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SOME RESULTS ON THE CENTER OF AN ALGEBRA 
OF OPERATORS ON VN(G) FOR THE HEISENBERG 

GROUP 

C. CECCHINI AND A. ZAPPA 

1. Introduction. Let G be an amenable locally compact group. We 
will use the terminology of [3] and denote by VN(G) the Von Neumann 
algebra of the regular representation and by A (G) its predual, which is 
the algebra of the coefficients of the regular representation. The Von 
Neumann algebra VN{G) is, in a natural fashion, a module with respect 
to A{G) [3]. 

The algebra s$ of bounded linear operators on VN(G), which commute 
with the action of A(G), has been studied in [6] and in [1]. If UCB(G) 
is the space of the elements of VN{G) of the form vT, for some v in A (G) 
and some T in VN(G) (see for instance [4]), in [6] and in [1] it is proved 
that, for any amenable locally compact group there exists an isometric 
bijection between J^/ and UCB(G)*. In these papers it is also proved 
that the algebra B (G) of multipliers of A (G), which is isomorphic to the 
subalgebra 3% of se of the w*-continuous operators of s>/, is contained 
in the center 2f ^ of se. 

The following conjecture appears natural: 3?^ is isomorphic to B(G). 
The conjecture is motivated, as well as by the previous inclusion, by 

the result obtained in [10] for the case G = R. 
In [10] the result is obtained making essential use of the usual order of 

the real line and, therefore, of the total order structure induced by the 
order of R in the set of the irreducible representations of R. 

In this paper we focus our attention on the Heisenberg group. For this 
group the set of the irreducible representations U\ of G, with X ^ 0, has 
a total order structure induced by R [9], as in the case of R; therefore we 
can apply a non-commutative version of the techniques used in [10] to 
this special group. By doing so, we are able to prove the required state
ment for a class of operators ois/, which includes those corresponding 
to positive functionals on UCB{G). 

This limitation however appears quite natural, in view of the techniques 
used in the proof, as will be seen in the conclusion, and might be seen in 

Received July 29, 1980 and in revised form March 19, 1981. The work of the first 
author was partially supported by the Italian National Research Council through 
G.N.A.F.A. and Laboratorio Matematica Applicata while that of the second author was 
partially supported by the Italian National Research Council through G.N.A.F.A. 

1469 

https://doi.org/10.4153/CJM-1981-113-8 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1981-113-8


1470 C. CECCHINI AND A. ZAPPA 

itself as a support to the main conjecture. In fact no additional non-
commutative problems arise in the proof. 

In Section 2 some preliminaries, true for the general case of locally 
compact amenable groups, are given. Section 3 is devoted to the necessary 
applications of the direct integration theory for algebras and groups 
representations, for the particular case of the Heisenberg group. In 
Section 4 our main result is given and in Section 5 some concluding 
remarks and comments are made. 

2. Some preliminaries. 

LEMMA (2.1). UCB(G) is the norm-closure of the set of the compact 
support operators in VN(G). 

Proof. See [3], p. 227. 

PROPOSITION (2.1). UCB(G) is a C*-algebra. 

Proof. See [5], Proposition 2, p. 65. 

Let us recall that we can associate to every positive bounded linear 
functional $ on a C*-algebra A a representation 7r$ of the algebra, in the 
following way: 

(2.1) ($, T) = M r j f c l fc>, for all r U , 

where £i, £2 G ̂ fr* are totalizing vectors for 7r$. This follows from [2], 
Theorems 2.4.4, 12.1.3, 12.2.4. 

Let s/ be the algebra of bounded linear operators on VN(G), which 
commute with the action of -4(G); let also UCB(G)* be the dual space 
of the C*-algebra UCB{G). The isometric bijection a between stf and 
UCB(Ô)* is defined by 

(2.2) (*(*)(T),v) = (*,vT), 

for all T G VN(G), v G A(G), 3> G UCB(G)* (see [1] and [6]). 
From now on, we shall write $ G St, to denote that <ï> G UCB(G)*, 

a (#) G St. 

PROPOSITION (2.2). The functional $ G St are w*-dense in UCB(G)*. 

Proof. Since A (G)CB(G)~&,weh2iveUCB(G)CVN(G)~ A (G)*C 
B(G)* and also UCB(G) C 5(G)**. Since the unit ball of B(G) is 
w*-dense in the unit ball of 5(G)**, for all 3> in UCB(G)* there is 
{$«} CB(G)} such that 

($« - $ , * ) - » 0, for all x G B (G)*, 
a 

and therefore in particular for all x G UCB(G). 
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The next proposition characterizes the representations of UCB(G) 
corresponding to <ï> Ç &. 

