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CHROMATIC SUMS FOR ROOTED PLANAR 
TRIANGULATIONS, III: THE CASE x = 3 

W. T. TUTTE 

Summary. In this paper we are chiefly concerned with the chromatic sums 
we have called I and h, with colour-number 3. In this case h can be interpreted 
as enumerating the rooted Eulerian triangulations with a given number of 
faces, and I as enumerating such triangulations with a given number of faces 
and a given valency for the root-vertex. The series h has been determined 
already, by summation from the formula enumerating even slicings [3]. 
However our formula for / does not seem to have been published before, 
though it could presumably be derived in a similar way. The object of the 
present paper is not only to obtain formulae for / and h, but to derive them by 
a method analogous to that used in Paper II of this series for the case X = r + 1. 
It is thought that such analogies may help eventually in the construction of 
a theory valid for all X. (See [4 ; 5].) 

1. The number 3. It is well-known that a planar triangulation T can be 
3-coloured if and only if it is Eulerian, that is the valency of each vertex is 
even. If T is Eulerian there is essentially only one 3-colouring. But to allow 
for the six permutations of the three colours we write P(T, 3) = 6. 

By definition h2n, the coefficient of z2n in h is the sum of P(M, 3) over all 
rooted planar near-triangulations M with a digon as root-face and with 2n 
triangular faces. It has been remarked in I and II that such a near-triangulation 
M, if non-degenerate, can be converted into a true triangulation by erasing 
the non-root edge of the digon. So for X = 3 and n > 0 the coefficient h2n is 
six times the number of rooted Eulerian planar triangulations with 2n faces. 
Dually, it is six times the number of rooted planar bicubic maps with 2n 
vertices. Such bicubic maps are counted in [2]. From the formula given in 
that paper we have 

(1) hu = nl(n + 2)l (» * D-

In what follows we derive this formula by a new method, analogous to that 
used in II for the case X = r + 1. 

In II we gave some special theorems for the case X = r + 1. We now give 
one special theorem for the case X = 3. I t has analogies with Theorem 1.3 of II, 
but it relates to a pentagon aia^a^a^a^ instead of to a quadrilateral VWXY. 

Consider a rooted near-triangulation N in which the root-face is a pentagon 

Received March 28, 1972. 

780 

https://doi.org/10.4153/CJM-1973-080-7 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1973-080-7


CHROMATIC SUMS 781 

P = axatfiza^. We take the root-vertex to be a\ and the root-edge E to be 
the edge a\a2 of P . Let K denote the face other than P incident with the root-
edge. We now define Zt as the triangulation obtained from N by subdividing P 
by means of two diagonals atai+2 and atai+z. (1 S i ^ 5 and addition and 
subtraction in the sufficies are modulo 5.) In Zt we retain the root-vertex and 
root-edge of N, and we take the new root-face to be inside P. If at is not 
divalent in N we define Yt as the triangulation obtained from N by identifying 
df-i with di+i, and correspondingly identifying the edge a*a*_i with a *#*+!. 
The face P reduces to a triangle ai+iai+2di+^- In Yt we retain the same root-
vertex and root-edge as in N, and we define the new root-face as the face other 
than K incident with the root-edge (see Figure 1). 

If a,i-i is joined directly to ai+i in N the above construction for a triangula
tion Y i fails. The identifications can be carried out and they yield a planar 
map Yt. But Yt has a loop and so does not satisfy our definition of a triangula
tion (I, § 1). Because of this loop the chromial P(YU X) is identically zero. We 
acknowledge Yt in this case as a degenerate kind of triangulation whose 
chromial sometimes appears formally in equations. But as the chromial is 
zero this makes no real difference. 

FIGURE 1 

We can now state our theorem. 

1.1. For each suffix i, 

P(Yi93) = P ( Z , + 2 , 3 ) + P ( Z , + 3 , 3 ) . 

Proof. Let Jt = 1 if ai+2 and ai+z are the only vertices of N of odd valency, 
and let Jt = 0 otherwise. Then evidently 

P ( Z „ 3 ) = 6 /„ 

P ( F „ 3 ) = 6 ( / < + 2 + /<+8), 

for each suffix i. The theorem follows. 
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Professor D. W. Hall has pointed out to the author that the theorem can 
also be deduced from the Birkhoff-Lewis equations for the 5-ring [1]. 

