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Abstract We consider Sturm–Liouville boundary-value problems on the interval [0, 1] of the form
−y′′ + qy = λy with boundary conditions y′(0) sin α = y(0) cos α and y′(1) = (aλ + b)y(1), where
a < 0. We show that via multiple Crum–Darboux transformations, this boundary-value problem can be
transformed ‘almost’ isospectrally to a boundary-value problem of the same form, but with the boundary
condition at x = 1 replaced by y′(1) sin β = y(1) cos β, for some β.
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1. Introduction

Our aim is to transform, ‘almost’ isospectrally, a Sturm–Liouville equation

−y′′(x) + q(x)y(x) = λy(x), 0 � x � 1, (1.1)

with boundary conditions

Y (0) = cot α, 0 � α < π, (1.2)

Y (1) = aλ + b, (1.3)

where a < 0, into a ‘standard’ Sturm–Liouville problem. By ‘almost’ we mean that
at most two eigenvalues will change, and by ‘standard’ we mean a problem where the
differential equation is regular and the boundary conditions are independent of λ. We
shall consistently use upper-case Roman letters to denote logarithmic derivatives, so Y

means y′/y in (1.2), (1.3). We assume that q is real and integrable on [0, 1], and if α = 0,
then (1.2) is interpreted as y(0) = 0. The decision to keep (1.2) independent of λ is for
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simplicity of presentation; cf. [5] for analogous questions with both boundary conditions
λ dependent.

Sturm–Liouville problems with λ-dependent boundary conditions of the form

Y (1) = f(λ)

have been studied a good deal from the viewpoints of both theory and applications. Most
applications are to affine conditions like (1.3); [10] and [18] have extensive reference lists,
but see, for example, [3] for square-root dependence and also [13] for the bilinear case

f(λ) =
aλ + b

cλ + d
,

∣∣∣∣∣a b

c d

∣∣∣∣∣ > 0. (1.4)

Theoretical investigations involving Herglotz–Nevanlinna functions f can be found
in [17], rational f in, for example, [16], and a combination of these properties was
considered in [7]. More general λ dependence, where f is a ratio of holomorphic func-
tions, was studied in, for example, [12]. We hope to use the material here as a foundation
for treating some of the above cases, and also in the study of inverse spectral problems
(cf. [8]).

The transformation we seek was carried out for the case a > 0 in [6], and we now
briefly describe some of the ideas involved for the simplest (non-Dirichlet) case, α > 0.
We start with a ‘base function’ z, i.e. a non-vanishing solution of (1.1) for some fixed λ.
Then Z(= z′/z) can be used to transform y to ŷ = y′ − Zy and q to q̂ = q − 2Z ′ in (1.1).
Equivalent expressions were given by Darboux [14, p. 132] and we shall call this a Dar-
boux transformation. Darboux did not consider boundary conditions, but if we require
z to obey (1.2), (1.3), then ŷ satisfies boundary conditions independent of λ.

In [6], z was chosen as an eigenfunction of (1.1)–(1.3), and to be sure that an eigenfunc-
tion of one sign exists, one needs some oscillation theory, which is conveniently carried
out via the Prüfer angle θ. Indeed the eigenvalues λ0, λ1, . . . are given by the abscissae
at the intersections of the line (1.3) with the graph of

Y (1) = cot θ(1, λ).

The latter has countably many branches B0,B1, . . . , where points on Bk correspond to
solutions y of (1.1), (1.2) with k zeros on (0, 1). Since (1.3) (for a > 0) intersects B0 (and
indeed each Bk) precisely once, an eigenfunction z exists as required.

In our case a < 0, however, (1.3) need not intersect B0, and even if it does so, there will
be two intersections (counted algebraically). Roughly, one net ‘extra’ eigenvalue has been
introduced, compared with the case a > 0. When (1.3) does not intersect B0, the ‘extra’
eigenvalue is paired with the missing one from B0 to give either two extra eigenvalues
(counted algebraically) on some further branch Bk, or else one non-real conjugate pair.
The various possibilities (and their connections with algebraic multiplicities of eigenval-
ues) are analysed in § 2.

Continuing with the case a < 0 < α, we find that a Darboux transformation still
reduces (1.1)–(1.3) to a ‘standard’ problem if (1.3) intersects B0. This case, where the
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‘extra’ eigenvalue is ‘removed’ from B0, will be detailed in § 4. In the case where all
eigenvalues are real, it turns out that an extension of Darboux’s transformation involving
two base functions is needed to remove the extra eigenvalue from a further branch Bk

for k > 0. This contrasts with the case of (1.4), where a single base function suffices for
such removal [6].

A Darboux-type transformation with multiple base functions (whose ‘modified’ Wron-
skian, see Definition 3.1, replaces z used previously) was described by Crum [11], and we
shall refer to our version noted above as a (double) Crum transformation. (The names
of Darboux and/or Crum are associated with such transformations in much of the liter-
ature.) Actually, Crum used the first n eigenfunctions for his base functions, correspond-
ing to n iterated Darboux (whom he did not reference) transformations. Our version is
closer to that of Adler, who allowed two eigenfunctions with oscillation counts differing
by one [1, Lemma 1], but both Crum and Adler produced singular transformed problems.
To achieve regularity, we instead use two base functions which need not be eigenfunc-
tions, but have the same oscillation count. The background for all the transformations
we need (which for non-real eigenvalues use up to four base functions) is presented in § 3.

