G N} where 7 ( 0 ) , 7 ( 1 ) , . . . is an RE se­
quence. Let Vs(x) denote the finite set of numbers in 7 ( x ) a t the beginning 
of step 5 in some enumerat ion of 7 ( 0 ) , 7 ( 1 ) , . . . . 

Let A = {x\\/y < x ( 7 ( x ) ^ V(y))}. Then <% = [V(x)\x G A) and if x and 
y are twro different members of A, 7 ( x ) ^ 7(j>)- Since *$ is infinite, ^1 is 
infinite. We have x G A <=> V ^ < x3 2; 3 $V^ 

[/ ^ 5 =>z G (7<(x) - F ' ( y ) ) U ( 7 ' ( y ) - 7<(x))] 

and it follows t ha t 4̂ G 2 2 . By the equivalence i G S2 <^ -4 is i ? £ in 0', 
vl = Ai^J A2, where Ai and ^42 are disjoint infinite S2 sets. 

Let 2X = {7 (x ) | x G i4i}, <^2 = {7 (x ) | x G A2}. Then ^ and ^ 2 are in­
finite, <é = 2X \J ^ 2 and ^ n â 2 = 0. By Theorem 1, ^ U {iV} and 
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92^J {A7} are RE classes. 
Now if we take 

9 = ^ U {TV} if N G 92 

and 

9 = 9^ if A7 G 92, 

9 is an i ? £ class such tha t <£ C\ 9 and ^ - 9 are infinite. 

3. RE c lasses w h i c h par t i t i on N i n t o finite se t s . Suppose A is an infinite 
set whose members in increasing order are a0, a\, . . . . We define sets 7n(i4) 
as follows: 

h{A) = Î0, . . . , a 0 } 

and 

l»+ i (4 ) = {an + 1, . . . , a n + i } . 

We also define c / ( 4 ) = {In(A)\n G A7}. 

T H E O R E M 3. / / A is infinite, then J {A) is an RE class <=> A G IIi. 

Proo/. First suppose J (A) = {V{x)\x G A7} where 7 ( 0 ) , 7 ( 1 ) , . . . is an 
RE sequence. Let Vs(x) be the finite set of numbers in V(x) a t the beginning 
of step <s in some enumerat ion of V(0), V(l), . . . . Since J(A) part i t ions A7, 
there is a recursive function g with x G V(g(x)). Now 

x M <^ Vs\/y[y G F s (g(x) ) =>;y ^ x] 

and s o i Ç IIi. 
Now suppose A G IIi. Then Â is P E . We have: if x G / « ( i ) , then 

y G / w ( i ) <̂> Vz with x ^ z < y or y^z<x[z£ Â]. 

I t follows tha t there is an RE sequence F (0 ) , F ( l ) , . . . such tha t V(x) = 
In(A) if x G 7n(yl). Hence J(A)(= {V(x)\x G A7}) is an RE class. 

T H E O R E M 4. / / A = M, where M is a maximal set, then J (A ) has no 1-split. 

Proof. Suppose 9 is an RE subclass of J (A ) such tha t both 9 and J (A) — 
9 are infinite. Let B = the union of the members of 9 . Then B is an RE set 
such tha t both B C\ A and B C\ A are infinite. Thus A is not cohesive, con­
tradict ing the maximality of Â. 

T H E O R E M 5. If A = S, where S is a simple set which is not hyper simple, then 
J' {A) has a 1-split but no 2-split. 

Proof. Since A is not hyperimmune, there is a recursive func t ion / such tha t 
f(n) ^ an where a0, «1, . . . are the members of A in increasing order. I t follows 
tha t there is an infinite recursive set H such tha t for all n, In(H) C\ A 9^ 0. 
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For if we define 

Ao = / ( 0 ) 

and 

K+i = f(K + l ) 

we have 

a0 ^ ho and hn < hn + 1 <; a^+i ^ /(An + 1) = A„+i. 

Now if we let 5 = {6o, &i, - - -} where bn = the first member of I2n(H), B is 
an infinite recursive set such tha t B C\ In(A) = 0 for infinitely many n. Let 2) 
be the RE class consisting of all members of */(A) which intersect B. Then 2iï 
and J (A ) — @ are infinite and , / ( 4 ) has a 1-split. 

Suppose J (A) has a 2-split, so t h a t J (A) = ^ U ^ 2 where ^ i , ^ 2 

are disjoint infinite RE classes. Then Blf the union of the members of ^ i , 
and B2, the union of the members of 9%, are complementary infinite recursive 
sets, and the set 

{x\(x e Bi A x + 1 £ B2) V (x e B2 A * + 1 £ S i )} 

is an infinite recursive subset of A. T h u s A is not immune, contradict ing the 
simplicity of Â. 

