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Background. Calcifc aortic valve disease (CAVD) is the most common native valve disease. Valvular interstitial cell (VIC) osteogenic
diferentiation and valvular endothelial cell (VEC) dysfunction are key steps inCAVDprogression. Circular RNA (circRNAs) is involved
in regulating osteogenic diferentiation with mesenchymal cells and is associated with multiple disease progression, but the function of
circRNAs in CAVD remains unknown. Here, we aimed to investigate the efect and potential signifcance of circRNA-miRNA-mRNA
networks in CAVD.Methods. Two mRNA datasets, one miRNA dataset, and one circRNA dataset of CAVD downloaded from GEO
were used to identify DE-circRNAs, DE-miRNAs, and DE-mRNAs. Based on the online website prediction function, the common
mRNAs (FmRNAs) for constructing circRNA-miRNA-mRNA networks were identifed. GO and KEGG enrichment analyses were
performed on FmRNAs. In addition, hub genes were identifed by PPI networks. Based on the expression of each data set, the circRNA-
miRNA-hub gene network was constructed by Cytoscape (version 3.6.1). Results. 32 DE-circRNAs, 206 DE-miRNAs, and 2170 DE-
mRNAs were identifed. Fifty-nine FmRNAs were obtained by intersection. Te KEGG pathway analysis of FmRNAs was enriched in
pathways in cancer, JAK-STAT signaling pathway, cell cycle, and MAPK signaling pathway. Meanwhile, transcription, nucleolus, and
protein homodimerization activity were signifcantly enriched inGO analysis. Eight hub genes were identifed based on the PPI network.
Tree possible regulatory networks in CAVD disease were obtained based on the biological functions of circRNAs including:
hsa_circ_0026817-hsa-miR-211-5p-CACNA1C, hsa_circ_0007215-hsa-miR-1252-5p-MECP2, and hsa_circ_0007215-hsa-miR-1343-
3p- RBL1. Conclusion. Te present bionformatics analysis suggests the functional efect for the circRNA-miRNA-mRNA network in
CAVD pathogenesis and provides new targets for therapeutics.

1. Introduction

Calcifc aortic valve disease (CAVD) is a condition caused by
calcifcation of the aortic valve or aortic annulus, resulting in
a hemodynamic manifestation of aortic valve stenosis or
regurgitation [1]. It is a chronic progressive disease that

increases in prevalence with age [2, 3], leading to an in-
creasing proportion of acquired valvular heart disease.
CAVD has become a signifcant factor of disease burden in
the elderly [4], which has the characteristics of high mor-
bidity and mortality [1]. Treatment of CAVD mainly relies
on surgery [5], which includes surgical valve replacement
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and percutaneous valve prosthetic implantation. However,
not all patients are eligible for surgical treatment. In terms of
drug therapy, the antihypertensive drugs and statins are
efective in treating atherosclerosis but do not reverse or
slow the process of CAVD [6]. In conclusion, there is an
urgent need to explore the key regulatory molecules in the
pathogenesis of CAVD to provide new targets for its
pharmacological treatment.

About 90% of the mammalian genome is transcribed
into noncoding RNAs (ncRNAs), whose functions have not
been fully studied [7]. With the development of deep RNA
sequencing (RNA-seq) technology and novel bioinformatics
methods, a wide variety of circular RNAs (circRNAs) types
have been discovered and identifed [8]. As a series of novel
noncoding RNAs, circRNAs are characterized by a covalent
closed loop structures lacking a 5′ cap or a 3′ Poly A tail [9].
Te high abundance, relative stability, and evolutionary
conservation of circRNAs distinguish it from traditional
linear RNAs. CircRNAs has signifcant advantages in de-
veloping applications as a novel clinical diagnostic marker
because it is able to better adsorb miRNAs from organisms
than linear mRNAs and lncRNAs. However, the function of
circRNAs is still unclear. Tere is growing evidence that
belongs to competing endogenous RNAs (ceRNAs), which
contain microRNA response elements (MREs). Te specifc
RNAs with MREs can impair miRNA activity by seques-
tration, resulting in upregulation of miRNA target gene
expression, which is known as ceRNA hypothesis [10]. Te
cirRNAs has been found to exert an important biological
response in cardiovascular disease [11–13], but studies on
CAVD are still limited. Wang et al. found that circRIC3, as
a miR-204-5p sponge, positively regulates the expression of
the calcifcation-promoting gene dipeptidyl peptidase-4
(DPP4), leading to CAVD [1]. Yu et al. reported that
circRNA TGFBR2 positively regulates TWIST1 through
sponge phagocytosis of miR-25-3p by inhibiting osteoblast
diferentiation and preventing valve calcifcation in human
VICs [14]. Tese results reconfrm that circRNAs are critical
in the development of CAVD. However, studies on
circRNA-associated ceRNA networks in CAVD remain
scarce. Terefore, studying of circRNA-miRNA-mRNA
networks complements the lack of ncRNA in the exploration
of CAVD pathogenesis. It is promising to fnd markers that
can be used as diagnostic predictors of the disease and
provide new insights for the treatment of CAVD.