PROPOSITION (2.3). Let $ 6 UCB(G)*\ let 7r$ be the representation of 
UCB(G) associated with $. Then $ £ & if and only if for all {Ta} C 
VN(G), such that Ta—>0 in the w*-topology and for all w £ A (G), 

(2.3) <T#(wr„)X|*>-*Of V X , ^ X # . 
a 

Proof. If (2.3) holds, then for all w G A (G) 

(<r(s)(r„)fw) = ($,wr.) = (^^r^fii^-^o, 
a 

where £i, £2 £ ^ T $ are totalizers for 7r$. Then $ Ç ^ . 
In order to prove the converse implication, let us prove that if $ £ £? 

then (2.3) is satisfied for all w £ A(G) and for all {Ta} C VN(G), 
Ta—>0 in the w*-topology, such that \\Ta\\ ^ 1, \/a. Indeed, if this 
property is satisfied, then the functional >F Ç FiV(G)* defined by setting 

(2.4) (¥, D = <7r$(^r)X| T?), for X, v Ç ^fT$, w 6 4(G) fixed, 

is ^-continuous on [VN(G)]i and therefore ultraweakly continuous on 
VN(G). On the other hand, for VN(G) weak and ultraweak continuity 
coincide, and therefore ^ is ^-continuous on VN(G) and the thesis is 
proved. Then let 

{Ta) C VN(G), || Ta\\ ^ 1 V«, Ta -> 0 in the w*-topology. 

(a). Let X = 7r$04)£i, 77 = 7r$(i3)£2, with 4 , 5 with compact support 
on G. For e > 0, let u £ A (G) with compact support such that 
||w — W||A(G> < e. Then, for all a, the support of uTa is compact and 

\\uTa - wTa\\A(G) < €. 

Then 

|<ir*(wr t t)Xh)| = |<T#(5+(wr«)i4)£i|f,>| 

+ |<x#(5+(wra-«ra)i4){i|{,>| 
£ \{**{B+{uTa)A)h\h)\ + lk*|| ||B|| IMII 6. 

Since the support of B+(uTa)A is contained, for all a, in a compact K 
(independent from a), we have 

B+(uTa)A = i>(B+(«:rtt)i4) for all a, 

if v e A(G) and z/(x) = 1 for x Ç if. Since B+(uTa)A -> 0 in the 
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w*-topology, then by ^-cont inui ty of a ($ ) , 

{ic*(B+{uTa)A)ti\h) = (*,v(B+(uTa)A)) 

= (a(*)(B+(uTa)A),v)-+0. 

(b). Let now X = TT*G4)£I, y = T*(B)£2, with A, B in UCB(G)\ for 
e > 0, let A', B' G UCB{G) with compact support, such that 
\\A - A'\\ < e, ||B - B'H < e. Then 

\(T*(wTa)\\ri)\ = \(7T*(B+(wTa)A)£M2)\ 

g \(^(Bf+(wTa)A
f)^2)\ 

+ \(M(B - B')+(wTa)(A - 4'))Éi|Ê2>| 

+ \(^((B - B')+(wTa)A
fnM2)\ 

+ \(TTz(B'+(wTa)(A -Af)^2)\ 

S \(MB'+(wTa)A')ïi\Ï2)\ 

+ \\n\\ (\\B~ B'\\ \\A - A'\\ 

+ \\B- B>\\ \\A'\\ + \\B'\\ \\A - A'\\ ) | |wr a | | 

^ \{ir*(B'+(wTa)A')b\h)\ 

+ ||x4IWU(0)(€+M/|| + P,||)€. 
Now, since {^(A)^} A G UCB(Ô)}, W*{B)&, B G UCB(G)\ are dense 
in <#?*$, from (b) the required property follows. 

Let $ G UBC(G)* and let 7r$ be the canonically associated repre
sentation of UCB(G)\ let us denote by TT^G the representation of the 
group G, which is the restriction to { Ux, x G G) of 7r$. From Proposition 
(2.3) we have: 

COROLLARY (2.1). Let <ï> G UCB(G)*. Then $ £ & if and only if 7r$ is 
canonically defined by 7r$G, in /fee sense / t o , /or a// X, rj G ^ V ^ , ^ M (G), 
the functional ^ G FiV(G)* defined by 

(*, r) = (^(^r)xh) 
is obtained extending by w*-continuity and linearity its restriction to 
{Ux,x£ G\. 