Remark. I t is easily proved t ha t if A is an infinite IIi set, then J* (A) has 
no 2-split <=> Â is simple. 

T H E O R E M 6. For each n ^ 2 //^re is aw infinite RE class *$, whose members 
form a partition of N into finite sets, such that & has an n-split but no (w + 1)-
split. 

Proof. Let A = S where S is a simple set. Let Ei, . . . , En be disjoint infinite 
recursive sets with union N. For 1 ^ i ^ n, suppose ft is a one-one recursive 
function from N onto Et. Then , since J1 {A) has no 2-split (as in Theorem 5), 
*£t = {fi(In(A))\n G N) is an infinite RE class such t h a t 

(1) the members of ^f < form a part i t ion of Ei into finite sets; 
(2) <% i has no 2-split. 
Let *$ = ^ i U . . . U ^ n . Then ^f is an infinite RE class, whose members 

form a part i t ion of N into finite sets. ^ can be split into n disjoint infinite 
RE classes, namely 9%, . . . , ^n. Suppose *$ can be split into n + 1 disjoint 
infinite RE classes @u . . . , &n+i- For 1 ^ i g w and 1 ^ ' ^ « + 1 , ^ ^ 
^ . = { i ^ | l ^ G ^ A ^ H E ^ e ) is an RE class. 

Let x be the number of ordered pairs (i, j) with 1 ^ i ^ n, 1 ^ i ^ w + 1 
such t h a t & i C\ 2 j is infinite. For each j , since 2iï^ is infinite and 

2j = {<gx r\23)\j . . . u (<^n r\ @j), 

*$ i C\ 2iï j is infinite for some i. Hence x ^ « + 1 . For each i} since të t cannot 
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be split into two disjoint infinite RE classes and 

*$ i C\ &Ï j is infinite for at most one j . Hence x ^ n. 
We now have n + 1 ^ x ^ n, a contradiction. 

4. i?£ classes of finite sets of bounded cardinality. 

THEOREM 7. / / *$ is an infinite RE class of finite sets of bounded cardinality, 
then fë has a 2-split (and therefore, *€ has an n-split for all n G N). 

Proof. Let m = max {x |^ has a set of cardinality x). If 2l is an RE class 
and F is a finite set, then 2) — {F} is an i?E class; hence we can assume that ^ 
has infinitely many sets of cardinality m, and that 0 $ fë. 

Suppose *$ = {^4(x)|x ê iV} where -4(0), -4(1), . . . is an RE sequence. 
Enumerate A (0), A (1), . . . in such a way that at each step exactly one of the 
sets A (x) acquires a new member. We give instructions for simultaneously 
enumerating RE sequences B(0), B(\), . . . and C(0), C(l), . . . . We will then 
let ^ o = {£(x)|x 6 N] and « \ = {C(x)|x 6 TV}. 

Notation. A'(x) will denote the set of numbers currently in 4 (x) (at any 
stage of the construction). Similarly for Bf (x), C'(x), *£Y', ^Y . 

When 4̂ (x) acquires its first member, 4 (x) will be assigned a unique follower 
which will be one of the B}s or one of the Cs. When (and if) A (x) acquires its 
second and subsequent members, the follower of A(x) may be released. A (x) 
will then be assigned a new follower unless 4 ' (x) now has m members. 

B(x) is said to be covered (at a given stage) if 3y[B'(x) C B'' (y) and 
cardinality B'(y) = m]. The instruction ureject B(x),} (used only where B(x) 
is covered) means: "if y is the smallest number such that B' (x) C £'(3/) and 
cardinality B'(y) = ra, put all the numbers in B'(y) into 13(x)." Covered and 
reject for C(x) are defined analogously. 

Instructions for step s, s even. 
Suppose A (x) acquires a new member k at step s. 
(i) (Taking care of 4 (x)). 

Case 1. 4 (x) has a follower which is not covered. Put k into the follower 
of 4 (x ) . 

Case 2. Otherwise. If 4 (x) has a follower, reject and release it. 
Sub-case (a). A'(x) has m members. Do nothing. 
Sub-case (b). 0 < card 4 ' (x) < r a a n d 4 ' ( x ) £ ^Y- Pick the smallest z such 

that ^'(2) = 0, put all the members of A'(x) into i?(z), and make B(z) the 
follower of 4 (x). 

Sub-case (c). 0 < card 4 ' (x) < m and A'(x) g 9 7 U 9 7 and ,4'(x) is 
contained in a member of 9Y of cardinality m. Proceed as in (b). 

