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SOLVABILITY OF SINGULAR SECOND ORDER m-POINT
BOUNDARY VALUE PROBLEMS OF DIRICHLET TYPE

RUYUN MA AND BEVAN THOMPSON

Let f : [0,1] x R? — R be a function satisfying the Carathéodory conditions and
t(1 — tle(t) € L'(0,1). Let a; € R and & € (0,1) for 4 = 1,...,m — 2 where
0< & <& <+ <&m2 <1 In this paper we study the existence of C[0, 1]
solutions for the m-point boundary value problem

" = f(t,z(t),z'(t)) +e(t), 0<t<]1
m-2
z(0) =0, z(1) =) aiz(&)
i=1

The proof of our main result is based on the Leray-Schauder continuation theorem.

1. INTRODUCTION

In [4], Gupta, Ntouyas and Tsamatos considered the problem of proving the existence
of a C![0, 1] solution of the m-point boundary value problem

(1.1) () = fi(t,z(t),2'(t)) +er(t), O0<t<1

m-2
(1.2) z(0)=0, z(1)=)_ az(&)

i=1
where & € (0,1) for 1 = 1,2,...,m — 2 satisfies 0 < £; < & < -+ < Em_g < 1, the
a; € R, i =1,2,...,m — 2, have the same sign, e; € L'[0,1], and f; : [0,1] x R> > R
satisfies the Carathéodory’s conditions as well as a growth condition of the form

(1.3) |£1(t,w, )] < pr(®)lul + (@) lv] + 71(2),

where p), q, 1 € L}[0,1].

This, of course, raises the following natural question: What would happen if f; and
e, have a higher order singularity at t = 0 and t = 1?7 The results of Gupta, Ntouyas
and Tsamatos do not apply to the case (1 — t)e(t) € L![0,1].
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The purpose of this paper is to investigate the existence of C[0, 1] solutions for the
second order m-point boundary value problem

(1.4) z"(t) = f(t,z(t),z'(t)) +e(t), O<t<1
(15) w0 =0 1) =Y az(E)

where f : [0,1] x R? — R satisfies the Carathéodory conditions (that is, for each (z,y)
€ R?, the function f(-,z,y) is measurable on [0, 1] and for almost every t € [0, 1}, the
function f(t,-,-) is continuous on R?). We make the following additional assumptions:
(HO) a; € Rand § € (0,1)fori=1,2,...,m—2 where 0 < § < & < -
< &p-2 <1 and

m-—2

Db #1;

i=1
(H1) There exist g(t) € L'[0,1] and p(¢), 7(t) € Lj .(0,1) with ¢(1 ~ t)p(),
t(1 — t)r(t) € L0, 1], such that

(1.6) |f(t,u,v)| < p(t)|ul + q(t)|v] + r(t), almost everywhere t € [0,1], (u,v) € R?

where
Llloc(o’ 1) = {u | ulicq) € L'[c, d] for every compact interval [c,d] C (0,1)};

(H2) The function e : [0, 1] — R satisfies fol 1 - t)]e(t)| dt < 0.

For results concerning the existence and multiplicity of solutions (or positive so-
lutions) of singular nonlinear two-point boundary value problems, one may refer, to
Agarwal and O’Regan [1], Asakawa [2], Baxley [3], O’'Regan [7], Shi and Chen (8] and
Taliaferro [10] and the references therein. The existence and multiplicity of solutions of
non-singular multi-point boundary value problems have been studied by many authors;
see, for example, Gupta [4], Ma [4, 5], Webb [10] and the references therein for more
information on this problem. For recent results on singular multi-point boundary value
problems, see Zhang and Wang [11].

2. PRELIMINARY LEMMAS

In this section, we always assume that (HO) holds.