Proof. If the functional ^ is obtained extending by w*-continuity and 
linearity its restriction to { UXJ x G G}, then $ G ^?, by Proposition (2.3). 
Let us prove the converse implication. The linear space spanned by the 
set {Ux, x G G} is w*-dense in VN(G); therefore, for any T G VN(G), 
there is {Ta\ C VN(G), such that 

J- a = 7 J Cx Ux, 

xera 
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where cx
a G C and Ta is a finite subset of G and 7"a —» T weakly. If 

w £ A (G), we have 

wTa = X ) CxUv(x)Ux. 

By Proposition (2.3), if $ G ^ , then for all X, 17 G ^ x * 

<7r*(wra)X|i;) = ^ cx
av(x)(T^(Ux)X\rj) -> (^(wT^X^) . 

Hence 7r$ is defined by {7r$(£/x), x f G). 

3. Some facts on the Heisenberg group. Let G be the Heisenberg 
group; if we denote an element of G by [x, y, z], where x, y, z G R, then 
for [x, y, 2], [x', 3/', 2'] G G 

[x, 3/, s] [x', y', z'] = [x + x', y + y , z + xy' + z'\. 

Let us recall [9] that for ail X G R, X ^ 0, the map U\oi Ginto J>(L2(R)) 
defined by 

(3.1) (Ux ([x, y, z]) / ) (0 = **<*+"> / (* + x), 

with / G R , / G L2(R), [x, 3/, s] G G, is an unitary continuous irreducible 
representation of G ; furthermore every unitary irreducible representation 
(of dimension > 1) of G is unitarily equivalent to U\, for some X G R, 
X ?* 0. 

LEMMA (3.1). The following decomposition in direct integral holds: 
(i). 

-0 
jexd\f 

where X G R, $?\ = L2(K) for all X G R, and dX w /fte Lebesgue measure 
on R; 

(ii). For every T G PW(G) 

-r (3.3) T=J Txd\, 

where for all X G R, X 5* 0, (F7V(G))X = ^ ( L 2 ( R ) ) , /fta/ is the set of all 
bounded operators on L2(R); 

(iii). For every T G 3f'VN(G), Ihe center of VN(G), 

r (3.4) T=J t(X)hd\, 

where t £ L°°(R); 
(iv). 

-r (3.5) U = I t/x^X. 
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Proof. By Proposition 18.7.7 of [2] and by the characterization of the 
dual G of the Heisenberg group, [9], there exists a measure d\ on R such 
that (3.2), (3.3) and (3.4) hold. We note in particular that, for every 
z Ç R , 

(3.6) £/[o,o..]/x = e^h, 

where f\ £ Jt?\ for every X. Since the irreducible representation of G for 
which (3.6) holds is unique, for X ^ 0, J^\ is isomorphic to L2(R), for 
all X 5̂  0, as is well known from the general theory, and (3.5) holds. 

Let us prove that d\ is the Lebesgue measure on R. Let v 6 A (G) and 
le t / , g e L2(G) such that 

v([x,ytz]) = (f\U[XtytZ]g) 

for every [x, y, z] Ç G. Then, by the above decomposition, 

v([x, y, z}) = < J hd\ j J Ux([x, y, z])gxd\) 

= J \fx j Ux(x, y, z)gjd\ = j JMtYeiMz+ty)gx(t + x)dtd\. 

Let us set x = x, y = y and \//(z) = v([x, y, z]) ; we have, for almost all 
x, y} that \fr(z) £ A (G) and 

*(*) =j JMt)eiMz+ry)gx(t + x)dtd\ = JV^(X)^X, 

where 

£(X) =jffi)eir*gx(t + X)dt. 

This relation expresses the ordinary Fourier transform on the real line, 
and therefore d\ is the usual Lebesgue measure on R. 

Let us prove finally that (VN(G))x = ^ ( L 2 ( R ) ) , for all X Ç R, 
M O . Indeed it is easy to check that, if X ^ 0, (VN(G))\ contains the 
operators on L2(R) of the form 

u(x)f(t) = f(t + x), v(k)f(t) = eiktf(t) for all x,k £R. 

It is easy to check that the commutant of u(x) and v(k) is eikx. By a well 
known result (see for its most general form [8]) (VN(G))\ coincides with 
^ ( L 2 ( R ) ) . 