Sub-case (d). Otherwise. Pick the smallest z such that C'(z) = 0, put all 
the members of 4 ' (x) into C(z), and make C(z) the follower of A(x). 
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(ii) (Increasing the cardinali ty of fêo). 
List the sets in *% of cardinali ty m until a set A £? &Y W 9 Y is found. 
Case 1. C'(s) C 4̂ for some z such t ha t C'(z) ^ 0 and C(z) is not covered. 

Pick the smallest y such t ha t C (y) = 0 and pu t all the members of A into 
Ciy). 

Case 2. Otherwise. Pick the smallest y such t ha t B' (y) = 0 and pu t all the 
members of A into B(y). 

In Case 1, repeat the operation. I t is clear t h a t the process of (ii) will end 
with an occurrence of Case 2. 

Instructions for step s, s odd. 

As above, except t ha t in (ii) the roles of 9?o and Çf i are exchanged. 
This completes the instructions. 
T h a t 9%, ^ i form a 2-split of C will follow from Lemmas 2, 3, 4, and 7 below. 

LEMMA 1. For each z, B{z) has one and only one of the following "histories" 
(similarly for C(z)). 

(1) B(z) becomes a follower of A(x), for some x, never to be released. In this 
case B(z) = A (x). 

(2) B(z) becomes a follower of A (x), for some x, but is later released. In this 
case card B(z) = m. 

(3) B(z) acquires its members by (ii). In this case card B(z) = m and B(z) Ç 
<€. 

Proof. T h a t (1), (2) and (3) are mutual ly exclusive follows from the fact 
t ha t only empty sets are chosen to become followers or to be used in (ii). 

T h a t (1), (2) and (3) are exhaustive follows from the fact t ha t ^ contains 
infinitely many sets of cardinali ty m. 

L E M M A 2. ^ 0 , *$ \ are infinite. 

Proof. T h a t ^ 0 is infinite is ensured by (ii) a t even steps. In fact, ^ 0 will 
contain infinitely many sets of cardinali ty m. Note t ha t by Lemma 1, no 
member of f̂0 has more than m members. T h u s if we ever have A £ ^ Y , 
card A = m then A G të0. 

Similarly for *io \ a t odd steps. 

L E M M A 3. ^ U ^ C <g. 

Proof. We prove tha t B(z) £ *$ for all z (the a rgument for C(z) is similar) . 
First suppose B(z) has fewer than m members . Then (1) of Lemma 1 occurs 
and B(z) Ç c€. Nowr suppose B(z) has m members . We may assume tha t when 
B(z) acquires its m-t\\ member, this is the first t ime in the construction t ha t 
this set has appeared in féY In cases (1) and (3) of Lemma 1, B(z) £ ^• Bu t 
by assumption, case (2) cannot occur. 

L E M M A 4. <g Q &0 U &lm 
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Proof. We prove that A(x) G ^ o W *$ \ for all x. If A{x) has m members, 
this is taken care of by (ii). Suppose then that A (x) has fewer than m members. 
When A(x) acquires its first member, Sub-case (b), (c), or (d) will apply. 
Thereafter A (x) will always have a follower. The final follower of A (x) will 
have the same members as A (x). 

LEMMA 5. For all z, at no stage of the construction do we have the situation: 
0 < card B' (z) and B(z) is not covered. 

Proof. It may be seen on examining the instructions that there is no possible 
way in which this situation can arise for the first time. 

LEMMA 6. For all y and z, at no stage of the construction do we have the situa­
tion: 0 < card C'(y)y C{y) is not covered, card B(z) = m and C (y) C B' (z). 

Proof. As above, the proof is a matter of verifying that the instructions are 
such that there is no way in which this situation can arise for the first time. 
In particular this is where Case 1 of the procedure in (ii) comes in (to ensure 
that in enlarging ^ 0 we do not obtain the situation of the Lemma). We note 
also that some of the possibilities are eliminated using Lemma 5. 

LEMMA 7. ^ 0 C\ <êx = 0. 

Proof. Suppose that ^ 0 C\ *£\ ^ 0. Since all the sets are finite, ^§ C\ 
*€\ 7^ 0 at some finite stage of the construction. Consider the first time that 
we have 9 Y C\ ^\ ^ 0, and suppose that at this time B'' (z) = C{y). This 
can only have arisen by an occurrence of Case 1 of (i), and by Lemma 5, 
C(y) (and not B(z)) is the follower of A{x) which acquires the number k 
making B'{z) = C'(y). Hence at the previous stage 0 < card C'(y), C{y) is 
not covered and C (y) Ç B'(z). By Lemma 5 there is t with card Bit) = ra, 
B'(z) Q B'(t). This contradicts Lemma 6. 

5. k-RE classes. 