2. An equation for /. We introduce the generating series 

(2) / ( y , s ) = E / ( r V ( r ) + 1 P ( r , 3 ) , 
T 

where the sum is over all rooted triangulations T. We write I = l(y, z) for 
l(y, z, 3). As in II there is a simple relation between f(y, z) and l(y, z). It is 
now 

(3) l(y,z) = 6y + yf(y,z). 

In our next definitions we use the notation of Section 1. 
Let S(Zt) denote the contribution to f(y, z) of all rooted planar triangula

tions T such that T = Zt for some choice of N. 
We proceed to determine 5(Z4) in terms oîf(y, z). 
Consider a rooted planar triangulation T with root-vertex aiy a root-edge 

E = aia2, and a root-face F = aia2a4. Let the other face incident with aia4 

be Fi, and let its third vertex be a5. 
It may happen that ah = a2. In this case T can be represented by the 

diagram of Figure 2. The shaded regions correspond to rooted near-triangula-

FIGURE 2 

tions Mi and M2 as indicated. Mi has the same root-edge as T. Each shaded 
region is shown bounded by a digon, but each of them may degenerate into a 
single edge. The chromials of T, Mi and M2 are related, for general X, by 
Equation (6) of II. 

The contribution to f(y, z) of triangulations T of this kind is 
£ ^ ( ^ ) + V ( M 1 ) + K M 2 ) + 2 J P ( ¥ I > 3)P(M2, 3)/6, 

(Mi,M2) 

where Mi and M2 are arbitrary rooted near-triangulations each with a digon 
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as root-face. This expression can be abbreviated as 

yz2lh/6. 

In the remaining case we are dealing with triangulations T in which there 
is a quadrilateral aiaia±a5 subdivided into two faces F and F\ by a diagonal 
aia4. The contribution to / (^ , z) of triangulations of this kind is 

f(y, *) - (yznh/6). 

For such a triangulation T let F2 be the non-root face incident with the edge 
a2a4 of F, and let its third vertex be a3. 

It may happen that a3 = a,\. In that case T can be represented by the 
diagram of Figure 3. Again we have two shaded regions, bounded by digons, 

ai = az 

a\ 
FIGURE 3 

corresponding to rooted near-triangulations M\ and Mi. Now M\ may reduce 
to a single edge, but Mi cannot. Otherwise there is no restriction on the struc
tures of Mi and Mi. The contribution to f(y, z) of triangulations T of this 
kind is 

£ yi(Jfi)-H.(M,)2i(jri)+i(Jf,)+2p(Mij 3 ) P ( M 2 > 3 ) / 6 f 

{Mi,Mi) 

that is 
z2l(l - 63O/6. 

Another possibility is a3 = a5. In this case T has a subgraph that is a com
plete 4-graph, and therefore T has no 3-colouring. The contribution to / (y , 2) 
of such triangulations is zero. 

In the remaining case we have only the triangulations such as Z4. We deduce 
from the foregoing results that 

(4) 5(Z4) = /6> , s ) - (yzHh/Q) - (zH(l - 63O/6). 
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We go on to determine S(Z5). We can start with a general rooted planar 
triangulation T with root-vertex aiy root-edge E = a^a2 and root-face 
F = aia2a5. Let Fi be the second face incident with the edge a2a5 of F, and 
let its third vertex be a%. 

It may happen that a3 = a,\. Then T is represented by the diagram of 
Figure 2, with each at replaced by ai+\, and with the common root of T and M\ 
reversed. We deduce that the contribution to f(y, z) of triangulations T of 
this kind is 

s2/2/6. 

In the remaining case we are dealing with triangulations T in which there is a 
quadrilateral a\a2a^a^ subdivided into two faces F = aia2a5 and F\ = a2a^a^ 
by a diagonal a2a5. The contribution to f(y, z) of such triangulations is 

f(y, z) - (z'P/6). 

Let F2 be the second face incident with the edge a%a?> of F\, and let its third 
vertex be a4. 

It may happen that a4 = a2. Then T is represented by the diagram of 
Figure 4. The shaded region Mi, shown bounded by a digon, can be inter
preted as a rooted near-triangulation. It may degenerate into a single edge. 

a2 

FIGURE 4 

The shaded region M2 can be interpreted as a rooted planar triangulation in 
which one edge, not incident with the root-vertex, is expanded into a digon. 
The rooting of this triangulation is the same as for T. We deduce that the 
contribution to f(y, z) of triangulations T of this kind is 

fhz2/Q = y-lz%(l - 63O/6 

Another possibility is a4 = a,\. But then T has a complete 4-graph as a 
subgraph, and its contribution to f(y, z) is zero. 