LEMMA (3.2). (i). Let 2?UCB(G), 3? VN^G) denote the center of UCB(G) 
and VN(G) respectively. Then 

^UCB(G) = °£VN(G) ^ UCB{G); 
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(ii). If T G 3?vN{Qh v 6 -4(G), then vT G SfucBiô),' 
(iii). L ^ T G 3?VN{G), 

- / T=J t(\)hd\; 

then T G 3? UCB{G) if and only if t G CW(R), /Aa/ is the set of the uniformly 
continuous bounded functions on R; 

(iv). If T G 3?UCB{G), there are vo G -4(G), T0 G <â%Ar(<?) swcft /Aa£ 
T = Ï/O7V 

Proof, (i). If r G 2fucB{ô)i then T commutes with ( [ / ^ x f G|, 
generating VN(G). The converse is obvious. 

(ii). By the above decomposition of VN(G), for all v G -4(G), we can 
write 

/

e 
flxdX, 

where X G R, d\ is the Lebesgue measure on R and v\ G &(<#f\)*. 
Let us set Av(\) = (Ï/X, A) for a.e. X G R; it is easy to see that 

Av G £X(R); moreover, if w G -4(G), then 

\o.i) Jx vw — A. v A.w. 

Indeed, for z G R, we have 

(U[0,0,z],VW) = (U[Oto,z,v)(Ul0,o,t],w) 

= JJei(^v)zAv(n)Aw(v)dLidv = ffeiXzAv(»)Aw(\ - rfdXd» 

= JeiXz(Av*Aw)(\)d\, 

where X = p + v. On the other hand, by definition, 

(U[o.o,Z],vw) = JeiXzAvw(\)d\, 

and since z is arbitrary, (3.7) follows. 
If T G ^VN(G)J 

T=J t(\)hd\, 

v G -4(G), let us consider vT G UCB(G). For all w G -4(G) we have 

(vT,w) = (T,vw) =Jt(\)Am(\)d\ 

= J t(\)(Av*Aw)(\)d\ =J J t(\)A,Qi - \)Aw(n)d\dn 

= J(t* Av) (ji)Aw(jx)dn = (S, w), 
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where Av(n) = Av( — n) for all /A G R, and 

fe 

S =J (/*i4,)0*)/Md/i. 

From this equali ty, t rue for every w G A (G), it follows t h a t vT = 5 . 
since o VN(G)I we conclude t h a t vT G 3f UCB(Ô)-

(iii). Let T G 2?UCB(Ô), 

J ® 
t(\)Ixd\; 

let us prove t h a t t G CM(R). Let ̂ 0 G -4(G) be an approximate ident i ty 
on 4 ( G ) . For all a, vaT G *3?UCB{G), by (ii), and hence 

r® 
VaT = J ta (X)/xdX. 

Let us prove t ha t /a G CW(R). For all w G 4 ( G ) , we have, with the 
notat ion in (ii), 

(vaT,w) = (T,vaw) = J t(\)AVaW(\)d\ =J (t*A,a)0i)Aw0i)d». 

On the other hand 

(vaT,w) = J ta(fx)Aw(fx)dfx. 

Then , since w is arb i t rary in A (G), we have /«(M) = (t * AVa) (JU), for a.e. 
M G R. Since ^ r ( R ) , \ Ç £ U R ) , it follows t h a t /« G CM(R). This 
implies t ha t / G CM(R). Indeed we have 

\\vaT - T\\ = \\vaVoTo - v0To\\ = \\(vav0 — v0)T0\\ 

^ \\vaVo — v0\\A\\To\\ —>0, 
and therefore \\ta — /||œ —> 0. 

Conversely, let us suppose t h a t / G C„(R). If « € L^R), \fr G L°°(R) 
satisfy t =• <!> * \p, we define ^0 G 4 (G) and T0 G VN(G) in the following 
way: 

/ ô = I *%dX, where (*%, I\) = <j>(\) for a.e. X G R, 

- / r0 =J *(\)hd\; 
then r = VQTO. 

(iv). This follows immediately from (iii). 
We note t h a t it is possible to choose Vo G A (G) such t h a t 

\\VO\\A(0) = M i J L ' ( R ) . 
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From Theorem 2.9 in [7] it follows immediately that every unitary 
representation of G can be written as 

r (3.8) T T = J Uxdm(\). 

Let us consider $ £ UCB(G)* and the canonically associated repre
sentation of UCB(G), 7r$; from Theorem 8.5.1 of [2], it is possible to 
write 7r$ as a direct integral of irreducible representations of UCB(G): 

7T$ = 1 7T < (3.9) TT* = J TTdm{r). 

