ON A THEOREM OF SYLVESTER AND SCHUR

BY
D. HANSON

In 1892, Sylvester [7] proved that in the set of integers $n, n+1, \ldots, n+k-1$, $n>k>1$, there is a number containing a prime divisor greater than k. This theorem was rediscovered, in 1929, by Schur [6]. More recent results include an elementary proof by Erdös [1] and a proof of the following theorem by Faulkner [2]: Let p_{k} be the least prime $\geq 2 k$; if $n \geq p_{k}$ then $\binom{n}{k}$ has a prime divisor $\geq p_{k}$ with the exceptions $\binom{9}{2}$ and $\binom{10}{3}$. In that paper the author uses some deep results of Rosser and Schoenfeld [5] on the distribution of primes. A note by Moser [4] states that a simple extension of Erdös' proof leads to the result that the product of k consecutive integers greater than k is divisible by a prime $\geq \frac{11}{10} k$.

The object of this note is to prove by elementary means the following theorem:

Theorem. The product of k consecutive integers $n(n+1) \cdots(n+k-1)$ greater than k contains a prime divisor greater than $\frac{3}{2} k$ with the exceptions 3.4, 8.9 and 6.7.8.9.10.

We may reformulate the theorem as follows: If $n \geq 2 k$ then $\binom{n}{k}$ contains a prime divisor greater than $\frac{3}{2} k$ with the above exceptions.

Corollary. For all $k>1, n \geq 2 k,\binom{n}{k}$ has a prime divisor $\geq \frac{7}{5} k$.
The result of the corollary is suggested in [4].
The first part of the following proof employs methods similar to those used by Erdös in [1]. In [3] we proved by elementary means the following: The product of the prime powers less than or equal to n is less than 3^{n} for $n>1$, i.e. if $\alpha=\alpha(p, n)$ is such that $p^{\alpha} \leq n<p^{\alpha+1}$, then $\prod_{p \leq n} p^{\alpha}<3^{n}$. It is this result that enables us to extend Erdös' work.
rdös' work.
Since the exponent β_{p} to which a prime occurs in $\binom{n}{k}$ is

$$
\beta_{p}=\sum_{i=1}^{\left[\log _{p} n\right]}\left(\left[\frac{n}{p^{i}}\right]-\left[\frac{n-k}{p^{i}}\right]-\left[\frac{k}{p^{i}}\right]\right)
$$

Received by the editors September 20, 1973 and, in revised form, November 10, 1971.
it is easy to see that
Lemma 1. If $p^{\beta_{p}} \|\binom{ n}{k}$ then $p^{\beta_{p}} \leq n$.
Proof of the theorem. (1). Let $\pi(k)$ denote the number of primes $\leq k$. Clearly for $k \geq 8, \pi(k) \leq \frac{1}{2} k$. Thus if $\binom{n}{k}$ has no prime factor greater than $\frac{3}{2} k$, Lemma 1
implies implies

$$
\binom{n}{k} \leq n^{1 / 2 \cdot 3 / 2 k} \leq n^{3 / 4 k}
$$

However since

$$
\binom{n}{k}=\frac{n}{k} \cdots \frac{n-1}{k-1} \cdots \frac{n-k+1}{1}>\binom{n}{k}^{k}
$$

we must have

$$
\left(\frac{n}{k}\right)^{k}<n^{3 / 4 k}
$$

which is false if $k \leq n^{1 / 4}$. Therefore our theorem holds for $8 \leq k \leq n^{1 / 4}$.
It is easy to see that $\pi(k)<\frac{1}{3} k$ for $k \geq 37$ and $\pi(k)<\frac{2}{9} k$ for $k \leq 300$. In a similar manner as above we then have that the theorem is true for $37<k \leq n^{1 / 2}$ and $300 \leq$ $k \leq n^{2 / 3}$ in these cases respectively.
(2). We now consider the case $k>n^{2 / 3}$. If $\binom{n}{k}$ contains no prime divisor exceeding $\frac{3}{2} k$ then by Lemma 1

$$
\begin{equation*}
\binom{n}{k}<\prod_{p \leq 3 / 2 k} p \prod_{p \leq n^{1 / 2}} p \prod_{p \leq n^{1 / 3}} p \cdots \tag{1}
\end{equation*}
$$

