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Abstract

An infinite collection of indecomposable isols such that no isol is comparable to certain infinitary
combinations of the others is constructed, extending a result of Dekker and Myhill. This collection is
then used to investigate differences between the arithmetic of classical RET's and that of RET's on
recursive manifolds, a difference relevant to the manifold equivalent of the Schroder-Bernstein
Theorem.

1980 Mathematics subject classification (Amer. Math. Soc): 03 D 50.

0. Introduction

Dekker and Myhill, in [1], developed the classical theory of recursive equivalence
types (RET's) as a constructive analogue to the theory of cardinal numbers. In the
context of RET's, they proved a parallel to the Schroder-Bernstein theorem by
first establishing

0.1. PROPOSITION. For any RETs [C] and [£>], [C] = [C] + [D] if and only if
[C] > oo • [D].

(This, of course, is a parallel to the property of cardinal numbers that X = X + K
if and only if X > No • K.)

The situation becomes different when the study of RET's is generalized to the
setting of recursive manifolds. Manifolds own a theory of RET's very similar to
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100 Leon Harkleroad [2)

the classical theory in many respects, but [2] showed that on a manifold there
might not be an operation that behaves as oo • does in Proposition 0.1. That
result from [2], however, did not necessarily point to a deep difference between
classical and manifold RET's. Rather, it was demonstrated by a trivial counterex-
ample based on the simple fact that, in any reasonable manifold analogue of
Proposition 0.1, two operations like oo • should be involved. This paper
strengthens the result in [2] by showing that even with two such operations,
Proposition 0.1 does not carry over to manifolds. The construction of the
counterexample here is not at all trivial; a significant difference in the workings of
classical and manifold RET's seems to be indicated. Section 2 of this paper makes
precise the ideas discussed above, and it details the counterexample's construc-
tion. This construction takes place over the simplest recursive manifold allowing a
theory of RET's not identical to the classical theory: RET's on less simple
manifolds will behave, if anything, even less like the classical ones. The results in
Section 1 are necessary for Section 2, but Section 1 deals exclusively with classical
recursion theory. In particular, Section 1 centers around the construction of a
collection of isols with rather strong incomparability properties.

NOTATION. N, the set of natural numbers, is taken to include 0 as an element.
For T c N, the RET of T is denoted [T]. The recursive pairing function
x + (x2 + y2 + 2xy + x + y)/2 will be written <JC, y). For S, T Q N, (S, T)
denotes {{m, n ) | m e S and n e T). Also, we use (x, T) and (S, y) as abbrevi-
ations for ({x}, T) and (S, {y}), respectively. Following [1], oo • [T] is defined
as [(N, T)] (or, equivalently, [(T, N)]). With (x, y, z) defined as {(x,y),z),
( • , - , ) provides a bijection from N3 to N. Other notation for classical
recursion-theoretic notions will be as in [1]. We discuss recursive manifold
notation in the next paragraphs.

MANIFOLDS. A recursive manifold, in general, consists of a base set and a
collection of functions mapping N into that set. The manifold we will use in
Section 2 has, at its base set, the Cartesian product JV2. For each p e JV, define
the function ap. N -* N2 by ap(n) = (p,n). The collection s# = {ap)p<EN is
called the atlas of our manifold. Ap will denote the range of ap, thus Ap = {p}
X N and N2 = \JpeNAp. The Ap's are called patches of the manifold.

A subset C of JV2 is ^/-recursive (s£rec, for short), if and only if for every
p G JV, a.~p

l(C) is recursive. Similarly, C is ^/-recursively enumerable (s/-r.e., for
short) if and only if for every p e N, a'p

x(C) is r.e.. A function / : N2 -* N2 is
ji/-s/-partial recursive (s&sZ-p.r., for short) if and only if both

(a) dom / , the domain of / , is j^r.e., and
(b) given p, q e JV, the set a^f'^A^) is the domain of a p.r. function fpq

satisfying aq° fp q= / ° ap.
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[3] Classical isol incomparability and oo • on manifold RET's 101

Also, / : N2 -* N2 is called sf-s/-bounded (respectively st-sficompact) if and only
if for each p e N, f{Ap) (respectively, f'l(Ap)) is contained in the union of
finitely many ,4^'s. An s£s/-embedding is a function which is 1-1, j^s^p.r.,
.tf^bounded, and .s&s^compact.