From Corollary (2.1) and (3.8), (3.9) it follows immediately that: 

COROLLARY (3.1). Let $ G UCB(G), 7r$ the canonically associated 
representation of UCB(G) and w$G its restriction to G. Then <£ £ 3% if and 
only if 

J ir\ (3.10) 7T* = J wTdm(r) 

where dm(r) is supported on the set of irreducible representations 7rx of the 
algebra obtained extending the group representation U\, for some X ̂  0. 

Proof. This is immediate if we note that T$ is irreducible if and only if 
ir$G is also. 

Remark (3.1). Let us denote by y the set of the functional 3> # &, 
such that the support of the measure dm(r) in (3.9) has void intersection 
with the set of the irreducible representations 7rx of the algebra UCB(G), 
obtained by extending the group representations U\, for some X 9e 0. 

If <ï> $ S?, it is possible to write 

(3.11) $ = & + $", 

where $ ' 6 y , $ " G ^ . 

Remark (3.2). For every a Ç R, let us denote by ,>#a (respectively^a) 
the set of the functional $ Ç « ^ such that the measure dm{\) in (3.8) 
is supported on the interval [a, + oo ) (respectively ( —oo , a]). 

PROPOSITION (3.1). Le/ $ G UCB(G)*. For every e > 0, /fern? eaw* $M, 

$>L G UCB(G)* such that 

(i) $ M G ^ U $L 6 ^Xo-5, /or some X0 6 R, S ^ 0; 

(ii) | |$ - ($M+ *L)\\ < *• 

Proof. Let e > 0; let also {a*} be a increasing sequence of R, such that 
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a{ - af_i > 25. For every i, we define r< 6 CM(R) by 

(1 , for a, - 5/2 < X < a, + 5/2 
r((X) = ) o , for X < at - 5, X > at + 5 

^linear, for at — 5 ^ X ^ a* — 5/2, 
( a* + 5/2 ^ X ^ a, + 5 

andi?, 6 E/CB(<5) by 

^,=J rt(\)hd\ 

and also ¥ f , * 6 UCB(G)* by 

( ¥ „ r ) = (*,22«;r) 
(*, T) = (*, £ ^ ) , for all r € UCB(G). 

Since £ 11̂ *11 = ll^ll = II $11» then, for every e > 0 and for every 
5 > 0, there exists some ï, such that H î̂H < e; let X0 = aj. 

Let us define qM, ÇL € CM(R) by 

( 1 , for X > Xo + 5 
2M(X) = 0 , for Xo + 5/2 > X 

( linear, for X0 + 5/2 ^ X ^ X0 + 5 

(1 , for X < Xo — 5 
qL(\) = 0 , for X > Xo - 5/2 

( linear, for X0 — 5 g X ^ X0 — 5/2 

and QM,QL 6 UCB(G) by 

Je /•© 

qMMhd\, QL=J qL(\)hd\. 
The functional ^ ^ $ L £ UCB(G)* such that 

($M, D = ($, e^r), (**, D = (*, QLr) for ail r e t/C£«5) 
are the required functionals. Indeed (i) is an immediate consequence of 
the definition and (ii) follows from the identity 

4. The main results. 

LEMMA (4.1). Let $ € 01, $ 9* 0. If $ € ^\01 for some X0 Ç R, then 
for every T g UCB(G) such that T\ = 0 for X ^ X0, we have ($ , T) = 0. 

Proof. If £1, £2 are totalizing vectors for 71-$, then, since $ 6 &%, 

(*,r) = <x*(r){i|f2> =J (7rx(r)£lx|£2x)^(x), 
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where the integral is given by the direct decomposition of 7r$, as in [2], 
X G R, TT\(T) are the irreducible direct integrands of ir$(T) and £<x 

(i = 1,2) are the vectors in Jf\ such that 

£*=J t*dm(\), i= 1,2. 

Since, for every X, we have TT\(T) = 7\, then 

($, T) = J <rx£lx|£2X)<Zm(X) 

and since (7\£iX|£2x) is supported on X ^ X0, the above integral is null. 

LEMMA (4.2). Let X0 G R, X0 ^ 0, /Xo 6 L2(R), ||/Xo||2 = 1. For every 
v £ A (G) and for all [x, y, z] £ G, let 

(4.1) »x0([*,:y,*]) = v([x,yfz])eiMzJfx0(t)e
iUtvfXo(t + * ) * . 