We shall use the classical Banach spaces C[0, 1], C*[0,1], L![0,1] and L*[0,1]. We
denote by AC|a,b] the space of all absolutely continuous functions on [a,b], and define
AC*|a, b] by

AC*[a,b] = {u € C¥[a,b] | u¥) € AC]a, b]},
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where AC°[a,b] = ACla,b]. Let I be an interval in R. We denote by ACj ./ and Li ocl
the spaces of functions on I defined by

ACyc] = {u | ulie,q € AC|c, d] for every compact interval [c,d] C I}

and
LiyoI = {u | uleq € L*[c, d] for every compact interval [c,d] C I}.

Let E be the Banach space
E={ye L] (0,1)t(1-t)y(t) € L'[0,1]}
equipped with the norm
1
Iolle = | #t = )lute)| e
and let X be the Banach space
— 1 : _ ! : ' :
X ={ueC0,1)|ueC[o01], 15111(1 t)u'(t) and lim u/'(2) ¢x1st}
equipped with the norm
lullx = max{lulle, [|£(1 - '8}, }

where || - || denotes the sup norm.
Let G(t,s) be the Green’s function for the second-order boundary value problem

~u"(t) =0, te(0,1)
(2.2) u(0) = u(1) = 0

which is explicitly given by

(2.3) Guﬁ)={gi:ﬁ

s)t, 0<t<s< 1.

For each y € E, we define the operator T by

m—

4 @O = [ o) ds+ s o [ Gleou(e)ds.

2
=1 @i o
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Now since
/Gts)y )ds+ —Eﬁ— l&Iz_:a,/ G(&, s)
y t
g/o G(t,s)ly(s)lds+‘—1—_T—Z > la,[/ G(&, 5)|u(s)| ds

é/o(l—t)sly(s)lds+/ (1 = s)t|y(s)| ds
1
TN S ,Z_:'“"[/ (1= &)sly(s)| ds + / (1~ 8)&|y(s)| ds

< (1+|1—_Z—‘Z"I}E—Igi—&l)/ s(l—s)ly(s)lds<oo

we know from (HO) that (T'y) : [0, 1] — R is well-defined.
m—2
REMARK 2.1.  If all of the @;’s have the same sign, then z(1) = 3 a;z(£;) implies

i=1

(2.5) z(1) = az(n)

for some 7 € [£1,&m—2], Where o = Z a;. To study (1.4)-(2.5), Gupta, Ntouyas and

i=1

Tsamatos defined the operator T' by

@ = [ - ds+ 2 [ aweds - = [0 - oo

This form of T is not suitable for studying the multi-point boundary value problem
(1.4)-(2.5), and accordingly (1.4)—(1.5), in singular case.

LEMMA 2.1. ([2, Lemma 2.1).) Suppose that ¢ € E. Then
t 1
Q) [ s8(s)ds, [ (1= 5)6(s)ds€ 210,1], and
0 ¢

/o1 /0‘ s¢(s) dsdt = /01 /,1(1 - 5)¢(s) dsdt = /01 s(1 — s)¢(s) ds

1
.. . . t _
(it) %%t‘/t (1—-s)¢(s)ds =0, %1_1’111(1 —t) [y so(s)ds = 0.
LEMMA 2.2. Lety€ E. Then Ty € X and

(2.6) (Ty)'(t) + y(t) = 0, almost everywhere t € (0,1).
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PRrROOF: For y(t) € E, we have that t(1 — t)y(t) € L![0,1]. So for each r € (0,1),
ty(t) € L'[0,7] and (1 — t)y(t) € L'[r,1]. Thus (Ty)(t) € AC),(0,1) since

2.7 (Ty)@) = /0 (1 —t)sy(s)ds +/¢ (1 — s)ty(s) ds

m-—2

t i 1
+ PRy :,;_12 "3 ; a; [/0 (1-&)sy(s)ds+ /& (1 = s)&y(s) ds].

Moreover

t 1
(2.8) (Ty)(t) = — / sy(s) ds + / (1 - s)y(s)ds + D,.