For subsets C and D of N2, C is recursively equivalent to D (denoted C - D)
if and only if there exists an .B&5£embedding / with C c dom/ and / (C) = D.
(With such C, D, f, we also say that C is recursively equivalent to D via /.) The
terminology is justified; = can be shown to be an equivalence relation. The
equivalence class containing C is denoted [C] and is referred to as C's recursive
equivalence type (RET).

Subsets C and D of N2 are called separable if and only if there exist disjoint
j^r .e . sets E and F with C c E and D Q F. Addition of RET's is defined by
[C] + [D] = [C* U £>*], where C* and D* are separable sets with C* <= [C]
and D* e [/)]. It is easily shown that addition is well-defined. In particular,
[C] + [D] = [C © £>], where C © Z) is defined as DpeNap({2n\ap(n) e C} U

Parallelling the classical notation, we write [C] < [D] if and only if there exists
E with [C] + [£] = [D]. However, despite the notation, it has not yet been
established that this relation < is actually a partial order. Specifically, the
anti-symmetry of < represents a yet-to-be-proved manifold analogue of the
Schroder-Bernstein theorem that could have been proved easily if Proposition 0.1
carried over to manifolds.

A subset C of N2 is called sf-bounded if and only if C is contained in the
union of finitely many^ ' s . If C is Abounded, then C is recursively equivalent
to a set of the form ap(D) for some p e N and D c N. Further, if (for px,
p2eN and Dlt D2 c N), [C] = [a^DJ] and [C] = [ap2(D2)], then D, and D2

are (classically) recursively equivalent, i.e., [.DJ = [D2]. Thus tp, given by
<p([ap(D)]) = [D], is a well-defined function from the collection of RET's of
Abounded subsets of the manifold to the collection of (classical) RET's over JV.
In fact, <p is easily shown to be an additive isomorphism.

1. Incomparability properties of isols

As stated earlier, this section is concerned exclusively with classical recursion
theory. The main construction in this section will use a typical "satisfy-require-
ments-in-stages" approach in order to obtain this proposition.

1.1. PROPOSITION. There exists a sequence of sets of natural numbers {£,}°l0

such that
(a) for each i, [£,] is an infinite indecomposable isol;
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(b) for each i and each j =t i, [£,] ^ oo • [EJ\;
(c) for each i, [£,] « [Uy#I<y, £,>].

From Proposition 1.1, the following result, central to the main construction of
Section 2, will follow routinely.

1.2. PROPOSITION. There exists a sequence of sets of natural numbers (5,}°L0

such that
(a) for each i, [/?,-] is an infinite indecomposable isol with Bt c (i, N);
(b) for each i, if m e N and J is a finite subset of N\{i], then [fi,] ?£ oo •

We begin by recalling a definition and proving an easy lemma.

1.3. DEFINITION. An infinite set B is cohesive if and only if for every r.e. set T,
either B n Tor B\T is finite.

1.4. LEMMA. Let C* be cohesive, and let C = {2n\n e C * } . Then C is also
cohesive.

PROOF. The proof is trivial. Let an r.e. set T be given. If we define T* as
{« 12n e T), then 7* is r.e. Since C* is cohesive, either C* n T* or C* \ T*
is finite. But CC\T= {2n\n (= C* n T*}, and C\T = {2n\n e C * \ T * } .
Thus, either C n Tor C \ T is finite.

By Theorem 43 of [1], cohesive sets exist. Fix a cohesive set C*, and let C be
defined as in Lemma 1.4. The letter C will be reserved for this particular set
throughout the rest of Section 1. Notice that if B c C, then B is either finite or
cohesive. In particular we have

1.5. REMARK. If B c C, then [B] will be an indecomposable isol.
One other piece of notation needs to be introduced. Throughout Section 1,

{fn }"=o wiU denote a fixed (non-effective) listing of all 1-1 p.r. functions / such
that C n dom / is infinite.

Before proceeding to the formal details of the construction of the sequence
{£,} of Proposition 1.1, we first make a few general remarks about the plan of
attack. The sets £, will be subsets of C and will be defined in stages inductively
(by a non-effective construction, of course). At stage r, we will define two
sequences of sets, {Et r}fl0 and {Ft r}°l0- The idea is that Eir (respectively î  r)
will be the set of numbers which, up through stage r, have been earmarked to
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[s] Classical isol incomparability and oo • on manifold RETs 103

belong to £ , (respectively, to be forbidden membership in £,.) Naturally, the

action taken at stage r will help to ensure that the sets Et have the desired

properties.