77*ew v\0 Ç -4(G). 

Proc?/. Let v Ç 4(G) , and w(1), z/<2) G L2(R) such that 

f ([*, y, *]) = <»(1)|^[x.y.y2)), for all [*, y, 2] G G. 

Moreover, for i = 1, 2, X G R, let z/x
(z*} 6 L2(R) such that 

We have, by definition, for all [x, y, z] £ G, 

vxdlx.y.z]) = ¥l)\U[x,v,*v™) (fx0\UMax,y,z])fu). 

If U ® U\0 is the tensor product of the regular representation U and 
f/x0. then 

«*.([*. *« ] ) = <»(I> ® /x.|(tf ® ^x„) ([*,?, 2]) (»(2) ®/x,)> 

= <*>(1) «/xol^ax.y.ïlV* ® ^x.([*,y,*])/x.> 

= J <tfx(1) ®/x„|C/x([x,y,2]>xC2) ® t/x.([*,y,«])/x.)dX 

= / d \ / / ^ w (0/x„ ( 5) e^+<<V^*+»V 2 ) (* + x)/x0(5 + x) 

X daft. 
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By setting r = (\t + X0s)/(X + X0), w = s — t, we have 

v\o([x,y,z]) 

= JdxJ J ^ V - ôT^x^ W)Â» V + Ô^TxV)w) 

x ^ ( * + X 0 ) ( ^ V 2 ) ^ _ - ^ — ^ + X ) 

X /xo u + A , xv w + x I drdw. 

For a.e. X, w G R (namely for X ^ — X0 and X ^ 0) let gx+x0)M,, gx+xo.w be 
the functions of L2(R) defined by 

«&. . . ( r ) = ^ ( 0 (r - ~ ^ y w) A. (r + — ^ y « ) . * = L 2 

and let gx+Xo,̂  be the linear continuous functional on ^ ( L 2 ( R ) ) such 
that 

tex+xo.», r ) = <g^x0.»|rgSxo.«>, for all T G ^ ( L 2 ( R ) ) . 

Let us show that for a.e. X G R 

J HgX+Xo.wl̂ W < lkll(A(G))x. 

Indeed, for a.e. w £ R and all T G ^ ( L 2 ( R ) ) , 

|(gX+X0,u» 2") | ^ ll^X+Xo.wlh H ^ g X + X o . J h ^ | | r | | H^X+Xo.wlh HgX+Xo.wlh 

and hence 

J ||gX+Xo,t*||dw 

|(gx+x0,«, T)\, for T 6 W ( R ) ) , \\T\\ ^ l}dw 

^ J llfX+Xo,t»l|2 HgX+Xo. to lMw 

= \J l|gx+Xo,»||22^wj y J \\g\+\o,w\U2 dw) 

= (f f (gZUr))2dwdr) ' ' ^ J f (dl«.«(r))2dwdr) ' " 

= ( / / («*(1)(0/x,(*))s<fofc) '''(J / (ft(,)(OA,W)to) "2 

II ( 1 ) I I II ( 2 ) I I 
= *>X 2 \\V\ 2 . 
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By Lemma (3.1) (ii), ||flx(1)||2||flx(2)||2 = ||i>x|| and the inequality follows. 
Then, for a.e. X G R, the integral 

J g\+xQ,wdw 

is finite and has value in & (L2(R)). Set 

gx+xo = J g\+u,wdw. 

By Lemma (3.1) (ii), for a.e. X G R, gx+x0 G (VN(G))\\ then there exists 
g G FiV(G)* such that, for all T G VN(G), 

z,T) = J (gx,rx)dx,if r = J r> .d\. 

Let us prove that g G -4(G). Let us notice that, for a.e. X G R, 
||gx+Xoll ^ \M\- Hence 

J l|gx+x0||dX g J | M | d X = | |V |U(G) . 

On the other hand, for [x, 3/, 2] G G, X 7^ — X0, 

flxofl*,?»*]) = J dxJ (g\+\o,to\U\+\0([xfyfz])gx+\Q,w)dw 

= J d x j (gx+x0>w>, U\+\Q([x,y,z])dw 

= J dX(gx+x0, £4+xo([^, J, 2)]) = J (gx, U\([x, y, z])d\ 

= (g, #([*,:y,s])) = g([^%2])-

Therefore x̂o € 4(G) . 