In [3] we proved by elementary methods that

$$
\begin{equation*}
3^{n_{0}}>\prod_{p \leq n_{0}} p \prod_{p \leq n_{0}^{1 / 2}} p \prod_{p \leq n_{0}^{1 / 3}} p \cdots \tag{2}
\end{equation*}
$$

Therefore, since $k>n^{2 / 3}$ implies $k^{1 / l}>n^{1 /(2 l-1)}$ for $l \geq 2$, we have

$$
\begin{equation*}
3^{3 / 2 k}>\prod_{p \leq 3 / 2 k} p \prod_{p \leq n^{1 / 3}} p \prod_{p \leq n^{1 / 5}} p \cdots \tag{3}
\end{equation*}
$$

Now taking $n_{0}=n^{1 / 2}$ in (2), we find

$$
\begin{equation*}
3^{n^{1 / 2}}>\prod_{p \leq n^{1 / 2}} p \prod_{p \leq n^{1 / 4}} p \prod_{p \leq n^{1 / 6}} p \cdots \tag{4}
\end{equation*}
$$

Combining (1), (3) and (4) we have under the assumption that $\binom{n}{k}$ is not divisible by any prime exceeding $\frac{3}{2} k$ that

$$
\begin{equation*}
\binom{n}{k}<3^{3 / 2 k+n^{1 / 2}} \tag{5}
\end{equation*}
$$

It is easy to prove by induction that $\binom{4 k}{k}>\left(\frac{4^{4}}{3^{3}}\right) \frac{1}{4 k}$. Assume that $n \geq 4 k$. Then (5) implies
(6)

$$
3^{3 / 2 k+n^{1 / 2}}>\left(\frac{4^{4}}{3^{3}}\right)^{k} \frac{1}{4 k}
$$

It now follows from (6) that

$$
\left(\frac{3}{2} k+n^{1 / 2}\right) \log 3>k(4 \log 4-3 \log 3)-\log 4 k
$$

and under the initial assumption that $k>n^{2 / 3}$ that

$$
n^{1 / 2} \log 3>n^{2 / 3}\left(8 \log 2-\frac{9}{2} \log 3\right)-\log n
$$

which is false if $n>240$.
We now assume $3 k \leq n<4 k$. Inductively we can show $\binom{3 k}{k}>\left(\frac{3^{3}}{2^{2}}\right)^{k} \frac{1}{3 k}$, then as
bove we have above we have

$$
3^{3 / 2 k+n^{1 / 2}}>\left(\frac{3 k}{k}\right)>\left(\frac{3^{3}}{2^{2}}\right)^{k} \frac{1}{3 k}
$$

which implies

$$
\left(\frac{3}{2} k+n^{1 / 2}\right) \log 3>\mathrm{k}(3 \log 3-2 \log 2)-\log 3 k .
$$

But since $n<4 k$, we have

$$
2 k^{1 / 2} \log 3>k\left(\frac{3}{2} \log 3-2 \log 2\right)-\log 3 k,
$$

which is false for $k>120$ and our theorem holds for $n \geq 480$.
It now only remains to check the cases where $2 k \leq n<3 k, k>n^{2 / 3}$. We first prove the following.

Lemma 2. There is a prime between $3 n$ and $4 n$ for $n>1$.
Proof. Assume the contrary. Consider the binomial coefficient $\binom{4 n}{n}$. It is easy to see that no prime p, such that $2 n<p \leq 3 n$ divides $\binom{4 n}{n}$. Thus our assumption is that no prime between $2 n$ and $4 n$ occurs in $\binom{4 n}{n}$.
If α_{p} is the exponent of p in $\binom{4 n}{n}$ then

$$
\alpha_{p}=\sum_{i=1}^{\left[\log _{p} 4 n\right]}\left(\left[\frac{4 n}{p^{i}}\right]-\left[\frac{3 n}{p^{i}}\right]-\left[\frac{n}{p^{i}}\right]\right) .
$$