At stage 0, each Ei0 will be empty. Thereafter at stage s + 1, Ei<s+1 will equal

Ej s for all but at most one choice of i. Further, if Eis+l ¥= Ejs, then £, J + 1 will

equal Et S(J {x} for some x e N. Thus for any fixed stage r, we have obtained

inductively that only finitely many £, r will be nonempty and that all £, r will be

finite.

The preceding paragraph will also apply, mutatis mutandis, to the sets Ft r.

Here are the details.

1.6. INDUCTIVE CONSTRUCTION OF THE SEQUENCES {£ , r } AND {Ft,_,}.

Stage r = 0.

For all /, let Ei0 and Fi0 be empty.

Stage r = s + l.

There will be several cases, but in all cases, start by tentatively setting

kr = F k s f o r e a c n k-

Case I. s = (i, j,0) for some /, j .
In this case, pick any x e C \ ( £ , , U Ft s). (Since C is infinite and Eis U i^.,

is finite, such an x will exist.) Change £, r to £,-s U {x}.

Case II. 5 = (i, n, 1) for some i, n.
In this case, pick any x e C\Fjs such that fn(x) £ U> #, (>, Ej s). (Such an x

will exist since C D dom/n is infinite, Ft s is finite, U7 #, (7, ̂ j ) is finite, and /„
is 1-1.) Thus /„(*) = (y, z> for some y, z with either y = / or z <£ £̂ , 5. Change
£, r to £,.iS u {x}, and, if y * i, change Fyr to F^, U {z}.

Case III. J = (/, _/, n + 2) for some /, j , n.

Subcase (i). i = j .

If / = 7, just proceed to the next stage.

Subcase (ii). / #y, and for all x <= C X ^ , , /n(x) belongs to ( ^ s, N). If this
subcase holds, also just go to the next stage.

Subcase (iii). 1 #7, and there exists x e C\FifS with /n(x) « <£y s, N). If this
condition holds, fix one such x. Thus fn(x) = (.v, z) for some y, z with y € Ej s.
Change Eir to Et SU {x} and change Fj rto FjsU {y}.

This completes the description of the construction of the sequences {£, r} and
{ Ft r). We are now in a position to establish Proposition 1.1.
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1.7. PROOF OF PROPOSITION 1.1. Let {Er r} and {Fi r) be as in Construction
1.6. For each i, define £, to be UfL0Eiir. We shall verify that the sets £, satisfy
the properties listed in Proposition 1.1.

(a) Let i e N be given. For each j , stage (/, j , 0) contributes a new element
towards Et according to the specifications of Construction 1.6, Case I. Thus £, is
infinite. Furthermore, £, c C by the construction. Therefore, by Remark 1.5,
[Et] is an indecomposable isol.

(b) Let i, / e J V (with j * i) be given. We shall assume that [£,-] < oo • [Ej]
and derive a contradiction. If [£,] < oo • [Ej], then there exists D* with [Et] +
[£>*] = oo • [Ej]. Let D = {2m + l\m e £>*}. Then [D*] = [£], and £, and D
are separable (since all elements of C, and thus of Et, are even.) So oo • [Ej] =
[£•,] + [D] = [£, U /)], and there exists a 1-1 p.r. function / with dom/ 3 £, U D
and / ( £ , U £>) = (£,, N). Since dom/ contains £,, an infinite subset of C, it
follows that / equals /„ for some value of n. Let s = (i, j , n + 2) and consider
what happened at stage r = s + 1 according to Construction 1.6, Case III.

Obviously, subcase (i) did not hold since / =£ j .
If subcase (ii) held, we know that x e C\Fi<s implies that f(x)=fn(x)e

(Ejs,N). But FisC\Ei is empty, so / (£,) c (Ej<s, N). Define B as D n
f~l({Ejs, N)). Then £, and 5 are separable, since B Q D, and £> is separable
from £,, Furthermore, EtV B = f-\(EjyS,N)), which is r.e. because £,._, is
finite. So £, itself is r.e., contradicting the fact that [£,] is an infinite isol.