PROPOSITION (4.1). Le* X0 G R, X0 ^ 0 and fXo G £ 2(R), ll/xdh = 1. 
Let o-(^xo) ^^ the map in VN(G) defined by 

(4.2) (<r(¥Xo)(r),iO = (T,vXo),forall T G FiV(G). 

(i) <r(¥x) G J / ; 

(ii) i / r e f 
VN(O)I then o"(^rx0)(^) ê 2fvN(G) and if 

r® 
T=J t(X)IxdX 

is the direct decomposition of T, then 
r® 

(4.3) <r(**Q)(T) = J t(\ + \0)hd\. 
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Proof. By definition, ^x0 is bounded and linear and H x̂oll = 1- If 
u, v £ A (G) then 

= (r,«(vx0)) = (uT,vM) = ( a f t 0 ) ( ^ ) ^ ) . 

Therefore <r(^Xo) € ^ -
(ii). Let r G 3?VN(G) and 

r = J *(x)/x<*x, 

with / G L°°(R). Then, for all v € 4 (G), 

(<7(*x0)0O,*>) = (7>xo) = J (gx+x0,*(X + Xo)/x+x0)dX. 

On the other hand 

(gX+Xo, A+Xo) = J dw(g\+\QiWt Jx+Xo) = J (gx+X0,ti>|gX+Xo,«>)^ 

- / / • «* ( U(0/x.(*K ( 2 )(0/x. (*)<&** = <*>x(1V2)> = («x. /x) 

and so 

((r(^Xo)(r),i;) = J *(X + X0)(t;x, /x)dX = (5, »), 

where 5 G 3? VN{G) and 5x = /(X + X0)ix, for a.e. AG R. 

THEOREM (4.1). Let 3> G UCB(G)*, $ G ̂ . / / $ - & + $", w/wre 
$' G J^, $"-G ^ \ #wd $ ' w W0£ sero 0w 2fucB(ô), then there exist 
So G VW(G), * G UCB{G)* such that 

(4.4) ff(*) <,($) (50) ^ <r(*)- ffW (So). 

Proof. Let us prove the theorem for $ G Sf. Indeed, if $ = <£' + $", 
where <£" ̂  0, then <ï> is centra] if and only if <£' is also. 

(a). Let us suppose $ G ^a
{w), for some a G R. We choose, for 

example, a = 0 (if a y£ 0 the proof is the same). 
Let T G ^ UCB(G) such that (<J>, 2") ?* 0; by Lemma (3.2) there are 

ZJ0 G -4(G) and T0 G 3?VN(G) such that T = v0T0. Let t0 G I/œ(R) such 
that 

r® 
To=J t0(\)hd\. 

Take a sequence {vn) in R+ such that vn —> +oo and define {junj by setting 

(MI = v\ 
{Un = Mn-1 + *V-1 + ^n, for U = 2 , 3 . . . . 
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Let us define S0 £ 2fVN{G) by 

•So = J s0(\)I\d\, 

where s0 G L°°(R) is the function 

(so(\) = 0, for X ^ 0 
\so(\) = t0(\ + Un), for —fin - Vn < X < - jUn + IV 

Let us prove that ($, vSo) = 0, for all v G -4(G). 
If {#a} is a sequence of - # 0 such that 

$a > $ , 
a 

we denote by Xa the maximum positive number such that $a G ^ \ 0 - We 
have X« —•» +oo. Otherwise there would be a subnet {\p} converging to 
some X Ç R and therefore for all f$ the support of the measure dm$ would 
contain X and therefore the support of the measure dm{r) associated 
with 7T* by (3.7) would contain the representation U\} against our 
hypothesis. 

Let now v G -4(G). By Lemma (3.2), 

-r S = vSo G 2fucB(ô) and 5 = J s(\)hd\, 

where s(\) = (s0 * Av)(\), for a.e. X G R. 
UAV G C c(R)andsupp C4r) C ( —oo. X], thensupp (s) C ( - o o , i £ ] ; 

therefore by Lemma (4.1) it follows that (<ï>a, vSo) = 0, for all a ^ aK, 
where aK is such that \aR ^ X^; we conclude, by taking the limit, that 
($, vSo) = 0. Let now supp (Av) be not necessarily compact. For e > 0, 
let W £ CC(R) such that \\AV - W\\t < e and w G A(Ù) such that 
Aw = W. Then 

|(*,wSo)| = | (* , (P - w)S0) + (*, wSo)| 

= | (S, ( w - w ) 5 0 ) | ^ | |$ | | ||5o|| \\v -w\\A. 