THEOREM 8. If an infinite RE class *$ is k-RE for some positive integer k, then 
*$ has a l-split. 

Proof. Let V(0), V(l), . . . be a ^-enumeration of ^. Let Ax, . . . , Ak+i be 
disjoint infinite recursive sets with union N. Then for 1 ^ i ^ fe + 1, fët = 
{W\W = V(x) for some x £ At} is an RE class. We claim that one of the 
classes 9% yields a l-split of fé7. fët is infinite since A t is infinite and F(0), V(l), 
. . . is a ^-enumeration. 

It remains only to show that *$ — 9% is infinite for some i. Now 

V = (# _ (<rx n ... n Vt+1)) u ( ^ , n . . . n <<?t+1) 

Since F(0), F ( l ) , . . . is a ^-enumeration, ^ \ O . . . C\ 9%+i = 0. Hence 
*«f — ^ i is infinite for some t as required. 
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THEOREM 9. If *€ is an infinite 2-RE class of disjoint sets, then *€ has a 
2-split. 

Proof. We may assume that <é is not 1-RE. Thus let 7(0), 7(1), . . . be a 
2-enumeration of ^ in which infinitely many sets are repeated. Then it is 
clear that we can find numbers 

xQ < xi < y0 < 3>i < x2 < xz < y2 < yz < . . . 

such that for all n 

V(x2n) = V{x2n+i) and V(y2n) = ^(^2^+1) 

(using the fact that if V(n) H V(m) 9+ 0 then V{n) = V(m)). 
Let 

# 1 = {V(xn)\n G N} and 

9% = {V(yn)\n e N}\J {V(x)\x 9* all the xn and all the yn}, 

and ^ 1 , ^ 2 form a 2-split of &. 

By Theorem 9, if *$ is an infinite 2-RE class of disjoint sets, then *$ has a 
2-split. Now ^ is a class of disjoint sets if and only if 

VA e tf\/x £ A\/B G <£[A 9* B =*x Z B], 

Our example of a 2-RE class with no 2-split will satisfy the weaker condition 

VA £ tfjx e AVB £ &[A 9* B =>x $ B]. 

THEOREM 10. There exists an infinite RE class *$ of finite sets, satisfying 

VA £ tfjx e AVB e ^[A 9* B =>x <£ B]. 

which is 2-RE but has no 2-split. 

Proof. Let R: N —> {1, 2} XNXNXNbea recursive function such that 
if we let 

Pn(x) = {y\(^,n,x,y) Ç ranged} 
Qn(x) = \y\{2,n,x,y) £ rangea} 
SPn = [Pn(x)\x e N} 

&n = {Qn(x)\x G N\ 

then (^0, i2o), i&i, &i), • • • gives all ordered pairs of non-empty RE classes. 
Let 

P„'(x) = {y\(l,n,x,y) € {22(0) R(s)}} 
Qn°(x) = \y\(2,n,x,y) e \R(0) R(s)}\ 

SPn* = {Pn'(x)\x € N] 

£n
s = {Qns{x)\x 6 N) 

then &n
s, 2ln

s are the step s approximations to SPn, Q.n respectively. 

https://doi.org/10.4153/CJM-1975-118-6 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1975-118-6


ENUMERABLE CLASSES 1135 

Condition In is the requirement that [SPn, i2n) not yield a 2-split of ^. 
For all x, s 6 iV we will define F*(x) £ Sub iV, Gs(x) 6 Sub TV (the set of 

associates of Ix at step s) and Hs(x) £ Sub iV (the set of active associates of Ix 

at step s). Hs(x) will have 0, 2, 3, or 4 members. The definition is by induction 
on 5. Let V°(x) = {2x}, G°(x) = 0 and H°(x) = 0. For each 5 we will have 
Vs(x) = {2x}, Gs(x) = 0 and Hs(x) = 0 for almost all x. It will be clear that 
Vs(x), Gs(x) and Hs(x) can be found effectively from x and s. 

Before giving the details of the induction step we attempt to motivate the 
construction. <€ will be {F(x)|x Ç N} where V(x) = {y\(3s)(y Ç ^ ( x ) ) } . 
First note that if we can ensure that ^f consists of finite sets, and maintain 

V*, y, z[x < y < z => "| (F*(x) = 7 % ) = F5(s))] for all s, 

then ^ will be 2-RE. The basic strategy for satisfying In is as follows. Suppose 
that at some step Vs(i) Ç <^V and Vs(j) G â / . Then we "combine" F(i) 
and F(j) by putting every number in Vs (i) into V(j) and vice versa. If we 
can ensure that the only set in ^f which contains either Vs (i) or Vs (j) is 
F s(i) U Vs (j), and 0>n\J £nQ <%, then ^ n n â ^ 0. The priority method, 
together with the "separating" of sets previously combined, is used to resolve 
conflicts among the conditions. 