If subcase (iii) held, let x, y, and z be as in the description of this subcase in
Construction 1.6. At stage r we ensured that x e Et. Also, at this stage, y had
not yet been included as a contribution towards Ef, by placing y on the
"forbidden list" Fjr, we kept y out of £,. But then f(x)=fn(x) = (y,z) €
(Ej, N). This contradicts the statement that / (£ , UJ ) )= (EJt N).

So all possibilities lead to contradictions, and the assumption [Et] < oo • [Ej] is
false.

(c) Let / e N be given. We shall use a proof by contradiction similar to that
used in handling subcase (iii) above. Assume that [£,.] < [U>#,(>, £})]. Then
there exists a 1-1 p.r. function / with d o m / D is, and /(£,) c Uy#,( / , £7>.
Since C D dom/ contains the infinitely many members of Et, f must equal /„
for some n. Consider stage r = s + 1, where 51 = (/, n, 1). At this stage, Con-
struction 1.6, Case II applied; let x, y, and z be as specified in the description of
that case. Thus either y = i'or z £ Eys.

H y = i, then / (x) = /„(*) = </, z) £ U,*,(./, £,->; since at stage r we en-
sured that x e £,., this contradicts the statement that /(£,) c U>#1- 0', £,•>.

On the other hand, if >> # /, then z £ Eys. Furthermore, at this stage z was
added to the forbidden list so that z £ Ey. But then f(x) = (y, z) £
Uy # , (y, £;>, and again we have a contradiction to /(£",-) c Uy # ; (y, £,).
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[7] Classical isol ^comparability and oo • on manifold RET's 105

Thus, the assumption [£,] < [Uy*,(./', is,-)] ultimately leads to contradiction
and is therefore false; the proof of Proposition 1.1 is now complete.

Proposition 1.2 is now a straightforward consequence of Proposition 1.1.

1.8. PROOF OF PROPOSITION 1.2. Let {£,} be as given by Proposition 1.1 and,
for each i, define B, to be (J, £,-).

(a) Clearly, each B, c (i, N), and [BJ = [£,], so that each [BJ is an infinite
indecomposable isol.

(b) Let i, m e N and let J = {j^..., jp} c JV\ {/} be given. We shall reach a
contradiction from the assumption that [BJ < oo • [UyeyB,-] + m • [U°°.,-+iB,-].
If this assumption holds, we may rewrite the right-hand side and obtain

FT r l [ I°°I 1 \ Ti 1
[ B , ] < o o • [Bj + ••• + o o • \Bj \ + \ ( J B j • + • • • + U B j \ .

' [j-i+i J U-i+i J

Then Theorem 15(w) of [1] imph'es the existence of sets D l 5 . . . , Dp+m such that

(1-9) [Bi] = [ D 1 ] + ••• + [ D p + m ] ,

(1.10) [Z)J<oo[B,J forl *zk4:P,znd
r » 1

(1.11) [Dt] < | J B, for /? + 1 < k < p + w.
[y=.+i J

Since [Bt] is an infinite indecomposable isol, (1.9) implies that exactly one Dk is
infinite. For this k, then, [Dk] = [BJ - [S], where S is some finite set.

If 1 < k < p, then we have, by (1.10), that [BJ - [S] = [Dk] < oo • [BJ; thus
[BJ < oo • [Bjk] + [S] = oo • [BJ. But then [£J < oo • [ £ J with ^ ^ j , con-
tradicting Proposition l.l(b).

On the other hand, if/> + l < ) t < / > + m, then (1.11) says that [BJ - [S] =
[D/<] < [U°°_,+i B,]. By standard RET arithmetic, one of two alternatives follows:
either [BJ < [UJLi+1Bj], or [BJ = [\Jj=i+1Bj] + a finite RET. If the former
alternative held, then [•£,-]< [U"_j+1(y, £,-)], contradicting Proposition l.l(c).
And the latter alternative certainly cannot hold, since [BJ is indecomposable.

Therefore, the original assumption is always contradicted, and the proposition
is proved.

2. The main manifold construction

Recall the classical result of Dekker and Myhill that was given earlier as
Proposition 0.1. We restate it here.
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2.1. PROPOSITION. For any RET'* [C] and [D], [C] = [C] + [D] if and only if
[C] > oo • [D].