0 t

where

1 m-2 1
(2.9) D, := T S ; aifo G(&, s)y(s) ds.
Now since

dt

/01|(Ty)'(t)|dt=/ol —/otsy(s)ds+/t1(l—S)y(S)d8+Dy
g/olfotsly(s)|dsdt+/01/‘1(l—S)ly(S)ldsdt+lDyl
=/01/sls|y(s)|dtds_+/o1 /os(l—s)|y(s)|dtd5+lDy|

1
= 2/ s(1 - 8)|y(s)| ds + |Dy| < o0
0

we have Ty € AC[0,1]. Now (2.8) together with the fact that sy(s) € L![0,r] and
(1-s)y(s) € L'[r, 1] for each r € (0,1) imply that (Ty)'(t) € AC)y(0,1), and accordingly

(2.10) (Ty)'(t) = —y(2), almost everywhere t € (0, 1).

Now set
(1) = 1 - DTy @],  telo1]

First we show y € L[0,1]. If this is true then t(1 — t)(Ty)'(t) € ACI0,1], and conse-
quently, %irrlx(l —)(Ty)'(t) and 1in3 t(Ty)'(t) exist.
— —
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A simple computation (by interchanging the order of integration) yields
[ olas= [ - oo - e + 10 - oyr]a
< /01,(1 - )|(Ty)'(t)| dt + /olt|(Ty)'(t)| dt + /01 t(1 - &)|(Ty)"(t)| dt

< /01 [(1 - t)/otsly(s),ds] dt+/ol[(l ——t)/tl(l - s)|y(s)|ds] dt
+[a-opas [t [ luolas]
+/ol[t/tl(1—s)|y(s)|ds] dt+/olt|D,,|dt+/olt(1 — t)|y(t)| dt

= /01 [/31(1 - t)sly(s)| dt] ds+/01 [/05(1 -t)(1 - s)ly(s)ldt] ds
+/01[/31ts|y(s)|dt] d.<>‘+/01 [/ost(l - s)|y(s)ldt] ds

+/0 t(1 - t)|y(t)| dt + | Dy

1
< 5/ s(1 - s)|y(s)| ds + |Dy| < oo.
0

This completes the proof of the lemma. 0
LEMMA 2.3. Letye€ E. Then
m-—2
(2.11) (Ty)(0) = 0 and (Ty)(1) = ) _ ai(Ty)(&).
=1

PRroOOF: By Lemma 2.2, Ty € X. Thus we have from (2.7) that
(Ty)(0) = lim(Ty)(t)

t 1
= {1_% A (1 -t)sy(s)ds + %1_1}3/1 (1 - s)ty(s)ds
0 m-2 1
T 2 | s as
=0.

Again applying (2.7) and the fact that Ty € X, we have
(Ty)(1) = him(Ty) )

t 1
(2.12) ={i_‘3/0 (1 - t)sy(s) ds+£iﬂ/t (1= $)ty(s) ds
1 m-2
+m p ai/O G(&, s)y(s) ds.
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Applying (ii) of Lemma 2.1 and using the fact that (1 — s)y(s) € L![r, 1] for some
r, 0 < 7 < 1, we conclude that

(2.13) (Ty)(1) = 1171—2

1- Ei:l '6' i=1 / G(&, S) @

Similarly

1
(2.14)  (Ty)(&) = | G(&, s)y(s)ds + —,,.—2—— Z G(g., s)y(s) ds.
0 1- 1{:

m—2
This together with (2.13) implies that (Ty)(1) = Y. a:i(Ty)(&).
i=1

For z € X, we define a nonlinear operator N by
(2.15) (Nz)(t) = - f(t,2(t), 2'(t)) — e(t), te(0,1).
From (H1) and (H2), we conclude that N : X — E is well-defined. In fact
INzl|g = [[t(1 = )(Nz)(t)| .,

= /olt(l - t)‘f(t, z(t),z'(t)) + e(t)| dt

(2.16) s/l[t(l—t ®]z®)] + |a@®)|t(x = 1)z’ (8) | +2(1 = 1)|r(2)]
0
+t(1 - t)]e(t)|] dt
< Ipllslizlieo + llgllz |61 = )2 )|, + lirlle + llelle

< 0. D

LEMMA 2.4 TN :X — X is completely continuous.