For the induction step, suppose TTI(S) — n. First we define Hs+1(n) and 
Vs+1(x) for all x. There are three cases. Case 1 has sub-cases (1.1) and (1.2); 
(1.2) has sub-sub-cases (1.21), (1.22), (1.23), and (1.24). Case 2 has sub-cases 
(2.1) and (2.2). 

Case I. Hs(n) = 0. 
(1.1) Vx, y[Vs(x) y£ Vs(y) A Vs(x) G 0>n' A Vs(y) G &n

s. => . {x, y} n 
Gs(m) 9^ 0 for some m < n]. Then 

H'+^n) = Hs{n) 
Vs+1(x) = Vs(x) for all x. 

(1.2) Otherwise. Choose i and j such that Vs(i) 9* Vs(j), Vs(i) £ &n\ 
Vs(j) e &n and {i, j} H Gs(rn) = 0 for all m < n. 

(1.21) Vx[x 5* i => 7s(x) ^ 7 s(i)] A Vx[x 7* j => Vs (x) ^ Fs(j)J. 
Then 

ff»+i(») = [ij] 

Vs+1(x) = 7s(x) for all x g {i,j} 

7'+1(*) = ^ s + 1(j) = Vs(i) U 7 s(j) 

(combining V(i) with F(j)) . 
(1.22) 3x[x ^ i A Fs(x) = V(i)] A Vx[x ^ j => F*(x) ^ F s(j)]. 
Choose ii 5̂  i such that Vs(i\) = F s(i) . Then 

Vs^(x) = Vs (x) for all x g {t, ^} 

7-+i(i) = Vs(i) U {a} 

7'+1(*i) = ^s(*'i) U {&} 
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where a and b are two distinct odd numbers not in any of the sets Vs (x) 
{separating V(i) from V{i\)). 

(1.23) Vx[x 9* i =» Vs(x) 9* Vs(i)] A 3 x[x 9* j A Vs(x) = V°(j)]-
Similarly. 
(1.24) Jx[x ?± i A Vs(x) = Vs(i)] Ajx[x^jA Vs(x) = Vs(j)]. 
Choose ii 9e ^'andji 9e- j such that Vs(ii) = Vs(i) and Vs(ji) = F s( j) .Then 

H'+l(n) = {i,ii,j,ji\ 
Vs+1(x) = Vs(x) for all x $ {i, iuj,ji} 

V+1(i) = Vs(i) U {a} 

F'+Hii) = Vs(n) U {&} 
^s+1(i) = Fs(j) u {*} 
F'+iO'i) = V'(ji)V[d}. 

where a, ft, c, d are four distinct odd numbers not in any of the sets Vs(x) 
(separating V(i) from V(i\), and V(j) from V(ji)). 

Case 2. Hs(n) has 3 or 4 members. 
(2.1) V*, y[x 9* y A \/z(z 9* x => Fs(s) ^ Vs(x)) A Vs(s ^ y =» F*(z) ^ 

7 % ) ) A F*(*) G <^V A F % ) 6 ^„* • => • {*, ;y} 2 #*(»)]• As in (1.1). 
(2.2) Otherwise. Choose i and j such that i 9^ j , \/z(z 9^ i => Vs(z) 9e 

Vs(i)),Vz(z 9±j=* Vs{z) 9* Vs(j)), Vs(i) 6 0>n\ Vs(j) e ^ „ ' a n d {i,j} C 
#*(»). As in (1.21). 

Case 3. Hs(n) has 2 members. 
As in (1.1). 
Now we define Hs+l(m) for m 9e- n and Gs+1(m) for all m. 

Hs+l(m) = 0 if m 5* « and Hs+1(n) H # s (m) ^ 0 
Hs+1(m) = Hs{m) \i m 9* n and Hs+l(n) C\ Hs(m) = 0 
G*+1(») = Gs(») \J Hs+l{n) 

Gs+1(m) = Gs(m) - Hs+1(n) for w ^ ». 

This completes the definition of Vs(x), Gs(x) and Hs(x). Since Vs(x) can 
be found effectively from x and s, if we define V(x) = {;y|(3s)(;y G 75(x))} 
then 7(0), 7(1), . . . is an RE sequence and ^ = {V(x)\x t N} is an RE 
class. 

We now prove nine lemmas. Lemmas 5 through 9 show that *$ satisfies the 
conditions of the Theorem. 

LEMMA 1. For all s, 

(a) Vx, y,z[x < y < z => 1 (Vs(x) = Vs(y) = Vs(z))] 
(b) Vx3yVz[V°(x) 9* Vs(z) =ïy £ Vs(x) - Vs(z)]. 