In the setting of recursive manifolds, this proposition will not carry over in
general, at least, not if we hope to find, for each RET [D] on a manifold, a
corresponding RET oo • [D] that behaves as in Proposition 2.1. Here is a
counterexample from [2].

2.2. EXAMPLE. Consider the manifold with base set N2 described in Section 0.
On this manifold, let D = {(0,0)}, Cx = {0} X N (i.e., the patch Ao), and
C2 = NX {0}. Then [Cx] + [D] = [CJ, and [C2] + [D] = [C2]. Assume that for
some T c AT2, we have [C] + [£] = [C] if and only if [C] > [71]. Then [CJ > [T]
and [C2] > [T]; it easily follows that T must be finite. But now we have
[T] > [T], and yet [T] + [D] ¥= [T], contradicting the assumption. Thus for
D = {(0,0)}, there is no [T] such that [C] + [D] = [C] if and only if [C] > [T].

The crux of Example 2.2 lies in the fact that we have two different RETs, [CJ
and [C2], each of which is qualified, in a natural way, to be called "oo • ID]". The
set C\ consists of infinitely many copies of D, all placed within D 's patch Ao. On
the other hand, a single copy of D in each patch gives rise to C2. In other words,
we could call [CJ an "in-depth oo • [/)]" and [C2] an "in-breadth oo • [D]".

On our manifold, with its infinitely many patches, this "in-depth vs. in-breadth"
phenomenon must be taken into account. It thus becomes reasonable to investi-
gate a modified version of Proposition 2.1 which allows for that phenomenon. If
such a modified Proposition 2.1 held, the manifold's RET's might then be seen to
behave similarly to RET's on iV, especially with regards to a Schroder-Bernstein
type of property. However, as we shall see, the differences between the two kinds
of RET's run deeper than can be reconciled so easily. We first need some
preliminaries in order to be able to state precisely Proposition 2.1's modification,
which will appear in conjectural form as Question 2.6.

2.3. DEFINITION. For any D c JV2, define
(i) oo! • D to be U, e N ap{(a-\D), N)\ and
(ii) oo2 • D t \

Figure 1 gives a rough indication of how oo! • and oo2 • behave. Both of these
operations preserve recursive equivalence, as we now prove.

2.4. PROPOSITION. Let B, C be subsets ofN2 with B = C. Then
(i) OO! • B « 00! • C,

(ii) oo2 • B — oo2 • C.
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PROOF. Let / be a function with d o m / D B such that B =• C via / . Define the
function g on ooj • d o m / such that if f(ap(m)) = aq(n), then g(ap((m, k))) =
aq((n, k)). It is then readily shown that oĉ  • B = ooj • C via g. Similarly,
oo2 • 5 = oo2 • C via A, where A is the function defined on oo2 • d o m / such that
itf(ap(m)) = a^n), then f(a(p k)(m)) = a(qk>(n).

Proposition 2.4 allows us to make the following definition.

2.5. DEFINITION. For any D Q N2, define

(i) oox • [D] to be [^ • D], and
(ii) oo2 • [Z)]tobe[oo2- D].
For example, in Example 2.2, [CJ equalled ^ • [D], and [C2] equalled

oo2 • [D].

o
o
o

o

-0

K

O O O o o

FIGURE 1

(a)AselDSN' (b)oo,-D (c)oo,-D
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We may now state conjecturally the modification to Proposition 2.1 suggested
by Example 2.2.

2.6. QUESTION. Let C, D c TV2 with [C] + [D] = [C]. Must [D] have a decom-
position [D] = [E] + [F] such that [C] > ooj • [£] + oo2 • [F]?

When Z) is as in Example 2.2, the answer is affirmative. It can be easily shown
that any [C] which additively absorbs [D] satisfies either [C] > ooi • [D] (= ao1 •
[D] + oo2 • [0]) or [C] > oo2 • [D] ( = M l • [ 0 ] + oo2 • [D]). In general, how-
ever, the answer is negative. The remainder of this paper is devoted to construct-
ing sets C and D which demonstrate this. We start with some basic properties of
oo! and oo2.

2.7. PROPOSITION. For B,C c N2,we have
(i) ooi • ([B] + [C]) = oo! • [B] + ooi • [C],
(ii) oo2 • ([B] + [C]) = oo2 • [B] + oo2 • [C].