PROOF: From the definitions of T and N and (H1) and (H2), it is easy to show
that TN : X — X is continuous. Let B C X be a bounded set. We need to show that
(TN)(B) is a relatively compact subset of X.

Let {z,} C B and set

(2.17) w(t) = ((TN)za)(t) and 2,(t) = t(1 — ) ((TN)z,)'(t).

We need show only that there exists a subsequence with

(2.18) w, = w*  in C[0,1]
and
(2.19) zm— 2" in C[0,1]
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(We note that (2.18) together with (2.19) and the fact that 2*(t) = ¢(1 — ¢) (w‘(t))' for
t € [0,1) implies that, after taking a subsequence if necessary, ||w, — w*||x — 0.)
To prove (2.18), we recall that N : X - E and

(2.20) |(Nza) ()| < p(2) M+t(1( ) )M+r + |e(t)]|
= x(t)
where
(2.21) M = max{||z|]|x | z € B}.
Clearly, (H1) and (H2) imply that x € E. Now for each n and for every t;,¢, € (0,1]
with t; < ¢,
t
|wa (t1) - wn(tg)l = / ((TN)z,) (r)dr
t2
t
< / ((TN)z,.)'(T)ldT
t2
4 T 1
(2.22) - / - / s(Nz,)(s) ds + / (1 - 8)(N2p)(s) ds + D, |dr
(2 0 T

< /: :‘/orsl(Na:,,)(s)|ds+/;l(1—s)I(Nz,.)(s)lds-#D]dr
=/: [/Ofsx(s)ds-f-/fl(l—s)x(s)ds+D]d¢

D = sup{|D,| |y € B}.

where

T

By (i) of Lemma 2.2, / sx(s)ds, /1(1 - s)|x(s)| ds € L![0,1]. Thus (2.22) shows that
{wa}2, is equi—continu(c))us on [0, 1]. "Therefore by the Arzela-Ascoli theorem, after taking
a subsequence if necessary, (2.18) holds.
To prove (2.19), in view of the Arzela-Ascoli theorem, we need to verify that
(a) |lznlle < M for some positive constant M, independent of n;
(b) {z(t) }"_1 is equi-continuous on [0, 1].
Since (a) can be easily deduced from the definitions of T and N and the conditions
(H1) and (H2), we only prove (b) here.
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For n € N and t € (0, 1), we have from (H1) and (H2) that

|24 (8)] = |(1 = O ((TN)za) () = t((TN)za) (&) + (1 = )(TN)z0)" (1)
<(1- t)l ((TN)z,.)'(t)I + t|((TN)xn)'(t)| +¢(1— t)l((TN)x,,)"(t)'

<=1 /tsle,,(s)Ids+ (1-1¢) /1(1 — 8)|Nzp(s)|ds + (1 —¢t)|D|
(2.23) +t /tslNa:,.(s)lds + t/l(l — 5)|Nzn(s)| ds + t|D| + t(1 — t)| Nza(t)|
<£(1-1 /Ot sx(s)ds+(1-1¢) /tl(l —s)x(s)ds + (1 —t)|D|

+t/o sx(s) ds+t/t (1 — )x(s) ds + | D] + £(1 — )x(2)
= 'd)l(t)
By (i) of Lemma 2.1,
(2.24) ¥ € L*0,1].

Now (2.23) is sufficient to ensure the validity of (b) since

t1
/ zh(T)dr
2]

3. MaIN REsuLT

iy t1
|z,,(t1) - z,,(tg)l = < / |z;(7')|d‘r < P (T)dT.
t2 t2

0

THEOREM 3.1, Let f : [0,1] x R?2 - R satisfy the Carathéodory conditions.
Assume that (H0),(H1) and (H2) hold. Then problem (1.4)-(1.5) has at least one solution
in X provided

m-2

=1 |ail
(3.1) nan(1 42z ol
1 - :’;12 a;&;|

) +llalles < 1.