To investigate how the circRNA-miRNA-mRNA net-
work regulates CAVD pathophysiological processes, we gain
insight into the signaling regulation within the tissues
leading to involvement in CAVD progression and discover
relevant therapeutic targets. We screened CAVD-related
circRNA, miRNA, and mRNA datasets in the Gene Ex-
pression Omnibus (GEO) database (Figure 1). By per-
forming diferential expression analysis, DE-circRNAs and
DE-miRNAs targets were predicted. Following that, we
constructed circRNA-miRNA-mRNA networks in CAVD.
Te common mRNAs (FmRNAs) were analyzed by gene
ontology (GO) function enrichment analysis, Kyoto Ency-
clopedia of Genes and Genomes (KEGG) pathway analysis,
and protein-protein interaction (PPI) network construction.

We identifed 8 hub genes from PPI for circRNA-miR-
NA-hub gene network visualization, and this regulatory
network will be a potential therapeutic target for treating
CAVD diseases. Te schema of the bioinformatics analysis is
shown in Figure 1.

2. Methods

2.1. RNA Array. Te CAVD datasets from the National
Center for Biotechnology Information (NCBI) GEO data-
base (https://www.ncbi.nlm.nih.gov/geo/) were evaluated
and screened.Te GSE155119 dataset of circRNA expression
was found in GPL26192 platform. Te GSE87885 dataset of
miRNA expression was found at GPL22555 platform. On the
GPL10558 platform and GPL570 platform, we found the
GSE83453 and GSE51472 datasets for mRNA expression.
Te calcifed aortic valve contains 20 samples, including 3
circRNA samples, 2 miRNA samples, and 15 mRNA sam-
ples. Te noncalcifed aortic valve contains 19 samples, with
3 from the circRNA dataset, 3 from the miRNA dataset, and
13 from the mRNA dataset.

2.2. Screening forDiferential Expression. Microarray datasets
that provide RNA expression profle data in CAVD were
imported into the R software and standardized with “impute”
package [15–18]. Te “LIMMA” package running in the R
software analyzed the data for diferential expression. |log Fold
Change|> 2 and p-value <0.001 were considered to indicate
signifcant diferentially expressed circRNAs (DE-circRNAs).
p-value <0.05 was considered to screen diferentially expressed
miRNAs (DE-miRNAs) and mRNAs (DE-mRNAs).

2.3. Prediction of DE-CircRNAs and DE-miRNAs Targets.
Te DE-circRNAs target miRNAs were predicted by using
the online software, the Encyclopedia of RNA Interactomes
(ENCORI). DE-miRNAs target genes were predicted by
online websites, miRTarBase, TargetScan, and miRDB (Ta-
ble 1), respectively. Te mRNAs recognized by miRTarBase,
TargetScan, and miRDB websites were considered candidate
targets. Te information of websites is shown in Table 1.

2.4. CircRNA-miRNA-mRNA Network. Te common DE-
miRNAs (ICPDEmiRNAs) were obtained from the in-
tersection of DE-circRNA targets and the DE-miRNAs.
Similarly, common DE-mRNAs (FmRNAs) were obtained
by intersecting ICPDEmiRNAs targets with DE-mRNAs.
Based on DE-circRNAs, ICPDEmiRNAs, and FmRNAs, we
constructed circRNA-miRNA-mRNA network, which was
visualized using Cytoscape software (version 3.6.1).

2.5. GO Function Analysis. Te database for annotation,
visualization, and integrated discovery (DAVID, https://
david.ncifcrf.gov/) is an online web-based bioinformatics
resource, which can provide tools for analyzing the function
of large lists of genes/proteins [19]. Te FmRNAs were input
into DAVID online software to annotate the target genes
with GO function. Te results are visualized by R software.
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2.6. KEGG Pathway Analysis. KEGG Orthology-Based
Annotation System (KOBAS) is one of the most widely
used web servers for gene/protein functional annotation
and gene set enrichment. Te KOBAS website was used to
map FmRNAs to the KEGG pathway. KEGG pathway
analysis visualization was performed using R software.