The Dirichlet case α = 0 is more complicated than α > 0, and for example a dou-
ble Crum transformation may be needed even when (1.3) intersects B0, while two such
transformations in tandem are required when (1.1)–(1.3) has a triple eigenvalue. All cases
requiring double Crum transformations are covered in § 5. Finally, non-real eigenvalues
of (1.1)–(1.3) are treated in § 6. When α > 0, a triple Crum transformation produces a
standard problem, but when α = 0, one needs a quadruple Crum transformation followed
by a single one (i.e. of Darboux type).

2. Preliminaries

We shall rely on Prüfer theory associated with (1.1), (1.2). If y(x, λ) is a solution of (1.1)
and (1.2), then we put

y = ρ sin θ, y′ = ρ cos θ,

where θ is the Prüfer angle associated with (1.1) and (1.2). Differentiating, we see that
θ obeys the first-order initial-value problem

θ′ = cos2 θ + (λ − q) sin2 θ, θ(0, λ) = α.

Atkinson [2] provides a comprehensive account of this theory but it suffices here for us to
note that θ(1, λ) is increasing in λ, θ(x, λ) → 0 as λ → −∞, and θ(x, λ) → ∞ as λ → ∞
for each x ∈ (0, 1]. The graph of cot θ(1, λ) has branches B0,B1, . . . corresponding to
λ intervals (−∞, λD

0 ], (λD
0 , λD

1 ], . . . , where the λD
n , n � 0, are the eigenvalues for (1.1),

(1.2) with the Dirichlet condition y(1) = 0. Furthermore, cot θ(1, λ) is decreasing on each
branch and cot θ(1, λ) → ±∞ as λ → λD

n ±.
Real eigenvalues for (1.1)–(1.3) occur at λ values for which

cot θ(1, λ) = aλ + b.
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A real eigenvalue λ̂ is said to have algebraic multiplicity k � 1 if, for ly = −y′′ + qy,
there is a chain of functions y[0], . . . , y[k−1] with (l − λ̂)y[0] = 0, (l − λ̂)(y[j]) = y[j−1] and
y[j] satisfying the boundary conditions (1.2) (as this boundary condition is independent
of λ) and

(y[j])′(1) = y[j](1)(aλ̂ + b) + ay[j−1]

for each 1 � j � k − 1, and the chain cannot be extended to length k + 1. Here y[0] is
an eigenfunction for λ̂ and y[1], . . . , y[k−1] are the associated functions (see [15, pp. 16–
20] for more details). The algebraic multiplicity of an eigenvalue λ̂ is k if the functions
cot θ(1, λ) and aλ + b and their λ derivatives of order 1, 2, . . . , k − 1 (but not k) agree at
λ̂ (see [9, Lemma 2.1, Theorem 3.1] and [15, pp. 16–20]).

The following theorem on existence, multiplicity and asymptotics for eigenvalues
of (1.1)–(1.3) will be a key tool in this work. From now on for simplicity we shall refer
to an eigenvalue as ‘belonging’ to Bk if it is the abscissa of a point on Bk.

Theorem 2.1. The boundary-value problem (1.1)–(1.3) has only point spectrum,
which is countably infinite and accumulates at +∞ and can thus be listed as λn, n � 0,
with eigenvalues repeated according to algebraic multiplicity and ordered so as to have
increasing real parts.

(i) For large n,

λn =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

(n − 1
2 )2π2 + 2 cot α +

2
a

+
∫ 1

0
q + o

(
1
n

)
, α �= 0,

n2π2 +
2
a

+
∫ 1

0
q + o

(
1
n

)
, α = 0.

(ii) One of the following occurs:

(a) All eigenvalues are real, there are algebraically two eigenvalues on the initial
branch, B0, of the Prüfer graph, and all other branches contain precisely one
simple eigenvalue.

(b) All eigenvalues are real, B0 contains no eigenvalues, but, for some k > 0,
Bk contains algebraically three eigenvalues and all other branches contain
precisely one simple eigenvalue.

(c) There are two non-real eigenvalues appearing as a conjugate pair, B0 contains
no eigenvalues, and all other branches contain precisely one simple eigenvalue.

Proof. The first sentence follows from [16], as does the fact that all but finitely many
eigenvalues are real and simple. The asymptotic development in (i) is derived in [9].

(ii) From [4, Theorem 2.4], either (a) occurs or there are no eigenvalues on B0.
In the latter case, [4, Theorem 2.4] shows that if there are only real eigenvalues, then

each branch (other than B0) contains at least one eigenvalue and at most one branch may
contain algebraically more than one (and up to three). The asymptotics for λD

n are well

https://doi.org/10.1017/S0013091504000197 Published online by Cambridge University Press

https://doi.org/10.1017/S0013091504000197


Sturm–Liouville problems with decreasing affine boundary conditions 537
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Figure 1. cot θ(λ, 1).

known (cf. [5]) and are as in (i) with n replaced by n + 1. Moreover, since aλ + b → −∞
as λ → ∞, we see that, for large n, λn+1 < λD

n . Thus in this case there will be precisely
three eigenvalues on some Bk for some k > 0, i.e. (b) holds.

Finally, in the case when complex eigenvalues are present, [16] shows that they appear
in conjugate pairs, so there are at least two complex eigenvalues. Moreover, [4, Theo-
rem 2.4] ensures that there is exactly one real eigenvalue from each branch Bk for k > 0.
Using eigenvalue asymptotics as above, we see that there is exactly one conjugate pair
of non-real eigenvalues, so (c) holds. �

The above theorem is illustrated geometrically in figure 1.
It is convenient to establish a shorthand for the cases of real eigenvalues (to be treated

in §§ 4 and 5) given by the above theorem. (Non-real eigenvalues, i.e. case (c) of the
theorem, will be covered in § 6.) The letter D denotes a Dirichlet condition and N signifies
a non-Dirichlet condition at x = 0. It is apparent that for cases (a) and (b) there is
precisely one branch, say Bk, containing algebraically more than one eigenvalue. Then
we denote our problem as Dk or Nk depending on the boundary condition at x = 0.
These cases will be subdivided according to eigenvalue multiplicity. For example, D0(2)
implies a double eigenvalue on B0, Nk(2, 1) implies a double eigenvalue followed by a
simple one on Bk (necessarily k > 0), and so on.