PROOF, (i) It suffices to find a function / such that oox • (B © C) = <x>1 • B ©
oo! • C via / . First, define h: N -» N by

if w is even,

i) + 1 if m is odd.

Then define / : TV2 -» TV2 by f(ap(k)) = ap(h(k)); this is the desired function.
(ii) This part is even simpler, since oo2 • (B © C) actually equals oo2 • B © oo2

• C.

2.8. PROPOSITION, (i) / / [B] «s [C], then ooi • [5] < ooi • [C].
(ii) / / [B] < [C], ftot oo2 • [B] < <»2 • [C].

PROOF, (i) If [5] < [C], then for some D, we have [C] = [B] + [D]. By
Proposition 2.7(i), we have ooi • [C] = ooj • [B] + oox • [D], and so oox • [B] <
00! • [D].

(ii) This is proved similarly.

2.9. DEFINITION. For m e TV, let [wi] denote the RET comprised of all

w-element subsets of TV2.

2.10. PROPOSITION. Let 0 # B c TV2, a W t o m G TV.
(i) ooi • [fl] + ooj • [m] = ooi • [B],
(ii) oo2 • [B] + oo2 • [m] = oo2 • [B].
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PROOF, (i) First note that ooi • [1] = [Ao] (where Ao is, as always, {0} X N) so
that oo! • [1] + oo! • [1] = [Ao] + [Ao] = [Ao © Ao]. But Ao © Ao = Ao, so o ^ •
[1] + oo! • [1] = 0©! • [1]. It then follows inductively that ooj • [1] + c©! • [m] =
ooi • [1] for any m e N. But now, if B Q N2 is nonempty, we may pick &0 e B
and write

ooi [B] + « ! [m] = ooi - ( [ * \ { M ] + [ { M l ) + » i [ H

= 00! - [ * \ { M ] + » i -[{*o}] + ooi -[m]

] + oo1-[l] + oo1-[m]

= 00!

(ii) Observe that oo2 • [1] = [{2n\n e TV} X {0}] = [{In + 1|« G N) X {0}],
so that oo2 • [1] + oo2 • [1] = [N X {0}] = oo2 • [1]. Then reasoning as in (i) com-
pletes the proof.

Armed with the preceding results, we may now embark upon the construction
of sets that answer Question 2.6. We start by constructing a function / from N2

to N2. The definition of / will be by cases.

2.11. DEFINITION. For all values of r, k, m, and n, set

/ («0(2r)) = ao(2r + 1).
f(a3k+3(2(k, n))) = a3,+3(2<A:, «> + 1), and

/(«3*+3(2*)) = <*3k(2x) otherwise.
f(a3k(2(k, n) + 1)) = a 3 t + 1 « 0 , » » , and
f(a3k(2x + 1)) = a3/t+3(2.x + 1) otherwise.

From Definition 2.11, it is immediate that / is j^j^rec., j^j^bounded, and
j^s^compact. Not quite so immediately, but still routinely, one may verify that /
is also bijective. Thus / is an j^j^embedding.

The definition of / is based on a pattern which is a modification of that used in
[3]. The purpose of using such a pattern is to ensure that the iterated action of /
behaves as in the next proposition.

2.12. PROPOSITION. Let k e N and S c N, and let f be as in Definition 2.11.
Define Tto be {2(k,s) + l\s e S}. Then

(T i/#n = 0 ,3 ,6 3/c,
U/"(«(r)) = \(N,S) ifm=3k + l,

\0 otherwise.
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PROOF. By the definitions of / and T, we have

= ao(T),

fk(a0(T))

The proposition follows directly from these equations.

We are now in a position to define the sets C and D that will answer Question
2.6. Let {Bk}f_0 be as in Proposition 1.2, and let B equal (Jf=0Bk. Also, define
Dk to be {ao(2b + l)\b e Bk} for each k. Then set D equal to Uf=0Dk

(= {ao(2b + l)\b e B}), and set C equal to U^fiD), where / is as in
Definition 2.11. In the rest of this paper the symbols B, C, D, Bk, Dk, and / will
be reserved for these particular values.