2.7. PPI Network. STRING (https://string-db.org/) database
is the software for predicting protein-protein interactions.
Te PPI network of FmRNAs was established using the
STRING database (version 11.0). A combined score of >0.4
was considered the cutof to indicate a signifcant PPI pair.

2.8. CircRNA-miRNA-Hub Gene Network. Eight FmRNAs
with a high degree of PPI were selected to fnd the relevant
noncoding RNAs regulating them from the total DE-
circRNAs and DE-miRNAs. Tese relevant data were
imported into Cytoscape software (version 3.6.1) for analysis
and visual graphing.

3. Results

3.1. Diferential Expression of RNA Array. Te “LIMMA”
package is derived from R software, which allows analysis of
diferential expression in datasets. Tirty-two DE-circRNAs,
206 DE-miRNAs, and 2170 DE-mRNAs in the calcifed

circRNA microarrary

32 DE-circRNAs

20 ICPDE miRNAs

miRNA prediction

DE-mRNAs (GO)

DE-miRNAs (GO)

Target gene prediction

59 FmRNAs

ceRNA network PPI network KEGGGO

hub genes

Regulatoty
network

Figure 1: Te schema of the bioinformatics analysis.

Table 1: Websites for circRNA and miRNA targets prediction.

Name Website
miRTarBase https://mirtarbase.mbc.nctu.edu.tw/php/index.php
TargetScan https://www.targetscan.org/vert/
miRDB https://mirdb.org/
ENCORI https://starbase.sysu.edu.cn/index.php
Bioinformatics &Evolutionary Genomics https://bioinformatics.psb.ugent.be/webtools/Venn/
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aortic valve samples were compared with the uncalcifed
aortic valve samples. Te DE-circRNAs are shown in
Figures 2(a) and 2(b). DE-miRNAs (Figure 2(c)) and DE-
mRNAs (Figure 2(d)) were visualized. For better display of
the results, we selected the top 20 signifcantly upregulated
and downregulated ones in order to show the statistically
signifcant.

3.2. Construction of CircRNA-miRNA-mRNA Network.
Tere were 289 DE-circRNAs targets miRNAs predicted by
ENCORI. Twenty common miRNAs (ICPDEmiRNAs) were
obtained by intersecting DE-miRNAs with DE-circRNAs
targets (Figure 3(a)). Tese 20 ICPDEmiRNAs were sub-
jected to target gene prediction in miRBase, TargetScan, and
miRDB websites, and 474 target mRNAs were obtained. Te
59 common mRNAs (FmRNAs) were the intersection of
ICPDmiRNAs targets with DE-mRNAs (Figure 3(b)).
Subsequently, the circRNA-miRNA-mRNA network was

constructed, which contains 12 DE-circRNAs, 12 DE-
miRNAs, and 59 DE-mRNAs (Figure 3(c)).

3.3. GO Function Analysis. GO functional annotation was
used to analyze FmRNAs. Tree GO categories were
analyzed including biological processes (BP), molecular
functions (MF), and cellular components (CC) (Figure 4).
Te 59 FmRNAs in the BP terms annotation function in
GO mainly include transcription, DNA-templated, neg-
ative regulation of transcription from RNA polymerase II
promoter, positive regulation of transcription from RNA
polymerase II promoter, negative regulation of tran-
scription, DNA-templated, positive regulation of cell
proliferation (Figure 4(a)), nucleolus, endoplasmic re-
ticulum membrane, nucleus, heterochromatin, neuronal
cell body, and plasma membrane in the CC terms
(Figure 4(b)). Protein homodimerization activity, tran-
scription factor activity, sequence-specifc DNA binding,
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Figure 2: Diferentially expressed RNAs. (a) Volcano plot of DE-circRNAs. Green represents down-regulation and red represents up-
regulation. (b) Heatmap of 32 DE-circRNAs, p-value <0.001. (c) Heatmap of the DE-miRNAs with the most obvious up-regulation and
down-regulation, p-value <0.05. (d) It is a heat map of DE-mRNAs, which is the most signifcant up-regulation and down-regulation,
p-value <0.05. Darker colors indicate up-regulation, while lighter colors indicate down-regulation.
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transcription factor binding, protein domain specifc
binding, and chromatin binding pertained to the MF
terms (Figure 4(c)).