3. Crum-type transformations

In this section we introduce two versions of Crum’s transformation and establish some
of their essential properties. We begin with Crum’s modification [11] of the Wronskian.

Definition 3.1. Suppose the functions f1, . . . , fk satisfy

−f ′′
j + qfj = λjfj , j = 1, . . . , k. (3.1)
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Then the ‘modified’ Wronskian is defined as the determinant

w(f1, . . . , fk)(x) = det[f (i−1)
j (x)]i,j=1,...,k

in which f
(i−1)
j is replaced by (−λj)nfj if i − 1 = 2n, and by (−λj)nf ′

j if i − 1 = 2n + 1.

To be precise, Crum used usual Wronskians for sufficiently differentiable q, noting that
they could be replaced by the above modified versions for continuous q. We shall use them
for q ∈ L1, noting that not only w(f1, . . . , fk)(x), but also its first two x derivatives, make
sense via (1.1).

We define the Crum transformation of a solution y of (1.1), with respect to the above
base functions f1, . . . , fk, by

ŷ(x) =
w(f1, . . . , fk, y)(x)
w(f1, . . . , fk)(x)

, (3.2)

where w(f1, . . . , fk)(x) �= 0 on [0, 1].
In the case k = 1 we shall call this the Darboux transformation (cf. [14, p. 132]). Note,

in the case of Sturm–Liouville boundary-value problems with eigenparameter-dependent
boundary conditions of positive type (e.g. (1.3) with a > 0, (1.4) and in [7,8]), that it
was enough to apply Darboux transformations with one base function, but here we shall
need cases with up to four base functions.

Theorem 3.2. Let f1, f2, . . . , fn, fn+1 be solutions of (1.1) with λ taking the values
µ1, µ2, . . . , µn, µn+1, respectively. If w(f1, . . . , fn)(x) �= 0 for all x ∈ [0, 1], then we have
the following.

(i) The function

φ =
w(f1, . . . , fn, fn+1)

w(f1, . . . , fn)
is a solution of the equation

−φ′′ + (q − 2W (f1, . . . , fn)′)φ = µn+1φ.

(ii) If n � 2, then the function

ψ =
w(f1, . . . , fn−1)
w(f1, . . . , fn)

satisfies the equation

−ψ′′ + (q − 2W (f1, . . . , fn)′)ψ = µnψ.

Proof. Part (i) is proved in [11], so we proceed to the proof of (ii). For convenience
we write w = w(f1, . . . , fn), v = w(f1, . . . , fn−1), φ = w/v and ψ = v/w. An easy
calculation shows

φ′′ =
(

vw′′ − 2v′w′ − v′′w

vw
+ 2V 2

)
φ, (3.3)

ψ′′ =
(

wv′′ − 2w′v′ − w′′v

wv
+ 2W 2

)
ψ. (3.4)
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From (i), we have

φ′′ = (q − 2V ′ − µn)φ,

so (3.3) gives

q − 2V ′ − µn =
vw′′ − 2v′w′ − v′′w

vw
+ 2V 2,

whence

q − µn =
vw′′ − 2v′w′ + v′′w

vw
.

Now (3.4) gives

ψ′′ =
(

q − µn − 2w′′

w
+ 2W 2

)
ψ

and the result follows. �

The next theorem is used to ensure the non-vanishing of the Wronskian in later situ-
ations where two base functions are used; cf. [1] for a related result.

Theorem 3.3. Let u, z be solutions of (1.1), (1.2) with λ replaced by µ and ξ, and α

replaced by β and γ, respectively. Suppose that u and z have the same number of zeros
in (0, 1). If π > β > γ � 0 and µ > ξ, then w(u, z) is non-zero everywhere on [0, 1].

Proof. We can assume without loss of generality that u and z are normalized so that
u(0) = 1, u′(0) = cot β and z(0) = 1, z′(0) = cot γ if γ �= 0, z(0) = 0, z′(0) = 1 if γ = 0.
First, we note that since

w(u, z)(0) =

{
cot γ − cot β, γ �= 0,

1, γ = 0,

we have w(u, z)(0) > 0. Let the zeros of u in (0, 1) be 0 < a1 < · · · < am < 1 and those of
z be 0 < b1 < · · · < bm < 1. Sturm theory shows that 0 < a1 < b1 < · · · < am < bm < 1.

Now
w′(u, z) = (µ − ξ)uz

so the critical points of w(u, z) occur at x = aj , bj , 1 � j � m. From the interlacing of
the aj and the bj we also see that

(−1)ju′(aj) > 0, (−1)ju(bj) > 0,

(−1)jz′(bj) > 0, (−1)jz(aj) < 0,

and hence w(u, z) > 0 at all of its critical points. Furthermore,

w′′(u, z)(bm) = (µ − ξ)u(bm)z′(bm) > 0,

so the final critical point is a minimum. Thus w(u, z) > 0 on [0, 1]. �
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The following theorem gives the analogue of Theorem 3.2 that will be used when
transforming non-simple eigenvalues.