In the remaining case we have only the triangulations such as Z5. We 
deduce that 

(5) S(Zb) = f(y, z) - (sV/6) - (y-h%(l - 6y)/6). 
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Now let S denote the class of all rooted planar triangulations T contributing 
to S(Z4). With T as Z4 we write 6(T) for the corresponding Z5, and 4>(T) for 
the corresponding F2. We p u t / i = 5(Z4), and we define /2 and / 3 as follows. 

(6) 

(7) 

/2 = Z/ (r )2 (<r)+1i ,(^(n,3), 

/a = Z /(7V(r)+1P(<Kr), 3). 
r ç s 

By Theorem 1.1 we have 

(8) 

We can rewrite (6) as 

/ 3 = / i + / 2 . 

f2 = Y, yn(HT))+1ztMT))+1P(e(T),z). 
T£S 

Thus 

(9) h = yS{z,) 
by the 1-1 correspondence between Z4 and Z6. 

We can rewrite (7) as 

(10) / , = £ / ( r >
2

i W ( r ) > + 3 P ( ^ ( D , 3), 
res' 

where 5 ' is the set of all members T of 5 such that <t>(T) has no loop. 
Any rooted planar triangulation K can be considered as a possible <j>(T). 

Let the root-vertex of K be a\ and let the other end of the root-edge E be a2. 
Suppose there is a face F± = ai&4a5 of X incident with a± but not with a2 (see 
Figure 5). Let us cut out the face F1} cut along the edge £ , and open out E 

so as to form with the original triangular hole aia^a^ a pentagonal hole 
aia2a3a4a5. Here the vertices a± and a3 both arise from the original a,\ of K. 
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Next let us fill up the pentagonal hole with three new triangular faces aia4a5, 
aia2a4 and a2a3a4. We thus obtain a planar triangulation T. We take its root-
vertex to be #i, its root-edge to be the edge a±a2 of the pentagonal hole, and 
its root-face to be the new triangle ai#2a4. Evidently T is a member of S'. 
Let us agree to adjust the notation so that the non-root face incident with the 
root-edge is the same in T as in K. Then evidently K = <j>{T). 

For a given K there are at most n(K) — 2 faces that can be taken as F\. 
These are the faces incident with a\ but not with E. Some of them may be 
incident with a2, and therefore inadmissible. If we neglect this possibility 
and consider the n(K) — 2 faces in their order at a\ we must conclude that 
they give rise to n(K) — 2 distinct rooted triangulations T such that 
K = 0(7"), with n(T) taking all values from 3 to n(K). We are thus led to 
the following first approximation <ï>3 to /3 . 

(n(K)-l ) 

(ID *3 = E I Z y+v(K)+3p(x,3). 
Here each value of j corresponds to a face Fi of K incident with a± but not 
with E. To obtain a correct formula for/3 we must subtract the contributions 
of all pairs (K, j) corresponding to triangles F\ incident with a2. 

Consider first the case in which a4 = a2. Then K is represented by the 
diagram of Figure 6. In this case K can be decomposed into two non-de

generate rooted near-triangulations Mi and M2 with root-faces both bounded 
by the 2-circuit made up of E and the edge #ia4 of F±. We take M2 to be the 
one not having F± as a face, and we assign to each of M± and M2 the same 
root-vertex and root-edge as for K. The contribution of K to $3 is found to be 

yn(M2)zt(Ml)+HM2)+2F(Mli 3 ) P ( A f 2 , 3 ) / 6 . 

We deduce that the total contribution to $3 of all triangulations K of the kind 
being considered is 

z2(l - 6y)(A - 6)/6. 
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Consider next the case a5 = a2. Then K is represented by Figure 6 with the 
suffixes 4 and 5 interchanged. The analysis is similar to that of the preceding 
case, but the roles of Mi and M2 are interchanged. The contribution of K 
to $3 is found to be 

0/niM1) + lznM1)+tiMi)+2pÇMu S)P(M2, 3)/6. 

