Journal of Dairy Research

cambridge.org/dar

Research Article

Cite this article: Mahmmod Y, Smit N, Klapproth H, Chaffer M and Zvonar M (2025) Diagnostic performance of a novel molecular microarray assay for detection of bovine intramammary infections with *Mycoplasma* species using a gold standard approach. *Journal of Dairy Research*, 1–5. https://doi.org/10.1017/S0022029925101672

Received: 10 March 2025 Revised: 15 September 2025 Accepted: 29 September 2025

Keywords:

bovine mastitis; DairyGuard; intramammary infections; *mycoplasma bovis*; sensitivity and specificity

Corresponding author: Yasser Mahmmod; Email: yasserpcr@gmail.com

© The Author(s), 2025. Published by Cambridge University Press on behalf of Hannah Dairy Research Foundation. This is an Open Access article, distributed under the terms of the Creative Commons Attribution licence (http://creativecommons.org/licenses/by/4.0), which permits unrestricted re-use, distribution and reproduction, provided the original article is properly cited.

Diagnostic performance of a novel molecular microarray assay for detection of bovine intramammary infections with *Mycoplasma* species using a gold standard approach

Yasser Mahmmod¹ , Nicolaas Smit², Holger Klapproth^{2,3}, Marcelo Chaffer⁴ and Michael Zvonar⁵

¹Department of Veterinary Clinical Sciences, Lewyt College of Veterinary Medicine, Long Island University, Brookville, NY, USA; ²Safeguard Biosystems Holding Ltd., London, UK; ³Laboratory for Chemistry and Physics of Interfaces, Department of Microsystems Engineering, (IMTEK), University of Freiburg, Freiburg, Germany; ⁴Independent Researcher, St. Andrews, MB, Canada and ⁵Valley Veterinarians Inc., Tulare, CA, USA

Abstract

Diagnosis of cases of Mycoplasma mastitis is particularly challenging due to their unique biological characteristics, which complicate diagnosis and treatment. Hence, accurate and quick diagnostic tests for early detection of Mycoplasma mastitis are essential to initiate appropriate interventions or culling. The objective of this research is to estimate the diagnostic performance of the molecular microarray assay (MMA) against bacterial culture for the diagnosis of bovine intramammary infections (IMI) with Mycoplasma spp., using a gold standard approach and the Kappa agreement coefficient. A total of 395 quarter milk samples were collected from cows in 31 dairy herds with conventional milking systems in California, USA. Following dairy personnel practices, milk samples were collected from the lactating cows showing abnormal milk characteristics and shipped within 24 hours to the laboratory for bacterial culture and MMA examination. Milk samples with positive growth were confirmed via PCR test to eliminate misdiagnosis of Acholeplasma spp. Eighty-seven cows (22%) were positive for Mycoplasma spp. IMI and the test accuracy was 88.4%. The sensitivity of MMA was 90.8% (95% CI (Confidence Interval): 82.68-95.95), and the specificity was 87.66% (95% CI: 83.46-91.12). The positive predictive value of MMA in these herds was 67.52% (95% CI: 60.51-73.83), and the negative predictive value was 97.12% (95% CI: 94.57-98.49). Calculated Kappa coefficient was 0.70 (95% CI: 0.618-0.778). The high estimates of sensitivity and specificity of MMA suggest its usefulness as a routine and quick test for accurate diagnosis of Mycoplasma spp. IMI in dairy cows. Our findings indicate that MMA holds promise for enhancing the detection of Mycoplasma spp. and could potentially revolutionize diagnostic practices in the dairy industry and supports udder health management.

Mastitis, inflammation of the mammary gland, significantly affects milk production and quality, leading to substantial economic losses and increased veterinary costs (Bradley, 2002). *Mycoplasma* species are emerging as critical pathogens in the dairy industry, primarily due to their role in causing mastitis in dairy cows. Among the various etiological agents of mastitis, *Mycoplasma* spp. are particularly challenging due to their unique biological characteristics, which complicate diagnosis and treatment (Nicholas *et al.*, 2008). In 2021, it was reported that *Mycoplasma* spp. were the most commonly isolated pathogen in the bulk tank milk samples from United States dairy herds between 2016 and 2019 by 96.2% (Gioia *et al.*, 2021). Additionally, Kusiluka *et al.* (2006) found that *M. bovis* was associated with up to 52% of *Mycoplasma* mastitis in California, USA, whereas Gourlay *et al.* (1989) concluded that up to 37% of calves' mortality due to respiratory tract disease in the UK was caused by *M. bovis*. In the United States, the overall losses due to mastitis caused by *M. bovis* were estimated at USD 108 million per year (Rosengarten and Citti, 1999; Okella *et al.*, 2023).