Theorem 3.4. Let l(y) = −y′′ + qy and y[j], j = 0, . . . , k, be solutions to the system

l(y[0]) = λ̂y[0], (3.5)

l(y[j]) = λ̂y[j] + y[j−1], j = 1, . . . , k. (3.6)

Suppose that z1, . . . zm are solutions of (1.1) with λ replaced by µ1, . . . , µm, m ∈ N∪{0}.
If w(z1, . . . , zm, y[0])(x) �= 0, then the functions

u[j−1] =
w(z1, . . . , zm, y[0], y[j])

w(z1, . . . , zm, y[0])
, j = 1, . . . , k,

are solutions to the system (3.5), (3.6) with k and q replaced by k − 1 and q −
2W (z1, . . . , zm, y[0])′.

Proof. For each λ ∈ C, let gλ be the solution of (l − λ)gλ = 0 with initial conditions

gλ(0) =
k∑

j=0

(λ − λ̂)jy[j](0),

g′
λ(0) =

k∑
j=0

(λ − λ̂)j(y[j])′(0).

Straightforward computation yields

y[j] =
1
j!

∂jgλ

∂λj

∣∣∣∣
λ=λ̂

.

Setting

fλ =
w(z1, . . . , zm, y[0], gλ)

w(z1, . . . , zm, y[0])
,

we observe that fλ̂ = 0 and

u[j−1] =
1
j!

∂jfλ

∂λj

∣∣∣∣
λ=λ̂

for j > 0. From Theorem 3.2, we have

−f ′′
λ + (q − 2W (z1, . . . , zm, y[0])′)fλ = λfλ,

which when differentiated j times with respect to λ gives

−
(

∂jfλ

∂λj

)′′
+ (q − 2W (z1, . . . , zm, y[0])′)

∂jfλ

∂λj
= λ

∂jfλ

∂λj
+ j

∂j−1fλ

∂λj−1 .

We now divide by j! and set λ = λ̂ in the above equation to give the result. �
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4. Darboux transformations

This section considers the simplest cases, where a (Darboux) transformation constructed
from a single base function results in a Sturm–Liouville problem with constant-type
boundary conditions. In these cases, the ‘extra’ eigenvalue noted in § 1 appears on the
zeroth branch B0 of the Prüfer graph. The transformation ‘removes’ this eigenvalue,
leaving one eigenvalue per branch.

We begin with the non-Dirichlet cases (labelled N0 at the end of § 2), when the base
functions can be taken as eigenfunctions of (1.1)–(1.3).

It is convenient to use the notation Λ = {λj : j � 0} and

Λn = {λj : n �= j � 0}, (4.1)

with the eigenvalues λj of (1.1)–(1.3) being labelled as in Theorem 2.1.

Theorem 4.1. Let α > 0 in (1.2) and assume that λ0 � λ1, both lying on the initial
branch B0 of the Prüfer graph. Then the Darboux transformation with base function y0

produces a Sturm–Liouville problem with potential

q̂ = q − 2Y ′
0 ,

boundary conditions

y(0) = 0,

Y (1) = −1
a

− (aλ0 + b),

and spectrum Λ0.

Remark 4.2. This means, in the case of a simple eigenvalue λj with eigenfunction yj ,
that we take f1 = y0, y = yj in (3.2). In the case λ0 = λ1, we take y0 as an eigenfunction
for this eigenvalue and replace y1 by the first associated function y

[1]
0 .

Proof. Theorems 3.2 and 3.4 show that the functions

uj =
w(y0, yj)

y0

(and in the case of an eigenvalue of multiplicity 2, u1 = w(y0, y
[1]
0 )/y0) are solutions

of (1.1) with λ = λj , j � 1, and q replaced by q̂.
As y0 and yj (and y

[1]
0 when considered) obey the same initial condition, which is

λ independent, it follows that uj(0) = 0.
In the case

u =
w(y0, y)

y0
,

where y is a solution of (1.1) obeying (1.3), we have

U = W (y0, y) − Y0 =
(λ0 − λ)y0y

w(y0, y)
− Y0,
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for λ ∈ C. When evaluated at x = 1 this gives

U(1) = −1
a

− (aλ0 + b).

Setting y = yj and λ = λj in the above equation we obtain the required boundary
conditions at x = 1 for the case when λj is a simple eigenvalue.

For λ0 = λ1 we take the λ derivatives of our expression for u and set λ = λ0 giving

u1 =
w(y0, ẏ|λ=λ0)

y0
=

w(y0, y
[1]
0 )

y0
.

Consequently, via the equation −(y[1]
0 )′′ + qy

[1]
0 = λ0y

[1]
0 + y0, we have

U1 = W (y0, y
[1]
0 ) − Y0 = − y2

0

w(y0, y
[1]
0 )

− Y0,

but y
[1]
0 obeys the boundary condition

(y[1]
0 )′(1) = (aλ0 + b)y[1]

0 (1) + ay0(1)

and thus
U1(1) = −1

a
− (aλ0 + b).

The transformed problem, which has a Dirichlet boundary condition at x = 0 and a
non-Dirichlet constant-type boundary condition at x = 1, has eigenvalues µ0 < µ1 < · · · ,
which take the asymptotic form

µj = π2(j + 1
2 )2 + O(1).

In addition we have shown that each of λ1, λ2, . . . is an (algebraically simple) eigenvalue
of the transformed problem and from Theorem 2.1,

λn = (n − 1
2 )2π2 + O(1).