3.4. KEGGPathway Enrichment Analysis. Understanding the
enrichment pathways of these FmRNAs can gain further in-
sight into the signifcance in CAVD. Te KEGG pathway was

186 20 269

DE-miRNA

DE-circRNAs target

(a)

2111 59 389

DE-mRNA

ICPDEmiRNAs target

(b)

(c)

Figure 3: (a) Venn diagram of 206 DE-miRNAs and 289 DE-circRNAs targeting miRNAs. (b) Venn diagram of 474 target genes and
2170 DE-mRNAs predicted by ICPDEmiRNAs. (c) Construction of circRNA-miRNA-mRNA network. Te diamond, triangle and oval
shapes respectively circRNAs, miRNAs and mRNAs.
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used for enrichment analysis of these FmRNAs (Figure 5).
FmRNAs are primarily involved in cancer pathway, JAK-STAT
signaling pathway, and cell cycle andMAPK signaling pathway
in KEGG pathway analysis.

3.5. PPI Network. Target gene data predicted by FmRNAs
were uploaded to the STRING database for the construction
of the PPI network (Figure 6). Te MYC, ITPR1, EGFR,
CACNA1C, RASGRP1, MECP2, RBL1, and WEE1 were the
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Figure 4: GO analysis for 59 FmRNAs. (a) Enrichment analysis on GO BP item. (b) Enrichment analysis on GO CC item. (c) Enrichment
analysis on GO MF item.
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hub genes with high degree values.Te hub genes expression
was shown in Figure 7.

3.6. Construction of CircRNA-miRNA-Hub Gene Network.
According to the PPI network, the 8 hub genes were obtained. In
order to investigate the regulatory network, Cytoscape software
(version 3.6.1) was used to construct and visualize these hub
genes for the circRNA-miRNA-hub gene network (Figure 8).
Based on the “miRNA sponge” function of circRNA, three
groups of circRNA-miRNA-hub gene regulatory networks were
identifed including hsa_circ_0026817-hsa-miR-211-5p-CAC-
NA1C, hsa_circ_0007215-hsa-miR-1252-5p-MECP2, and
hsa_circ_0007215-hsa-miR-1343-3p-RBL1.

4. Discussion

CAVD, the most common valvular disorder, is the leading
cause of aortic stenosis. Te most efective treatment is
surgery or interventional valve replacement [20], which has

complications and does not guarantee long-term success
[21]. Tere is an absence of approved pharmacological
treatments to stop the progression or treat CAVD [22]. Te
ceRNA hypothesis has been proposed as a model for reg-
ulating gene expression during disease progression in recent
years [10]. Tere is growing experimental evidence that
multiple noncoding RNAs, including circRNAs, small non-
coding RNAs, pseudogenes, and lncRNAs may have ceRNA
activity [23]. More importantly, circRNAs, which are highly
resistant to nucleases, maintain high abundance in the cy-
toplasm and better regulate miRNAs. However, it was only
circRIC3 and circRNA TGFBR2 that were studied in CAVD
disease [1, 14]. Construction of circRNA-miRNA-mRNA
regulatory networks is essential to understand the patho-
physiological progression of CAVD as the basis for de-
veloping novel therapeutics.

We have constructed circRNA-miRNA-mRNA regula-
tory networks based on the sponge activity of circRNA.Most
circRNAs in the coexpression network remain unknown.
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Figure 5: KEGG pathway analysis of FmRNAs. Te larger the dot, the greater the degree and the richer the number of genes.
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Bioinformatic analysis of the DE-circRNAs target genes in
network showed that transcription was the most important
BP identifed by GO analysis. Vadana et al. found that
expression of SMAD and Runt transcription factors in-
creased calcium deposition in CAVD [24]. Te KEGG
pathway of the target gene is signifcantly enriched in the cell
cycle, MAPK and TGF-β pathway. It has been previously
shown that MAP2K1 mutations activate p-ERK-dependent
cell cycle progression and autophagy, exhibiting arterial
valve stenosis [25]. Inhibiting the p38-MAPK signaling
pathway can reduce ALP activity and calcifcation de-
position to ameliorate aortic valve calcifcation [26].