Because of the behavior of / (see the proof of Proposition 2.12), we have
C c N2\A0. But since D c Ao, C and D are separable; so [C] + [D] = [C U D].
On the other hand, f(C UD) = C, which implies that [C U D] = [C]. Thus
[C] + [Z>] = [C].

The next proposition goes about halfway towards settling Question 2.6.

2.13. PROPOSITION. Assume that D = E U F, where E and F are separable and
[C] > oo! • [E] + oo2 • [F]. Then Dk n F is finite for each k.

PROOF. Under the assumptions of this proposition, we have

(2.14) [Dk] = [(Dk n E) u(Dk n F)] = [Dk n E] +[Dk n F].
Applying the isomorphism 9 described in Section 0, <p([Dk]) = q>([Dk O £]) +
<?([/)£ n .F]). But <p([I>̂ ]) = [-Bt], which is indecomposable. This implies that
either Dk n E ot Dk r\ F is finite. We prove the proposition by assuming that
Dk n £• is finite and deriving, from that assumption, a contradiction to Proposi-
tion 1.2.

If Dkn E is finite, of cardinality n, say, then we have, from (2.14), that
[Dk] = [Dk n F] + [n]. Thus

°°2 ' \Dk\ = °°2 ' \Dk n ^ ] + °°2 • [«] (by Proposition 2.7(ii))

= oo2 • [D^ O F] (by Proposition 2.10(ii)).
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O n the other hand, since DkC\ F and F\ Dk are separable, [F] = [Dk n F] +
[F\Dk], so [Dk n F] < [F]. Therefore,

oo2 [Dk n F] < oo2 [F] (by Proposition 2.8(ii))

< [C] (by the assumptions of this proposition)

= [ C U D ] .

Now the two preceding paragraphs imply that oo2 • [Dk] < [C U D], and thus,
for some Q* c AT2, we have oo2 • [Z>J + [Q*] = [C U D]. Define g to be
{am(2n)\am(n) e ()*}; then [g] = [(?*], and oo2- Dk and g are separable.
Thus [oo2 • Dt U Q] = [C U D], and there is an j^ja^embedding g whose domain
contains oo2 • Dk U g. and which maps oo2 • Dk U g onto C U D.

Since g is j^j^compact, g ' ^ J i o ^ r ) ' s contained in a finite union of Aj's;
hence g ' ^ ^ o ^ r ) £ U^io^y f°r some M. For the rest of this proof, let n be
fixed at a value large enough so that (0, n) exceeds M. Then g(A(Q n )) c
Uf=3/ t+3/lr. But because g is j^j^bounded, g(A(0 n>) is contained in the union
of only finitely many of those Ar's with r > 3A; + 3. Thus there exists an
L> 3k + 3 withg(^(Oin>)cU^_3fc+3^r. DenoteU^3^+ 3^rby 5.

As oo2 • D^ and g are separable, so also are oo2 • Dkn g'l(S) and <2 n g
Therefore,

[oo2 • Dt n g-^S)] + [g n g-Hs)] = [(ooj -Z ) t u s )n g-l(s)}

= [(c u /)) n
Hence

(2.15) [<»2-Z),ng

But oo2 • Z>̂  n g-1(5) may be written as the union of the separable sets
D \S) (N2\A) d D x(5) ^ D

2 ^ g y p
oo2-Dkn g-\S) n (N2\A(0,n)) and oo2 • D, n g-x(5) n ^<Ojll> = oo2 • Dt n

^<o,n>-So

(2.16) [oo2 • Dt n ^J<0 n>] < [oo2 • Dk n g-x(

Furthermore,

(2-17) [ D j = [ o o 2 - Z ) , n ^ < 0 , n ) ] .
Now statements (2.15), (2.16), and (2.17) imply that [Dk] < [(C U D) n S],

and on applying the isomorphism <p, we have

(2.18) <p([Dk])<<p([(CVD)nS]).