Thus λj+1 = µj , j = 0, 1, . . . , and Λ0 constitutes the set of all eigenvalues for the
transformed problem. �

For Dirichlet cases we need to perturb the eigenfunctions to give the required base
functions. The following theorem constructs one of the two perturbations needed in what
follows.

Theorem 4.3. If all eigenvalues of (1.1)–(1.3) are real and simple, then there are at
least two eigenvalues with the same oscillation count, say n. In particular, the second-
largest eigenvalue with oscillation count n is λn and the largest is λn+1. Then there exists
K < cot α such that, for each β with K < cot β < cot α (where a Dirichlet condition at
x = 0 is interpreted as cot α = +∞), there exists µ with λn+1 > µ > λn such that the
solution z of (1.1) with λ = µ and

Z(0) = cot β
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has oscillation count n and obeys the terminal condition

Z(1) = aµ + b.

Proof. The effect of decreasing cot β is to shift the (Prüfer) graph of Z(1) to the left.
We denote the nth branch of this graph by Bn(β).

If n = 0, then aλ + b intersects Bn(α) = Bn twice, so under sufficiently small deforma-
tion of the Prüfer graph to the left, i.e. for cotβ in some interval of the form (K, cot α),
aλ+ b still intersects Bn(β) with abscissae µ1(β) < µ2(β), say, in the interval (λn, λn+1).
The result follows if we take β as above and µ = µ1(β).

If n > 0, then the proof is the same except for the existence of a third intersection
point with abscissa µ0(β) < µ1(β). �

Note 4.4. In the case λn−1 = λn < λn+1 (only possible if n � 1), the above theorem
is still valid.

We now consider, with the help of Theorem 4.3, the case of a Dirichlet boundary
condition at x = 0 and two simple eigenvalues on the initial branch B0 of the Prüfer
graph.

Theorem 4.5. Let α = 0 in (1.2) and assume that λ0 < λ1 both lie on B0. Then
the Darboux transformation with base function z as given in Theorem 4.3 produces a
Sturm–Liouville problem with potential

q̂ = q − 2Z ′

and boundary conditions

Y (0) = − cot β = Z(0),

Y (1) = −1
a

− (aµ + b),

which is isospectral with (1.1)–(1.3).

Proof. Theorem 3.2 shows that for λ = λj , j � 0, and q replaced by q̂ the functions

uj =
w(z, yj)

z

are solutions of (1.1).
As in Theorem 4.1,

Uj =
(µ − λj)zyj

w(z, yj)
− Z.

The above expression evaluated at 0 and 1 (using the boundary conditions obeyed by z

and yj) gives

Uj(1) = −1
a

− (aµ + b)
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and

Uj(0) = −Z(0).

Thus the λj , j = 0, 1, . . . , are eigenvalues of the transformed problem.
A comparison (as for Theorem 4.1) of the asymptotic form of the eigenvalues of the

transformed problem and of λn as given in Theorem 2.1 (i) shows that Λ constitutes the
set of all eigenvalues for the transformed problem. �

Remark 4.6. We have covered all the cases where (1.3) intersects B0, except for D0(2),
in the shorthand at the end of § 2.

5. Double transformations

In this section we discuss all remaining cases with real eigenvalues. First we show that,
when all eigenvalues are real and simple, a double Crum transformation converts (1.1)–
(1.3) to a Sturm–Liouville boundary-value problem with real constant boundary condi-
tions.

Theorem 5.1. Suppose that (1.1)–(1.3) has only real simple eigenvalues with λn−1 <

λn < λn+1 on Bn. Let β, µ and z be as in Theorem 4.3. Then the Crum transformation
with base functions z and yn transforms (1.1)–(1.3) to the Sturm–Liouville problem

−u′′ + (q − 2W (yn, z)′)u = λu, (5.1)

U(0) = cot α +
λn − µ

cot α − cot β
, if α �= 0,

u(0) = 0, if α = 0,

⎫⎬
⎭ (5.2)

u(1) = 0 (5.3)

with spectrum Λn of (4.1).

Proof. Theorem 3.3 ensures that w(yn, z) �= 0. Throughout the proof λj ∈ Λn. Let

uj =
w(yn, z, yj)

w(yn, z)
.

It follows from Theorem 3.2 that uj obeys (5.1) with λ = λj .
At x = 1 we have

w(yn, z, yj)(1) =

∣∣∣∣∣∣∣
yn(1) z(1) yj(1)

(aλn + b)yn(1) (aµ + b)z(1) (aλj + b)yj(1)
−λnyn(1) −µz(1) −λjyj(1)

∣∣∣∣∣∣∣ = 0,

which gives (5.3).
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For α = 0, let y′
j(0) = 1 = y′

n(0) and z(0) = 1. Then

w(yn, z, yj)(0) =

∣∣∣∣∣∣∣
0 1 0
1 cot β 1
0 −µ 0

∣∣∣∣∣∣∣ = 0,

and as u′
j(0) �= 0 it follows that the λj are eigenvalues of (5.1)–(5.3) with eigenfunc-

tions uj . From [9]
λj = π2j2 + O(1),

which is the asymptotic form of the eigenvalues of (5.1)–(5.3) since λj ∈ Λn. Thus Λn

constitutes the set of eigenvalues of (5.1)–(5.3).
For α �= 0 assume that yn(0), yj(0), z(0) = 1. Then

w(yn, z)(0) = cot β − cot α,

w(yn, z, yj)(0) =

∣∣∣∣∣∣∣
1 1 1

cot α cot β cot α

−λn −µ −λj

∣∣∣∣∣∣∣
= (λj − λn)(cot α − cot β) �= 0,

w′(yn, z, yj)(0) =

∣∣∣∣∣∣∣
1 1 1

cot α cot β cot α

−λn cot α −µ cot β −λj cot α

∣∣∣∣∣∣∣
= (λj − λn)(cot α − cot β) cot α.