The extra 1 in the index of y is due to the fact that the special face F\ of K is 
a face of M2 but not a face of M\. We deduce that the total contribution to 
$3 of all rooted triangulations K of the kind now being considered is 

yz*(l - 6y)(h - 6)/6. 

Subtracting from <E>3 the contributions of all cases in which F\ is incident 
with a2 we find that 

( n(K) ) 

/3 = E iy+1h , (K,+^,3) 
- y2j: ztiK)+zP(K, 3) - £ y , 0 O + 1* , a o + ,P(K:, 3) 

K K 

- z2(l + y) Qh - 6/ - &yh + dQy)/& 

= yV A (/) - y2z\h - 6) - z\l - 6y) 

- (1 + y)s2(^/6) + ( 1 + y)il +(y + y2)z2h 

-Q(l+y)yz\ 

where/ = f(y, z). Simplifying, we find 

(12) / , = y2z2 A (/) - (1 + y)z*(lh/6) + yzH + yz%. 

But / 3 = / i + / 2 = S{Zi) + yS{Zi), by (8) and (9), and the definition of/i. 
So by (4) and (5), 

/ » = ( ! + y)f - (1 + y)22(/^/6) - (1 + 30z2G76) + yz2/ + yz*h. 

Comparing this with (12) we deduce that 

(13) (1 + y)f = (1 + y)z*(P/6) + yV A ( / ) . 

We deduce from (3) that 

A(l) = 6 + / + A ( / ) =y~H+ A ( / ) . 

We can therefore write (13) entirely in terms of /, as follows. 

(14) 6(1 + y)(l- Gy) = (1 + y)yzH2 - Qy2zH + 6yh2 A(l). 

It is of some interest to compare this equation with Equation (18) of II. 

3. Solution of the difference equation. Since A(0 = (h — I)/(l — y) 
we can multiply (14) by (1 — y) and then rewrite it as 

(15) (1 - y2)yz2l2 - 6(1 - y2 + y2z2)l + 36y(l - y2) + 6yh2h = 0. 
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This is equivalent to 

(16) {(1 - y2)yz2l - 3(1 - y2 + y2z2)}2 

= 9(1 - y2 + y2z2)2 - 3 6 / ( 1 - J2)2*2 ~ 6;yV(l - y2)h. 

Let us write 

(17) 9H = Qz'h 

and denote the expression on the right of (16) by 9D. Then 

(18) D = 1-2(1+ z2)y2 + (1 + 6s2 + z4 - H)y* + (H - 4z2)y*. 

We solve for / and h by the same method as in II. First we introduce a 
power series £ in z such that 

(19) (1 - f2)fe2/({, z) - 3(1 - e + £V) = 0. 

Now l(y, z) involves only odd powers of y and even powers of z, with non-zero 
coefficients. Hence (19) uniquely determines £2 as a power series in z2. As in II 
there are two solutions for £, but now one of them is merely the negative of 
the other. 

We deduce from (16) that D and its derivative with respect to y2 both vanish 
when y2 is set equal to £2. We thus have the following equations. 

(20) 1 - 2(1 + z2)^ + (1 + 6s2 + z±)¥ - 4s2£6 - H?(l - £2) = 0, 

(21) - 2 ( 1 + z2) + 2(1 + 6s2 + z*)e - Ylz2¥ - iï£2(2 - 3£2) = 0. 

Eliminating H between these two equations we find that 

- 2 + (5 + 2z2)e + ( - 4 - 4z2)£4 + (1 + 2s2 + z4)^ = 0. 

Other forms of this equation are 

£%4 + 2£2(i - e)2*2 - (i - £2)2(2 - e) = o, 

(22) ?{&* - (i - e)}{&2 + a - e)(2 - e)\ = o. 
Hence the relation between z2 and £2 is 

(23) z2 = r 2 ( i - e) 

or 

(24) z2 = - r 4 ( l - £ 2 ) ( 2 - £ 2 ) . 

From (20) and (21) we have 

(25) ^H = 2 - 2(1 + z2)e + 4£6s2. 