We successfully established 3 circRNA-miRNA-hub gene
networks relevant to CAVD, which include hsa_circ_0026817-
hsa-miR-211-5p-CACNA1C, hsa_circ_0007215-hsa-miR-1343-
3p-RBL1, and hsa_circ_0007215-hsa-miR-1252-5p-MECP2.
Normal aortic valves are composed of valve endothelial cells
(VECs) and valve interstitial cells (VICs), which play an im-
portant role inmaintaining valvemorphology and function [27].
Dysfunction of VICs and VECs is the key to the progression of
CAVD. Upregulated hsa_circ_0026817 in CAVD may target
hsa-miR-211-5p to regulate CACNA1C. It has been shown that
miR-211-5p overexpression inhibits cell cycle by decreasing

cyclin D1 levels [28]. Inhibition of cyclin D1 essentially abolishes
fbrotic responses which are associated with VICs proliferation
[29, 30]. Downregulation of miR-211-5p in CAVD leads to
aortic valve fbrosis via the regulation of cyclin D1 in VICs.
CACNA1C is the gene encoding the L-type voltage-gated Ca2+
channel [31]. Te activation of cytosolic L-type Ca2+ channel
leads to the entry of small amounts of Ca2+ into the cytoplasm
and triggers Ca2+ release from the sarcoplasmic reticulum by
activating ryanodine receptor 2 (RyR2). RyR2 was pre-
dominantly expressed in VICs, and inhibition of RyR2 prevents
valvular calcifcation [32].Matsui et al. identifed high expression
of CNCNA1C in calcifed valves and verifed the involvement of
CACNA1C in CAVD progression by afecting valve
calcifcation in VIC cells [33].

Down-regulated hsa_circ_0007215 in CAVD may reg-
ulate both hsa-miR-1343-3p/RBL1 and hsa-miR-1252-5p/
MECP2. Upregulated miR-1343-3p in CAVDmight directly
infuence valve endothelial cells (VECs) growth through the
TGF-β signaling pathway. Te surface of the heart valves is
covered with VECs [34], which forms a barrier between the
blood and the internal valve tissue [35]. In the aortic valve,
TGF-β1 is predominantly localized to VEC and found to
decrease the phosphorylation of RBL1 at the G1/S boundary,
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thereby inhibiting the development of cells into S phase
[36, 37]. hsa-miR-1343-3p/RBL1 pathway was involved in
CAVD by regulating the VECs cycle. Overexpression of
miR-1252-5p might take part in CAVD by promoting
MAPK signaling pathway [38], which has been shown to be
involved in regulating Ca2+ entry into cells and mediating
osteogenic diferentiation of VIC in CAVD [39, 40]. MECP2,
a target gene of miR-1252-5p, is an important regulator for
the maintenance of normal cardiac development and
myocardial structure [41]. Te shorter e2 splice isoform of
MECP2 can activate the MAPK pathway [42], which is

involved in determining the structure of healthy heart [43].
Our fndings suggest that 3 circRNA-miRNA-mRNA net-
works could be contributing factors for CAVD.

In conclusion, the pathogenic efects of the ceRNA
network in CAVD may be associated with the regulation of
VICs and VECs.Te identifed 3 circRNA-miRNA-hub gene
axes may constitute the underlying pathophysiology of
CAVD (Figure 9). Tis ofers new insights into pharma-
cological interventions for CAVD. In considering the
multiple factors that are responsible for CAVD disease,
including collagen accumulation and resident cytopathic
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remodeling [44], these circRNA-miRNA-mRNA axes could
also be involved in CAVD formation. We addressed this
issue through further analysis; hsa_circ_0026817-hsa-miR-
211-5p-CACNA1C, hsa_circ_0007215-hsa-miR-1343-3p-
RBL1, and hsa_circ_0007215-hsa-miR-1252-5p-MECP2
may be a new efective and potential target for the treat-
ment of CAVD.

5. Conclusion

Te establishment of CAVD is a result of the contribution of
multiple regulatory factors. We constructed the circRNA-
miRNA-mRNA regulatory network by microarray data
mining and comprehensive bioinformatics analysis. It re-
veals that hsa_circ_0026817-hsa-miR-211-5p-CACNA1C,
hsa_circ_0007215-hsa-miR-1252-5p-MECP2, and hsa_-
circ_0007215-hsa-miR-1343-3p-RBL1 axes may play a cru-
cial part in CAVD and may provide new insights into the
pathogenesis and therapeutic targeting of CAVD.
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