Thus uj is not identically zero and obeys the boundary conditions (5.2) and (5.3), showing
that the λj are eigenvalues of (5.1)–(5.3). From [9]

λj = π2(j − 1
2 )2 + O(1),

which, when compared with the asymptotic form for the eigenvalues of (5.1)–(5.3), shows
that Λn is the set of all eigenvalues of (5.1)–(5.3). �

For the case α > 0 there is a mirror version of Theorem 4.3 and the note thereafter.
The proof is omitted as it is similar to that of Theorem 4.3.

Theorem 5.2. If α > 0, all eigenvalues of (1.1)–(1.3) are real and λn = λn+1 is an
algebraically double eigenvalue on Bn, then either n = 0 or λn−1 is on Bn if n � 1. Also
there exists K > cot α and µ with λn−1 < µ < λn (where λ−1 is taken as −∞), so that
for each β with K > cot β > cot α, the solutions z of (1.1) with λ = µ and

Z(0) = cot β

have oscillation count n and obey the terminal condition

Z(1) = aµ + b.
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Remark 5.3. Theorem 5.2 also applies to eigenvalues of multiplicity 3, in which case
µ > λn+1.

The next result treats some cases with both single and double eigenvalues on Bk

(k > 0), specifically Nk(2, 1), Dk(2, 1) and Nk(1, 2) in the shorthand of § 2.

Theorem 5.4. Let β, µ and z be given by Theorem 4.3 in the case λn−1 = λn <

λn+1 ∈ Bn, and by Theorem 5.2 in the case α > 0, λn−1 < λn = λn+1 ∈ Bn. Then
the Crum transformation of (1.1)–(1.3) with base functions z and the eigenfunction yn

for the eigenvalue λn gives the boundary-value problem (5.1)–(5.3) with spectrum Λn

of (4.1).

Proof. Let

uj =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

w(z, yn, yj)
w(z, yn)

, λj �= λn,

w(z, yn, y
[1]
n )

w(z, yn)
, j �= n, λj = λn,

where y
[1]
n is the first associated function at λ = λn corresponding to the eigenfunction

yn = y
[0]
n . For λj �= λn, that uj is an eigenfunction of (5.1)–(5.3) with eigenvalue λj is

proved exactly as in Theorem 5.1.
We now consider j �= n with λj = λn. From Theorem 3.4, uj is a solution of (5.1) with

λ = λj , so it remains only to show that uj satisfies the boundary conditions (5.2)–(5.3).
As λn is an eigenvalue with Jordan chain of length two we have

(y[1]
n )′(0) sinα = y[1]

n (0) cos α

and

(y[1]
n )′(1) = (aλn + b)y[1]

n (1) + ayn(1).

Thus at x = 1 we have

w(yn, z, y[1]
n )(1) =

∣∣∣∣∣∣∣
yn(1) z(1) y

[1]
n (1)

(aλn + b)yn(1) (aµ + b)z(1) (aλn + b)y[1]
n (1) + ayn(1)

(q − λn)yn(1) (q − µ)z(1) (q − λn)y[1]
n (1) − yn(1)

∣∣∣∣∣∣∣ = 0

thus giving uj(1) = 0.
For α = 0, let yn and z be normalized by y′

n(0) = 1 and z(0) = 1 giving

w(yn, z, y[1]
n )(0) =

∣∣∣∣∣∣∣
0 1 0
1 cot β 0
0 −µ 0

∣∣∣∣∣∣∣ = 0.

As u′
j(0) �= 0, it follows that λj is an eigenvalue of (5.1)–(5.3) with eigenfunction uj .
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For α �= 0, we normalize yn and z by yn(0) = 1 = z(0). Then

w(yn, z, y[1]
n )(0) =

∣∣∣∣∣∣∣
1 1 0

cot α cot β 0
−λn −µ −1

∣∣∣∣∣∣∣
= cot α − cot β �= 0,

w′(yn, z, y[1]
n )(0) =

∣∣∣∣∣∣∣
1 1 0

cot α cot β 0
−λn cot α −µ cot β − cot α

∣∣∣∣∣∣∣
= (cot α − cot β) cot α.

Thus uj is not identically zero and obeys the boundary conditions (5.2) and (5.3), showing
that λj is an eigenvalue of (5.1)–(5.3).

Appealing, as in Theorem 5.1, to the asymptotics for the eigenvalues of (5.1)–(5.3)
and those for (1.1)–(1.3) given in Theorem 2.1, we find that λj , j �= n, constitute the
spectrum of the transformed boundary-value problem. �

In the remaining cases with real spectrum, the perturbation results of Theorems 4.3
and 5.2 cannot be applied. Here, instead of using a Crum transformation to remove an
eigenvalue, we use it to split double eigenvalues into two simple eigenvalues and triple
eigenvalues into a double and a simple eigenvalue. The following lemma is a consequence
of the fact that the asymptotes of the Prüfer graph move continuously to the left as cotβ

decreases, in the situation of Theorem 4.3 (even when there are multiple eigenvalues).

Lemma 5.5. Let λn−1 � λn = λn+1 (where λn−1 is ignored if n = 0) lie on Bn. Then
there exists K such that whenever K < cot β < cot α we have

λn+1 < λD
n (β) ∈ Bn, (5.4)

where λD
n (β) denotes the nth eigenvalue of (1.1)–(1.3) with α replaced by β and (1.3)

replaced by the Dirichlet condition y(1) = 0.