Proof. By (simultaneous) induction on s. (a) and (b) are clear for 5 = 0, 
since V°(x) = {2xj. For the induction step it suffices to verify that (a) A (b) 
is preserved by the operations of combining (applied to V(x), V(y) with 
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x 9* y, \/z(z 9* x =» F s(z) ^ F 5 (x) ) and Vs(s ^ y => Vs(z) ^ Fs(3>))) and 
separating (applied to F (x ) , V(y) with x ^ y and F s (x) = Vs(y)). 

LEMMA 2. (a) V*, m[Hs{m) Q Gs(m)] 
(b) V*, m, k[m ?* k =* G s(m) H Gs(&) = 0]. 

Proof, (a) By induction on 5. H°(m) = G°(m) = 0. Suppose tha t Hs(m) C 
Gs(m) for all m and we show tha t Hs+1(m) C G s + 1(ra) for all m. Assume 7ri(s) 
= w. Since G*+1(*0 = G*(w) U Hs+1(n), Hs+l(n) C G s + 1 (^ ) . If w ^ w and 
Hs+l(n) H Hs(m) ^ 0, then Hs+l(m) = 0 C G s + 1 (w) . If w ^ » and Hs+1(n) 
r\ Hs{m) = 0, then G s + 1 ( » = Gs(ra) - Hs+1(n) D # s ( r a ) (using the induc­
tion hypothesis) = Hs+l(m). 

(b) By induction on 5. G°(m) = 0 for all w. Suppose tha t Gs(m) C\ Gs{k) = 
0 whenever m 9e k and we show that G s + 1(ra) C\ Gs+l(k) = 0 whenever m 9e k. 
Assume TI(S) = n. If m 9e n, k 9e n then G s + 1(ra) = Gs(m) — Hs+1(n), 
Gs+1(k) = Gs(k) - Hs+l{n) and G s + 1 ( ^ ) ^ Gs+1(&) = 0 by the induction 
hypothesis. I t remains to show that if m ^ », then G s + 1(ra) H Gs+1(w) = 0-
We have Gs+l{m) = Gs(m) - Hs+l(n) and Gs+1(n) = Gs(n) U H'+^n). 
Gs(m) r\ Gs(n) = 0 by hypothesis, and of course (G s(w) — Hs+l(n)) C\ 
Hs+1(n) = 0. 

LEMMA 3. \/s, x, y[(x 9* y A Vs(x) = Vs(y) => 3 n(Hs(n) = {x, y})]. 

Proof. Suppose x 9e y and Vs(x) = Vs(y). Let t be such tha t / S s, Vu(x) = 
Vu(y) for all u with t ^ u ^ s, and F ' _ 1 ( x ) F^ F ' _ 1 ( y ) . There must be such 
a * since F°(x) = {2x} ^ {2;yj = V°(y). Let TTI(/ - 1) = n. Since F ' " 1 ^ ) ^ 
F ' " 1 ^ ) bu t F ' (x ) = Vl(y), only (1.21) or (2.2) can occur a t step t - 1, and 
by Lemma 1 (a) {x, y) can only be Hl(n). We claim tha t Hs(n) = {x, y}. 
Suppose otherwise. Then there is u, t < u ^ s, such tha t Hv(n) = {x, 3;} for 
all v with / rg v < u, and Hu(n) 9e {x, 3;}. Let wi(u — 1) = k. Since Hu~l(n) = 
{x, 3;} and #M(w) 9+ {x,y},k 9± n (see Case 3) and Hu(k) C\ jx, y} = Hu\k) C\ 
Hu~l(n) 9+ 0. By Lemma 2 (both parts) Hu~l(k) H ^ ^ ( n ) = 0 and so Hu(k) 
- Hu~l(k) 9+ 0. Hence (1.2) occurs a t step u - 1. Suppose x G # M (£) (the 
case y £ Hu(k) is similar). I t is then clear by examining (1.2) tha t either 
\/z{z 9+ x => F " " 1 ^ ) ^ F " " 1 ^ ) ) or Vs(s ^ x =» FM(z) ^ FM(x)). But Vu~l{x) 
= FM_1(3;) and Fw(x) = Vu(y). This is a contradiction, and so Hs(n) = 
{x, y) as claimed. 

LEMMA 4. V » 3 *V*I> ^ ^ =» (Hs(n) = Hl(n) A Gs(w) - Gl{n))}. 