If we assume (23) it follows that 

?H = 2 - 2£2 - 2(1 - £2) + 4£4(1 - £2), 
ff = 4s2, 

ft*4 = 6s2, by (17). 
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But this is impossible since h is a power series in z with no negative indices. 
We conclude that (24) holds. Accordingly 

^H = 2 - £2(2 - 2 r 4 ( l - £2)(2 - e)) ~ 4£2(1 - £2)(2 - £2) 
= 2(1 - É*)(l + r 2 ( 2 - J2) - 2£H2 - £2)), 

f8ff = 4(1 - £ * ) ( 1 - 2 f 4 + f«), 

(26) j? = 4e-»(i - s 2 ) 2 ( i + £ 2 - ? 4 ) , 

(27) z4A = 6{-8(l - £2)2(1 + ?2 - £4). 

The above equation (22) corresponds to Equation (29) of II. There also we 
derive two alternative expressions for z2. But in II both these are legitimate, 
in the sense that they can be used to determine h. Here only one of them is. 

If we write 0 — £-2 we have 

(28) z2 = — (1 — <9)(1 — 20), 

(29) z% = - 6 ( 1 - 0)2(1 - 6 - 02). 

We can find h as a power series in z2 by elimination of 6 between these two 
equations. 

Substituting for z2 and H in (18) we find that 

D = 1 + ;y2(-2 + 2(1 - 0)(1 - 26)) + y ( l - 6(1 - 0)(1 - 20) 
+ (1 - 0)2(1 - 20)2 + 4(1 - 0)2(1 - 0 - 02)) 

+ y ( 4 ( 1 - 0)(1 - 20) - 4(1 - 0)2(1 - 0 - 02)) 

= 1 - 23;2(30 - 202) + y (902 - 803) - 4;y6(03 - 04), 

(30) D = (1 - By2)2{\ - 40(1 - d)y2). 

We can now use (16) to determine / in terms of 0. 

(1 - y2)yz2l - 3(1 - y2 - y2{\ - 0)(1 - 20)) = ± 3 V A 

(1 - y2)yz2l - 3(1 - By2 - 2y2(l - 0)2 ) = ± 3 ( 1 - 6y2)(l - 40(1 - 6)y2)K 

Since / = 0 when y = 0 we must resolve the ambiguity by taking the negative 
sign. We interpret the square root as a power series in y and 0 with constant 
term 1. Our equation for / is thus 

(31) (1 - y2)yz2l + 6;y2(l - 0)2 = 3(1 - 6y2){\ - (1 - 40(1 - B)y*)*). 

4. The series h. Let us write 

(32) u = - (1 - 20)"1. 

It can be verified, using (28) and (29), that 

u = 1 + 2u2z2
t 

2h = 3(1 + \u - u2). 

(dh/du) = 3(2 - u). 

When z = 0 we have u = 1 and h = 6. 
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Applying Lagrange's theorem we find that 

^ 6 + 3ÊJ^)[(£)B>(2-W)}L 
= « . o y» / ( ^ 2 ) " \ / 2 - (2»)! _ (2n + 1)!\ 

°'tô^1\ n! / l(» + l)! (» + 2)! / ' 
,„v , ^ / 2 " - ( 2 W ) ! 2

2 " \ 

(32) ^ = 6 + 9 S t w ! ( w + 2 ) ! / -
We thus recover Equation (1). 

For large n we can apply Stirling's formula to obtain the following asymp
totic approximation: 

(33) h2n ~ 9*-<1/2>»-<5/2>8\ 

5. The series q. We do not attempt to find an explicit formula for q(x, z, 3). 
However for the convenience of anyone who may wish to extend the theory 
we note that there is in principle a method for determining q when / is known, 
a method valid for every X. 

The chromatic equation (I, (13)) can be written as 

(34) g - (x — \~lyzq — yz + x2y2z(y — 1)_1) 
= x2(xy\(X — 1) — yzl + y2z(y — l ) - 1 g) . 

We now introduce v, regarded as a power series in z whose coefficients are 
functions of y. It is defined by 

(35) v — \-1yzq{v, z, X) — yz + v2y2z(y — l ) - 1 = 0. 

From this equation we can determine, in terms of the coefficients in g, the 
coefficients of successive powers of z in v as far as we please. Thus v is well-
defined. 

Substituting v for x in (34) we find that v must also satisfy 

(36) vy\(\ - 1) - yzl(y, z, X) + y2z(y - l ) " 1 ? ^ , z, X) = 0. 

If / is given by an equation such as (15) or (31) we can eliminate it between 
this equation and (36). We can then eliminate y between the resulting equation 
and (35). We will then have an equation giving q(v, z, X) directly in terms of 
v, z and X. 
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