Now we are ready to discuss triple eigenvalues, and the remaining double eigenvalue
Dirichlet cases, D0(2) and Dk(1, 2).

Theorem 5.6. If α = 0, suppose that λn = λn+1 is the largest eigenvalue on Bn,
while if α �= 0, suppose that λn−1 = λn = λn+1. Let β and λD

n (β) be as in Lemma 5.5
and let z be a non-trivial solution of (1.1) with λ = λD

n (β) and

Z(0) = cot β.

Then the Crum transformation with base functions z and yn = y
[0]
n transforms (1.1)–(1.3)

to (1.1), (1.2) with q replaced by q − 2W [z, yn]′ and (1.3) replaced by

Y (1) = aλ + a(λn − λD
n (β)) + b.

The eigenvalues of the transformed boundary-value problem are λj , j �= n, together with
λD

n (β) (which replaces λn).
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Proof. Theorem 3.3 ensures that w(z, yn) does not vanish on [0, 1]. The proof of the
theorem proceeds like the proofs of Theorems 5.1 and 5.6. Note that λD

n (β) = µ is an
eigenvalue of the transformed problem with eigenfunction

eµ =
yn

w(z, yn)
.

This follows from Theorem 3.2 and it is a routine calculation to check the boundary
conditions. �

The net result of the above theorem is that, while the Crum transformation has not
directly given constant boundary conditions, it has produced a ‘lower multiplicity’ prob-
lem to which the process can be applied again, leading to constant boundary conditions
via Theorems 4.5, 5.1 and 5.4. Specifically, Dk(3), Nk(3), D0(2) and Dk(1, 2) transform
to Dk(2, 1), Nk(2, 1), D0(1, 1) and Dk(1, 1, 1), respectively. This follows from (5.4) and
the fact that the above transformation preserves eigenvalue oscillation count. To see this,
consider (1.1), (1.2) with (1.3) replaced by a Dirichlet condition. The transformation
used in Theorem 5.6 is isospectral for this problem and provides the same transformed
problem as given in Theorem 5.6 but with a Dirichlet condition at x = 1. Thus the projec-
tions onto the λ-axis of the branches Bk for the original problem and for the transformed
problem are identical.

6. Complex spectrum

The cases remaining for study involve a complex conjugate pair of non-real eigenvalues.

Lemma 6.1. Suppose that (1.1)–(1.3) has a conjugate pair of non-real eigenvalues
λ = ρ + iσ and λ̄ with eigenfunctions f and f̄ . Then f has no zeros in (0, 1].

Proof. As f and f̄ obey the same initial condition at 0, Lagrange’s formula gives

w(f, f̄)(x) =
∫ x

0
[ff̄ ′′ − f ′′f̄ ] = 2iσ

∫ x

0
|f |2. (6.1)

Were f(x0) = 0 for some x0 ∈ (0, 1], this would yield
∫ x0

0 |f |2 = 0, a contradiction. �

Remark 6.2. In the case α �= 0, we may assume f(0) = 1 so there exist k > c > 0
with k � |f(x)| � c for all x ∈ [0, 1], i.e. we can write f(x) = r(x)eiΘ(x), where r and
Θ are continuous, Θ(0) = 0 and k � r(x) � c for all x ∈ [0, 1]. In the case α = 0,
we have f(0) = 0 and we may assume that f ′(0) = 1. Thus f(x)/x has a continuous
extension, f̂(x), to [0, 1] with f̂(0) = 1. Hence setting |f̂(x)| = g(x) we have k1 > c1 > 0
with c1 � g(x) � k1 for all x ∈ [0, 1] and a unique continuous real-valued function Θ

with Θ(0) = 0 and f̂(x) = g(x)eiΘ(x). In particular, f = reiΘ, where r(x) = xg(x) and
r′(0) = g(0) = 1.

Theorem 6.3. Suppose λ = ρ + iσ, σ > 0, is a non-real eigenvalue for (1.1)–(1.3)
with eigenfunction f(x) = r(x)eiΘ(x), where Θ(0) = 0 and either r(0) = 1 if α > 0 or
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r′(0) = 1 if α = 0. There is β̂ ∈ (0, π) such that for each µ sufficiently negative and for
each β1 ∈ (β̂, π) there are β0 ∈ (α, π) and z having no zeros in [0, 1], such that

−z′′ + qz = µz, Z(0) = cot β0, Z(1) = cot β1,

and R(x) > Z(x) for all x ∈ [0, 1] (for all x ∈ (0, 1] if α = 0).

Proof. We give details for the case α > 0. The adjustments needed for α = 0 are
straightforward in light of Remark 6.2.

We note from Lemma 6.1 that r(x) > 0 for all x ∈ [0, 1]. With Φ = Θ′ we have

F = R + iΦ

and so R(0) = cot α, Φ(0) = 0.
Now (1.1) is

−(reiΘ)′′ + qreiΘ = (ρ + iσ)reiΘ,

and by equating real and imaginary parts, we have

−r′′ + (q + Φ2)r = ρr, (6.2)

rΦ′ + 2r′Φ + σr = 0. (6.3)

From (6.1) and the equation
w(f, f̄) = −2iΘ′r2

we obtain

Φ(x) = − σ

r2(x)

∫ x

0
r2(s) ds.

This, along with Remark 6.2, shows that Φ has a continuous extension to [0, 1], negative
on (0, 1], with Φ(0) = 0. Hence there is a constant κ > 0 such that −κ � Φ(x) � 0 for
all x ∈ [0, 1].