REMARK 3.1. In [4], a key condition is that all a; have same sign. We don’t need the
restriction on a; in (HO).
REMARK 3.2. Let us consider the three-point boundary value problem
(3.2) " = g(t,z,2')
1 2
! - -_— — — —
(0) =0, z(l)= 2(3) z(3)

where

[1 + cos(u®® + v*?)].

g(t,u,v) = t(loi ) sin(u + v)u + Bv + t(ll—t)
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It is easy to see that
|g(t, u,v)| < p(t)lul + g()lv] +r(2)
with p(t) = a/(t(1 —t)), ¢(t) = B and r(t) = 2/(t(1 - t)). Clearly, |Ipllz = |a|, |lq]lL:
= 18], lIrlle =2, and
i1 Iatl - 1+1 _
1-yr2al 1-0x(1/3)-1x(2/3)]
By Theorem 3.1, (3.2) has at least solution in X provided

3
2

5

Now we cannot apply the main results of [4] to deal with (3.2) since p,r ¢ L'[0, 1].

Proor oF THEOREM 3.1. From Lemmas 2.2 and 2.3, we know that u € X is a
solution of (1.4)—(1.5) if and only if

(3.3) © =TNu.

By Lemma 2.4, we can apply the Leray-Schauder continuation theorem (see, for example,
(6, Corollary IV. 7]) to obtain the existence of a solution for (3.3) in X.
To do this it is suffices to verify that the set of all possible solutions of the family of

equations

(3.45) z(t) = Af(t,z(t),z'(t)) + de(t), te(0,1)
m-2

(3.5) z(0) =0, z(1) =) az(&)
=]

is a priori bounded in X by a constant independent of A € [0, 1].
Let u € X be a solution of (3.4,)-(3.5) for some A € [0,1]. Then for ¢t € [0,1], we
have

i=1

|u(t)] = ’/ G(t, )ANu)(s) ds + Ty — .5, Za/ G(&, s)A(Nu)(s) ds

" t "
= A G(t, s)u (S) ds + ;—ET—;Z - a,/ G(§,,s)u (S) ds

(3.6) < (1 + L}n_l&l——l) /1 s(1 - s)|u"(s)| ds

Il - Z;—l ai;
Z 1 I i' ) "
= (14 == u(s) e
( It -5 el
which implies-that
(3.7) fullo < (14 2 2y lod e
. oo X .
Il - 21— létl
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Similarly,

I#1 — ey (1)) = ‘t(l—t) [- /0 SN (s) ds + /t (1= 9 (ONu)(s) ds]
- ‘t(l—t)[—/otsu”(s) ds+/tl(1—s)u”(s)ds]
(3.8) <t1-1) /otslu”(s)|ds+t(1 —4) [(1 — 9)|u"(s)| ds

<(1-1%) /tslu”(s)| ds +t/1(1 — s)|u"(s)| ds
0 t
1
g/o s(1 = s)|u"(s)| ds

which implies that
(3.9) (1 =)' @B, < Iu"lle-
Now from (3.4) , (3.7) and (3.9) it follows that
|t = Hu"()] = (1 - t)| Ftu(t), w'(t) + e(t)l
< H(1 =) [p@)|u®)] + a®|w' Q)] + ()] + [e®)]]
(3.10) <l ellullo + gl |81 = &' @), + lIrlle + llelie

m—2
<lple (1 + ==t

—=E Wl + llgllz W'l + lirlle + Helle
11— Z:';lz ai§i|>

for t € (0,1). Thus

m—2 '
1 i= a’il !
1) s < [l (14 T EEE )+l s + el + el
=1 151
It follows from the assumption (3.1) that there is a constant c, independent of A € [0, 1],
such that
(3.12) lu"lle < e
This together (3.7) implies that
(3.13) llulleo < (1+ =1 lai )c
| =S\ T -resl/”
Similarly, (3.12) together with (3.9) imply that
(3.14) 11 = )’ ()]loo < €
Therefore
Yo ail
(3.15) [lullx < ma.x{c, (1 + —==——cy.
11— Zi=l2 aiil
This completes the proof of the theorem. 0
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