Proof. By induction on n. Suppose tha t for all k < n, J t\/s [s ^ / => 
( i f s (^) = J^'C^) A G s(^) = G'(fe))]. Then there is u such tha t for all k < n, 
s ^u=> (Hs(k) = Hu(k) A Gs(k) = Gu(k)). We claim tha t ii s ^ u and 
in(s) 9+ n, then H*+1(n) = Hs(n) and Gs+l(n) = Gs(n). 

Let TTI(5) = k. If either Hs+1(n) 9+ Hs(n) or G S + 1 M ^ Gs(n), then (using 
Lemma 2(a) ) Hs+1(k) H\ Gs{n) 9e 0 and (again using Lemma 2, both par ts) 
Hs+l(k) - Hs(k) 9*0. I t follows tha t (1.2) occurs at step s, and (using 
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Lemmas 3 and 2) t ha t {i, j) C\ Gs(n) ^ 0, where {i, j) C\ Gs(m) = 0 for all 
m < k. Hence n > k and Hs+1(k) ^ Hs(k), contradict ing s ^ u. T h e claim 
is proved. 

Since Gs+l(n) = Gs(n) U Hs+1(n) when TTI(S) = n, Lemma 2 (a) implies 
t ha t if TTIO) = n and Hs+l{n) = i ï * (» ) , then G s + 1 (») = G*(»). T h u s it is 
enough to show tha t there is t ^ u such t ha t if 5 ^ / and 7ri(s) = », then 
i?*+i(n) = H°(n). 

li u ^ Si < s2, TI(SI) = 7Ti(s2) = », TTI(5) ^ » for all 5 with Si < s < 52, 

Case Xi occurs a t s tep Si and Case X2 occurs a t s tep 52, then xx S %2 ^ 3 (by 
inspection of the cases). T h u s there is / ^ u such t ha t a t all steps s ^ t with 
TTI(S) = n, the same Case (1, 2, or 3) occurs. I t easily follows tha t t has the 
required property. 

LEMMA 5. *& is a class of finite sets. 

Proof. We prove t ha t for all x, V(x) is finite. Note t h a t Vs(x) C F*+ 1(x) 
for all x; also t h a t if F s (x ) ^ F s + 1 (x ) then x G Hs+1(n) a n d # s + 1 ( » ) ^ i?*(») , 
where » = 7n(s). Hence if x does not belong to any Hs(n), V(x) = {2x}. 

Suppose x G Gs(n) — Gs+1(n), where iri(s) = k. Then n 9e k and since 
G s+i(n) = G s(») - Hs+1(k), x G Hs+i(k) H Gs(n). W e can show jus t as in 
the proof of the "c la im" in Lemma 4 t ha t n > k. T h u s x G Gs+1(k) with 
» > &. 

I t follows t ha t if V(x) ^ {2x}, then there are t> n such t h a t x G G s(») for 
all <> ^ /. T h u s iî s ^ t and F*(x) ^ Vs+1(x), TI(S) = n, x G Hs+l(n) and 
Hs+l(n) 7e Hs(n). By Lemma 4 there is w such tha t for all s ^ u, Hs+1(n) = 
i J*(«) . Now if 5 ^ m a x { ^ ( , 7 s (x ) = Vs+1(x). 

L E M M A 6 . \ / i ^ 3 ^ ^4V£ G <^[.4 ?* 5 = > ? g £ ] . 

Proof. Let 4̂ = F ( x ) . Choose £ (by Lemma 5) so t ha t V(x) = F ' ( x ) , and 
choosey (by Lemma 1 (b)) so t ha t Vz[V'(x) ^ Vl(z) => y £ Vl(x) - V\z)]. 
There are two cases. 

(i) Vl(xi) = Vl(x) for some X\ ^ x. 

If F s (x i ) = F*(x) bu t F s + 1 (* i ) 5* F s + 1 ( * ) , ^ ( * ) must be separated from 
F(x i ) a t step s (inspection of cases, using Lemma 1 (a) in (1.22), (1.23), and 
(1.24)) ; bu t then Vs+l(x) ?* Vs(x). I t follows by the choice of t t h a t F s (x i ) = 
Vs(x) for all 5 ^ * (and hence t ha t V(xx) = V(x)). 

By Lemma 1 (a) , y G V ( z ) <=> z G {x, Xi}. I t suffices to prove tha t for all 
s ^ t, y e Vs(z) ^ z e {x, xi} (for if B G ^ with 4 ^ 5 , then 5 = V{z) 
with 2 (? {x, Xi}). Suppose otherwise, then there is 5 ^ / such t ha t y G F 5 (z) <=> 
z G {x, Xi\ bu t 3/ G F s + 1 (z) for some z (j? jx, Xi}. This can happen only if a t 
s tep s either V(x) or V{x\) is involved in a combining operation. Bu t this is 
impossible, since Vs(x\) = Vs(x). 

