VOL. 6 (1972), 439-441.

Maximal sum-free sets in abelian groups of order divisible by three

Anne Penfold Street

Abstract

A subset S of an additive group G is called a maximal sum-free set in G if $(S+S) \cap S=\emptyset$ and $|S| \geq|T|$ for every sum-free set T in G. In this note, we prove a conjecture of Yap concerning the structure of maximal sum-free sets in finite abelian groups of order divisible by 3 but not divisible by any prime congruent to 2 modulo 3 .

Given a finite additive abelian group G and non-empty subsets S, T of G, let $S+T$ denote the set $\{s+t \mid s \in S, t \in T\}, \bar{S}$ the complement of S in G and $|S|$ the cardinality of S. Define the subgroup $H(S)$ by $H(S)=\{g \in G \mid S+g=S\}$ so that
(a) $S+H(S)=S$ and
(b) if $S+K=S$ for some subgroup K, then $K \leq H(S)$.

Note that the subgroup generated by $H(S)$ and $H(T)$ is contained in $H(S+T)$. We call S a sum-free set in G if $(S+S) \subseteq \bar{S}$. If, in addition, $|S| \geq|T|$ for every sum-free set T in G, then we call S a maximal sum-free set in G.

Suppose that $|G|$ is not divisible by any prime congruent to 2 modulo 3 , but is divisible by 3 . Diananda and Yap [1] showed that if S is a maximal sum-free set in G, then
(a) $|S|=|G| / 3$ and
(b) S is a union of cosets of a subgroup H of index $3 n$ in G

Received 24 January 1972.
(for some m) such that either
(i) $|S+S|=2|S|-|H|$ or
(ii) $|S+S|=2|S|$ and $S \cup(S+S)=G$.

Yap [3] conjectured that case (ii) cannot in fact occur. Here we prove his conjecture. Part of the proof in [1] is restated for convenience.

Let A be a subset of G such that $A=-A$. Since $|G|$ is odd, $|A|$ is odd if and only if $0 \in A$.
$0 \notin S$ and $|S|$ is odd, so $S \neq-S$. $0 \in S-S=-(S-S)$, so $|S-S|$ is odd. Since S is sum-free, $S \cap(S+S)=\varnothing=(S \cup(-S)) \cap(S-S)$.

We apply Kneser's Theorem: the statement given in [2] is the most convenient. If $H=H(S+S)$, then $S+S+H=S+S$ and either $|S+S| \geq 2|S|$ or $|S+S|=2|S+H|-|H|$.

If $S+H$ is not sum-free, then for some $s \in S, h \in H$ we have $\boldsymbol{s}+h \in(S+H)+(S+H)=S+S+H=S+S$. But then $\boldsymbol{s} \in S+S-h=S+S$ and S is not sum-free, which is a contradiction. Hence $S+H$ is a sum-free set containing S. By the maximality of S, $S+H=S$ and hence $H(S)=H$.

Since S is sum-free, $|S+S| \leq 2|S|$ and the possibilities for $|S+S|$ become
(i) $|S+S|=2|S|-|H|$ or
(ii) $|S+S|=2|S|$.

We know that $S-S+H=S-S$, so $H \leq H(S-S)$. A proof similar to that for $S+H$ shows that $S+H(S-S)=S$ also. Hence $H(S-S)=H$. Then the possibilities for $S-S$, just as for $S+S$, are
(i) $|S-S|=2|S|-|H|$ or
(ii) $|S-S|=2|S|$.

But $|S-S|$ is odd, so (ii) is ruled out and $|S-S|=2|S|-|H|$.
If $|S+S|=2|S|$, then exactly one coset of H occurs in $S+S$ but not in $S-S$. We show this is impossible.

Since S is a union of cosets of H and $S \neq-S$, we have $|S \cup(-S)| \geq|S|+|A|$. Since $(S \cup(-S)) \cap(S-S)=\emptyset$, we have
$|S \cup(-S)| \leq|S|+|B|$. Hence $|S \cup(-S)|=|S|+|H|, \quad|S \cap(-S)|=|S|-|H|$ and S consists of a union of pairs of cosets, $g_{i}+H$ and $-g_{i}+H$, $i=1, \ldots, n$ for some n, together with one coset $g+H$ whose negative is not contained in S.

We want a representative of the coset of H which is contained in $S+S$ but not in $S-S$. Now $g_{i}+g_{j}=g_{i}-\left(-g_{j}\right)$ and $g+g_{j}=g-\left(-g_{j}\right)$, so both belong to $S-S$. So the only possibility is $2 g$. Since $|G|$ is odd, $2 g \neq-2 g$ and we consider the coset $-2 g+H \subseteq S+S$. If $-2 g=g+g_{j}$, then $2 g=\left(-g_{j}\right)-g \in S-S$; if $-2 g=g_{i}+g_{j}$, then $2 g=\left(-g_{i}\right)-\left(g_{j}\right) \in S-S$.

In either case we have a contradiction, so $|S+S| \neq 2|S|$.

References

[1] Palahenedi Hewage Diananda and Hian Poh Yap, "Maximal sum-free sets of elements of finite groups", Proc. Japan Acad. 45 (1969), 1-5.
[2] J.H.B. Kemperman, "On small sumsets in an abelian group", Acta Math. 103 (1960), 63-88.
[3] Hian-Poh Yap, "Structure of maximal sum-free sets in groups of order 3p ", Proc. Japan Acad. 46 (1970), 758-762.

Department of Mathematics, University of Queensland, St Lucia, Queensland.