But

(2-19)
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as remarked earlier. On the other hand, the definitions of C, D, and S imply that

?([(CUD)nS])-J(CUD)n U A
\L r=3k+3

= E [« ; 1 (CU J D) ]=
r=3k+3

«;M U r(D)

0f= I f«;1f0/"fuA))]= E \ I) aA
\ /J L

By Proposition 2.12, if r = 2 (mod3), then a;1(U^.0/' '(A)) = 0 for aU z. By
the same proposition, if r = \ (mod 3), then only for z = (r - l) /3 is
«;1(U~=0/"( A)) nonempty, and for that value of z, we have

Once more, Proposition 2.12 implies that if r = 0 (mod 3), then a;1

is 0 for z < r/3 and is {2b + l\b e Bz) for z > r /3 . Thus

[ 0 ] forr = 2(
00 I 00

U «;M U /"(A)

Lz=o \«=o

This then implies that

[<iV,5(r_1)/3)] forr s i (mod 3)

for r = 0(mod3).

L

= E |
r = 3/t + 3

r=l(mod3)

\J

int(Z./3)r

[z=y

int(i/3) f oo 1

+ E KM
7 = A+1 Lz-7 J

int(i/3) f oo

+ E U B
t l Lz = /t+l

(int(L/3)-A:)- (J
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where int denotes the greatest integer function. And so we have

(2.20) <p([(C U D) n S]) *

+ (int(L/3)-*)- U
lz=k+l

The conjunction of statements (2.18), (2.19), and (2.20) produces the desired
contradiction to Proposition 1.2, and Proposition 2.13 is proved.

We now settle Question 2.6 by an argument for oo! that resembles the argument
for oo2 used in Proposition 2.13.

2.21. THEOREM. There exist subsets C and D of N2 such that [C] + [D] = [C]
and such that for no E, F with [E] + [F] = [D] will [C] > <x>x • [E] + oo2 • [F]
be true.

PROOF. Let C and D be as in Proposition 2.13. We have already remarked that
[C] + [D] = [C]. Now assume that E and F are such that [E] + [F] = [D] and
[C] > oox • [E] + oo2 • [F]. Under this assumption, we shall reach a contradic-
tion to Proposition 1.2 and thereby prove the theorem.

First, notice that we may, without loss of generality, assume that E and F are
separable and that D = E U F. (If the given sets E, F do not satisfy these
properties, then appropriate sets, recursively equivalent to E, F, will.)

Since oox • [E] < [C] = [C U D], there exists Q* with ooj • [E] + [Q*] = [C
U £>]. Let Q = (am + 1(n) |am(n)G Q*}. Then a^ • E and Q are separable,
since oOj • E c Ao and Q c N2\A0. Thus [oox • E U Q] = [C U D], and there
exists an j^j^embedding g whose domain contains oox • E U Q, and which is
such that g(ooj • E U Q) = C U D. Because g is J3&fl£bounded, g(A0) c
lil-o2Ar for some M. Denote U^0"2^r by S.

The sets Q and ooj • E are separable; thus, so are Q n g~\S) and oot • E n
g"'(S) = oox • E. It follows that

[oox -E]+[Qn g-\S)] = [(oox • E n g-^s)) u(g n g

= [(»!• £ug)ng- 1 (5) ]

= [g((OOl • £ u e) n g-^S))] = [(C u / ) ) n s ] .

Therefore,

(2.22) [oox- £] < [ (CUD)nS].
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Now define NM to be the set {ao((M, n))\n & N}, with M as above. Then
E n NM = (D n E) O NM = (Z> n iVM) n £ = Dw n £. By Proposition 2.13, we
have, for some n e N, [DM n F] = [n], and thus [DM] = [DM n £] + [«]. Hence
[£>„] = [£ n #„ ] + [«]. So

(2.23) [oo! • DM] = ooj [£Ti NM] + oOi •[«] (Proposition 2.7(i))

= oo! • [£ n iVM] (Proposition 2.10(i)).

On the other hand, E n NM is separable from E\NM, whence [E n NM] +
[E\NM] = [(E n iVM) U (£\ATW)] = [E]. This implies that [£ n iVM] < [£],
and so, by Proposition 2.8(i), we have

(2.24) oo! -[EnNM] < » ! • [ £ ] .

Together, statements (2.22), (2.23), and (2.24) yield [ooj • Z)M] < [(C U D ) n 5].
Applying the isomorphism <p and using the definitions of the sets involved, we get

[<N, BM)]

Since [BM] is an isol, we may cancel it (additively) M times from this inequality.
But this cancellation leaves the left-hand side unchanged, so that

Lr=M-H

In particular,

y + 1
j

This contradicts Proposition 1.2 and therefore proves Theorem 2.21.
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