Since each term appearing in this sum is either 0 or 1 for any p, if $\alpha_{p} \geq 2$ then $p \leq(4 n)^{1 / 2}$. It now follows that under our assumption

$$
\begin{equation*}
\binom{4 n}{n}<\prod_{p^{\alpha} \leq 2 n} p \prod_{p \leq(4 n)^{1 / 2}} p \tag{7}
\end{equation*}
$$

since if $p^{\alpha_{p}} \leq 2 n<p^{\alpha_{p+1}}$ then $4 n<p^{\alpha_{p+2}}$. On the other hand we can prove by induction that $\binom{4 n}{n}>\left(\frac{4^{4}}{3^{3}}\right) \frac{n_{1}}{4 n}$. By (2) and (7) we then have

$$
\left(\frac{4^{4}}{3^{3}}\right)^{n} \frac{1}{4 n}<3^{2 n+(4 n) 1 / 2}
$$

which is false for $n \geq 2200$, and a straight-forward check of a table of primes for $1 \leq n<2200$ concludes the proof of Lemma 2.

If we now consider the case $2 k \leq n<3 k, k>n^{2 / 3}$, our conclusion holds for $k>4$ by Lemma 2 since there is a prime between $\left[\frac{3}{4} n\right]$ and n, and $\left[\frac{3}{4} n\right] \geq \frac{3}{2} k$.

Thus our theorem holds for $k \geq 8$ with a finite number of exceptions which may be checked by a table of primes.
(3) Consider the case $k=5$, we want to show that $n(n-1) \cdots(n-4)$ where $n-4>5$ is divisable by a prime ≥ 11. Assume the contrary and consider the binomial coefficient $\binom{n}{5}$. By Lemma 1 we have

$$
\frac{n(n-1) \cdots(n-4)}{5 \cdot 4 \cdot 3 \cdot 2 \cdot 1}=\binom{n}{5}<n^{\pi((3 / 2) 5)}=n^{4}
$$

which is certainly false for say $n \geq 129$. A check of tables of primes for $n \leq 129$ reveals one exception to our theorem i.e. 6.7.8.9.10 has no prime divisor >7. We may treat the case $k=4$ in the same manner and no exceptions occur.

The cases $k=6$ and $k=7$ now follows from the case $k=5$ since $\frac{3}{2} \cdot 6<\frac{3}{2} \cdot 7<11$ and the product of any five consecutive numbers greater than 6 contains a prime divisor ≥ 11.
For $k=3$, consider the integers $n, n+1, n+2, n>3$. If $n \equiv 0$ (3), then either n or $n+1$ is divisable by a prime greater than 3 since $(n, n+1)=1$ and $n>3$. The case $n+2 \equiv 0(3)$ is identical. If $n+1 \equiv 0(3)$ the only time whether neither n or $n+2$ is divisable by a prime greater than 3 is when n and $n+2$ are powers of 2 i.e. when $n=2$. Therefore our theorem holds for $k=3$.

When $k=2$, by the same approach we only have the exceptions 3.4 and 8.9 , since the only solutions to $2^{\alpha}-3^{\beta}= \pm 1$ are $\alpha=2, \beta=1$ and $\alpha=3, \beta=2$. The case $k=1$ is trivially true.

The exception $\binom{10}{5}$ proves the corollary to the theorem i.e. that $\frac{7}{5}$ is the "best possible" constant c such that $\binom{n}{k}$ is divisable by a prime $\geq c k$ for $n \geq 2 k$.

References

1. P. Erdös, A theorem of Sylvester and Schur, J. London Math. Soc. 9 (1934), 282-288.
2. M. Faulkner, On a theorem of Sylvester and Schur, J. London Math. Soc. 41 (1966), 107-110.
3. D. Hanson, On the product of the primes, Canad. Math. Bull., (1) 15 (1972), 33-37.
4. L. Moser, Insolvability of $\binom{2 n}{n}=\binom{2 a}{a}\binom{2 b}{b}$, Canad. Math. Bull. (2) 6 (1963), 167-169.
5. J. B. Rosser and L. Schoenfeld, Approximate formulas for some functions of prime numbers, Illinois J. Math. 6 (1962), 64-94.
6. I. Schur, Einige Satze uber Primzahlen mit wendung auf Irreduzibilitatsfragen, Sitzungberichte der preussichen Akedemie der Wissenschaften, Phys. Math. Klasse, 23 (1929), 1-24.
7. J. J. Sylvester, On arithmetical series, Messenger of Mathematics, XXI (1892), 1-19, 87-120, and Mathematical Papers, 4 (1912), 687-731.

University of Saskatchewan,
Regina, Saskatchewan