We now consider (6.2) as a Sturm–Liouville equation with initial condition (r′/r)(0) =
cot α. The corresponding Prüfer angle θr, say, satisfies

θ′
r(x) = cos2 θr(x) + (ρ − q(x) − Φ2(x)) sin2 θr(x), θr(0) = α,

and since r �= 0 on [0, 1], it follows that 0 < θr(1) < π. Select β1 ∈ (θr(1), π) and let
µ̂ > κ2 be arbitrary. The Prüfer equation

θ′ = cos2 θ + (ρ − q − µ̂) sin2 θ, θ(1) = β1,

has a unique solution θ̂, say, and Sturm’s Comparison Theorem shows that θ̂(x) > θr(x)
for all x ∈ [0, 1]. Thus θ̂(0) > α and, moreover, θ̂(0) < π since θ̂ can only increase through
multiples of π. We take β0 = θ̂(0). The upshot is that there is a function z on [0, 1] for
which Z(x) = cot θ̂(x), satisfying the demands of the lemma with µ = ρ − µ̂. �
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6.1. The non-Dirichlet case (α > 0)

We list the spectrum as λ0, λ̄0, λ1, λ2, . . . with corresponding eigenfunctions f, f̄ ,

y1, y2, . . . . We construct z as in Lemma 6.3 and calculate

w(z, f, f̄) = −

∣∣∣∣∣∣∣
z f f̄

z′ f ′ f̄ ′

µz λ0f λ̄0f̄

∣∣∣∣∣∣∣ ,

which after some manipulation simplifies to

2iz|f |2((µ − ρ)Φ + σ(R − Z)).

Here, as above, λ0 = ρ+iσ, σ > 0. Lemma 6.3 now shows that w(z, f, f̄) does not vanish
on [0, 1].

This leads us to a Crum transformation with three base functions z, f and f̄ generating
a new potential q̂ = q − 2W (z, f, f̄)′. The eigenfunctions

en =
w(z, f, f̄ , yn)

w(z, f, f̄)
, n � 1,

for eigenvalues λn, n � 1, satisfy

en(0) = 0, En(1) = −1
a

− W (z, f, f̄)(1).

These calculations are easily performed. It is important to note that µ is also an eigenvalue
for the transformed problem with eigenfunction

eµ =
w(f, f̄)

w(z, f, f̄)
.

Indeed, Theorem 3.2 verifies that eµ obeys the transformed differential equation, while
tedious but routine calculations give the new boundary conditions.

We can summarize this discussion with the following theorem.

Theorem 6.4. If (1.1)–(1.3) has α > 0 and non-real eigenvalues, then there is a
Crum transformation with three base functions (two of which are eigenfunctions for
the conjugate pair of non-real eigenvalues) transforming (1.1)–(1.3) to a problem with
Dirichlet condition at x = 0 and non-Dirichlet (constant) boundary condition at x = 1
and the same spectrum as (1.1)–(1.3), but with the non-real eigenvalues replaced by one
real eigenvalue µ below the least real eigenvalue of the initial problem.

The net result is that the transformed problem has constant boundary conditions, the
initial condition being Dirichlet, and spectrum µ, λ1, λ2, . . . .
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6.2. The Dirichlet case

Modifications must be made to the above method when α = 0. We select µ large and
negative and construct z as before (along with β0 and β1). Then with ν < µ and β̃1 > β1,
we repeat the construction to obtain another non-vanishing function v with

−v′′ + qv = νv, V (0) = β̃0, V (1) = β̃1, β̃1 > β1, β̃0 > β0,

and, evidently,
R(x) > Z(x) > V (x), x ∈ (0, 1].

Then we can verify

w(v, z, f, f̄)(0) = 2iσv(0)z(0)|f ′(0)|2(µ − ν)

and

w(v, z, f, f̄)
2ivz|f |2 = (V − Z)Φσ2 + (µ − ν)σΦ2

+ (V − Z)(ρ − ν)(ρ − µ)Φ + (µ − ν)(R − V )(R − Z)σ

on (0, 1]. Since Φ < 0 on (0, 1] and ρ > µ > ν, we see that w(v, z, f, f̄) does not vanish
on [0, 1].

This leads to the use of a Crum transformation with the four base functions v, z, f , f̄

producing a new problem with eigenvalues ν < µ < λ1 < λ2 < · · · , eigenfunctions

eν =
w(z, f, f̄)

w(v, z, f, f̄)
, eµ =

w(v, f, f̄)
w(v, z, f, f̄)

, en =
w(v, z, f, f̄ , yn)

w(v, z, f, f̄)
, n � 1,

and boundary conditions

y(0) = 0, Y (1) = cλ + d, (6.4)

for some real constants c and d. As before, Theorem 3.2 verifies that eν , eµ and en

are solutions of the transformed differential equation, and the boundary conditions (6.4)
follow from a routine, but tedious, calculation.

In brief, we have deduced the following theorem.

Theorem 6.5. If (1.1)–(1.3) has α = 0 and non-real eigenvalues, then there is a
Crum transformation with four base functions (two of which are eigenfunctions for the
conjugate pair of non-real eigenvalues) that transforms (1.1)–(1.3) to a problem with
boundary conditions (6.4) and with the same spectrum as (1.1)–(1.3), but with the non-
real eigenvalues replaced by two (distinct) real eigenvalues below the least real eigenvalue
of the initial problem.

Finally, we note that although c < 0 (since the new eigenfunctions eν , eµ both have no
internal zeros in (0, 1)), the transformed problem is of type D0(1, 1), to which Theorem 4.5
can be applied.
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