(ii) Vs(z ^ x => F ' (z ) ^ F ' ( J C ) ) . 

I t suffices to prove t h a t for all 5 ^ t, y G F5(z) <=> 2; = x. Supposing other­
wise, we find as above t h a t V(x) is involved in a combining operation a t some 
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step s ^ t. But this would imply (by Lemma 1 (b)) tha t Vs+1(x) ^ Vs(x), 
contradict ing the choice of t. 

LEMMA 7. fê is 2-RE, in fact V(0), V(l), . . . is a 2-enumeration of &. 

Proof. Immediate from Lemma 1 (a) and Lemma 5. 

LEMMA 8. fë is infinite. 

Proof. Immedia te from Lemma 7. 

LEMMA 9. *% has no 2-split. 

Proof. Suppose for reductio t ha t {£Pn, Qn) yields a 2-split of *%. Then 
# = SPn \J &n, SPn and 2Ln are infinite, and SPn C\ Qn = 0. 

Choose t as small as possible so tha t Hs+1(n) = Hs(n) for all 5 ^ t (see 
Lemma 4) . 

Remark. If Vs+1(x) ^ Vs (x) then x G Hs+1(k) and Hs+1(k) ^ Hs(k), where 
TTIOO = k; and so by Lemma 2, if x G Hl(n), Vs+1(x) = Vs(x) for all 5 ^ /. 

There are three cases, 
(i) Hl(n) = 0. By Lemma 4, the set 

G = {g\g G Gs(m) for some m < n and some s} 

is finite. Since £Pn is infinite and P n C ^ , there is i d G with F( i ) G ^ n . 
Similarly there is j g G with F ( j ) G ^ n . Since ^ n Pi ^ n = 0, F ( i ) ^ F ( j ) . 
By Lemma 5 choose 5 with wi(s) = n sufficiently large tha t s ^ t, Vs(i) = 
V(i), Vs(j) = V(j), V(i) G ^ V a n d V(j) G £n

s. Clearly (1.2) occurs a t step 
5 and Hs+l(n) ^ Hs(n), a contradiction. 

(ii) i f ' (w) = h ' , j } , 7n (0 = wand (1.21) or (2.2) occurs a t step t - 1. Thus 
Vl(i) = Vl(j) = Vl~l{i) \J Vl-l(j). By the remark above, V(i) = Vl(i) and 
V(j) = V^j)- By Lemma 1 (b) there are yu y2 such tha t \/z(z ^ i => yi (: 
Vl-l(i) - Vl-l(z)) and \/z{z ^ j =» ;y2 G F ^ U i ) - F ' " 1 ^ ) ) . Since F(*) = 
F'(z) and V(j) = F ' ( j ) , neither V(i) nor F( j ) is involved in a combining 
operation from step t on. Hence, \/z(z G {i, j} => yi, y2 G V(z)). Thus the 
only set in ^ which contains either Vl~l(i) or Vl~l{j) is V(i) ( = F ( j ) ) . Now 
Vl-l(i) G ^ V " 1 and F ' - H j ) G â » ' - 1 and s o ^ U ^ Ç ^ gives V(i) G 
^ w H â „ , contradicting ^ n H «gn = 0. 

(iii) Hl(n) = {i, iu j} (or {i, j , j i} or {i, iu j , j i } ) , irx{t) = n and (1.22) (or 
(1.23), or (1.24)) occurs a t step t — 1. We deal only with (1.22) ; the arguments 
for (1.23) and (1.24) are similar. V(i) and V(i\) are separated a t step t — 1. 
By Lemma 1 (both parts) there is y such tha t \/z(y G Vl~l(z) « z ^ {i, i\\). 
By the remark above, Vl(i) = V(i) and Vl{i\) = V(i\), and so neither V(i) 
nor F( i i ) is involved in a combining operation from step / on. Hence, \/z 
(y G V(z) « 2 ^ {i, ii}) and the only sets in *% which contain Vl~l{i) ( = 
F ' - ^ i ) ) are F(z) and 7 ( i i ) . Now F ^ 1 ^ ' ) G ^ V " 1 and so, since ^ n £ # \ 
either F ( i ) G ̂ w or F( i i ) G ̂ n . A similar argument shows tha t Vl(j) = 
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V(j) G i2n. Also, for all s ^ t and all x £ {i, ii, j), we have \/z(z ^ x => 
Vs(z) 9^ Vs(x)). By Lemma 5 choose 5 with wi(s) = n sufficiently large that 
^ ^ /, V(j) G &n and either V(i) G <^V or F(ii) G ^ n

s . Clearly (2.2) occurs 
at step 5 and Hs+l(n) ^ Hs(n), a contradiction. 
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