On the other hand \\v — w\\A(G) = \\AV — W\\i and therefore 

|($,wSo)| < c. 

Since e is arbitrary, (<£, vSo) = 0 and therefore a($)(So) = 0. Let us 
consider, for all n, ^_Mn £ UCB(G)*, as defined in Proposition (4.1). 
Since the unit ball of UCB(G)* is compact in the 7£;*-topology, there is 
* € UCB{G)* such that 

(*_Mn, wD -> (¥, » r ) , for all vT G UCB (G), 

by taking a subnet of {/xj. If c (^ ) G J3^ is the operator associated to S£, 
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let us prove that 

(4.5) *(*) (So) = TV 

Indeed, we notice that, for all X Ç R, 

so (A — tin) —» ^o(A), n 

because, for X £ \ — vn, vn), s0(\ — /xn) = t0(X) and, for all X G R, it is 
possible to choose n such that, for n ^ n, we can choose X G [ — vn,vn). 
On the other hand 

(<r(*_Mn)(S0),iO = J *o(X - M n ) ( / x , ^ X - > ((a(*)(So))x,vx)d\ 

= (er(¥)(50),l0. 

It follows then, for a.e. X G R, 

((*(¥) (So))*,vi) = t0(\) (h,vx) 

and therefore 

(*(*) (5o),») - (r0 ,^). 

Since v £ A (G) is arbitrary, (4.5) follows. 
Briefly, if 50 and ^ are defined as above, we have 

(4.6) <r($)<7(*)CS0) = <r(*)(r0) ^ 0, <7(*)<T(<Ï>)(5O) = 0. 

(b). If $ Ç ̂ a
{w\ for some a Ç R, the proof is the same as in (a), 

(c). In the general case let, for e > 0, T Ç 3?UCB(G), \\T\\ ^ 1 such that 

| (* , D | è sup{|(<*>,5) | ,5e^VC B ( ( 5 )} ~ c. 

We can suppose that T = v0To, where fl0 G -4(G), ||^o|| ^ 1, ^o G 
UCB(G), \\To\\ ^ 1. For t > 0, let <ïv, $2, as in Proposition (3.1), then 

where # „ ' , # / € ^ , * „ " , # 1 / ' 6 ® and # J f " € ^ $ » , * L " € ^ x „ -a , 
* * ' e urx

(
0t,, $ / € .2V.. 

From property (i) of Proposition (3.1) and since S& is norm closed, 
from the hypothesis on $ it follows that (as necessary replacing §M 

with $L) 

($„ ' , r ) ^ 0, | |*M"| | <co(e), 

where o>(e) —» 0 for e —> 0. Indeed if <ï> G 5^, then the norm of the 
functional ($ — ^ V — $z/), $ M " , $z," are small. 
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Then if we construct S0 G VN(G), * G UCB{G)* for <V, as in the 
case (a), we have 

I(*(*)*(*) s»), »o)| = |(*,r)| è 11*1*11 
- II^Aflarll + l l ^ i l a r l l — «I 

| ( f f ( * ) a ( # ) ( 5 o ) , » o ) | ^ | ( < 7 ( ^ ) < 7 ( $ M + * L ) ( 5 0 ) , P o ) | + « 

= | ( f f ( f ) . ( V + $z,)(5o),»o)| + « 

è \\*L\*\\ + « + «(«)• 

Since e is arbitrary, the result follows. 

5. A concluding remark. In the abelian case of R, the total order of R 
induces a total order structure again in the set of the functions 

{/x(*) = e**,\ G R}, 

seen as coefficients of the (unidimensional) irreducible representations 
of R. 

On the other hand, in the case of the Heisenberg group, the total order 
structure of the set of the irreducible representations U\ of G, with 
X ^ 0, induces only a partial order in the set of their coefficients, while 
the order induced in the set of the restrictions to the center of G of the 
same coefficients (not zero on<2TG) is total. Indeed, for all X £ R, X 5̂  0, 
the restriction to 3? G of a coefficient of the irreducible representation U\ 
is given by 

(Ux([0,0,z])f\g) =e^(f\g), 

for / , g G L2(R); therefore all the coefficients of an irreducible repre
sentation restricted to 3? G are functions on 2f G which differ only by a 
scalar factor (not zero in the above hypothesis). 

In view of our techniques, it is easy to note that the difference of our 
result from the one obtained for G = R reflects these structural differences 
between the dual objects of the Heisenberg group and the real line. 
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