Monitoring udder health and detecting infected cows early is impossible without reliable and affordable diagnostic methods (Lam *et al.*, 2009). Accurate diagnostic tests for early detection of pathogen-specific mastitis are essential to initiate the appropriate interventions or culling (Britten, 2012). Early detection of contagious *Mycoplasma* mastitis is particularly important to initiate the appropriate interventions or culling and avoid the within-herd infectious transmission. Traditional diagnostic methods for *Mycoplasma* infections have predominantly relied on bacteriological culture as an important component of a farm control strategy to minimize a herd

2 Yasser Mahmmod *et al.*

outbreak (Okella et al., 2023). This technique involves isolating the pathogen from milk samples using specialized media and incubating them under controlled conditions. Although culture methods are considered the gold standard due to their high specificity, they come with notable challenges. Bacterial culture is labour-intensive, time-consuming and requires several days to weeks for definitive results (Schukken et al., 2013). The culturing of fastidious Mycoplasma species can be lengthy and require specialized media and incubation conditions, which may result in delayed or falsenegative results that can increase the response time of a farm to a Mycoplasma outbreak (Nicholas et al., 2008; Gioia et al., 2016). The low bacterial load in subclinical cases and the contamination by other faster-growing bacteria can hinder the detection of Mycoplasma spp. through culture, leading to false negatives or delayed diagnosis (Spergser et al., 2007; Nicholas et al., 2008).

The limitations of culture methods have driven interest in alternative diagnostic techniques. The molecular microarray assay (MMA) has proven to be a highly useful tool for the diagnosis of mastitis in dairy cows and the detection of mastitis-causing pathogens (Gioia et al., 2018). This technology allows for the simultaneous detection and identification of multiple pathogens in a single sample, offering a significant advantage over traditional culture methods, which are often time-consuming and limited in their ability to detect fastidious or mixed infections. By using speciesspecific DNA probes, microarray assays can accurately identify key mastitis pathogens, including Staphylococcus aureus, Escherichia coli and various species of Streptococcus and Mycoplasma, even in subclinical cases (Koskinen et al., 2009). Additionally, microarray assays provide quicker results, enabling timely intervention and more targeted antimicrobial treatments, which can reduce the overall use of antibiotics and improve animal welfare and milk production (Verbeke et al., 2014). The adoption of MMA could address several of the limitations associated with traditional culture techniques, such as prolonged turnaround times and the need for specialized laboratory conditions.

To the best of our knowledge, the performance of the MMA against established culture methods in the context of dairy cow milk diagnostics has not been extensively studied. Therefore, a comprehensive evaluation of MMA compared to traditional culture methods is crucial to understanding their relative benefits and limitations. The objective of this research is to fill this gap by estimating the diagnostic performance of MMA against conventional culture methods for the diagnosis of *Mycoplasma* species in dairy cow milk using the gold standard approach. The results could provide valuable insights into the feasibility of integrating MMA diagnostics into routine udder health management, ultimately contributing to effective management of *Mycoplasma* infections and improved herd health.

Materials and methods

Study population and sample collection

A total of 434 quarter milk samples were collected from different cows in 31 dairy herds with a conventional milking system in the San Joaquin Valley, CA, south of Fresno. Milk samples were collected from the lactating cows showing abnormal milk characteristics, such as the presence of flakes, clots or watery milk.

The cows were separated by the farmer and restrained in headlocks during sampling. Dairy personnel provided initial screening, identifying animals with abnormal milk during milking. Each herd was visited by trained Valley Veterinarians, Inc. (VVI) personnel who trained the dairy personnel on the proper procedures for collecting milk samples aseptically. Quarter foremilk samples were collected aseptically from the selected cows for bacterial culture examination and microarray assay testing. After the farm personnel had carried out their routine pre-milking practices and before attachment of the milking unit, quarter milk samples were collected according to NMC (1999) guidelines. About 10 ml milk was collected aseptically from each quarter of each cow in clean sterile snap-cap plastic tubes, which were placed in ice boxes at 5°C and were delivered to the Laboratory of VVI (California, USA) within 48 hours of collection.

Bacteriological culturing

All milk samples were cultured as recommended by the National Mastitis Council (NMC, 1999) for isolation of Mycoplasma. Mycoplasma culture was performed using 10 μl of milk samples of pooled quarters inoculated onto BBA plates and Myco plates acquired by VVI from Udderhealth Systems. Samples are plated using an autoclaved cotton swab that is dipped into the sample after thawing, swabbed into 1/6th of a BBA plate, then the swab is rotated before swabbing into 1/8th of a Myco plate. Plates were read at 3 and 7 d by a mastitis laboratory technician with several years of experience, possessing the ability to distinguish colonies likely to be Mycoplasma spp. Plates with colonies that were morphologically consistent with those of Mycoplasma spp. were classified as positive. Additionally, samples with positive growth were confirmed via PCR test to eliminate misdiagnosis of Acholeplasma. Results were considered positive if any Mycoplasma colonies were seen and negative if there was no evidence of growth of Mycoplasma spp. Samples with one colony or more (\geq 1 CFU= colony forming unit) were considered positive for Mycoplasma species. If the sample was defined as contaminated and the Mycoplasma species was part of such contamination, the sample was considered positive.

Molecular microarray assay

The procedures of MMA include the following steps: 50 µl of milk is transferred to a 96 deep well plate, and surfactant is added. The plate is spun down at 6000× g for 5 min, and the supernatant is removed, leaving the bacterial pellet behind. The pellet is washed with a buffer, and the supernatant is removed. The pellet is treated with lysis buffer, liberating the DNA. A novel variant of PCR called the Asymmetric Exponential and Linear Amplification (AELA), which generates large numbers of single-stranded amplicons, was used according to Banda et al. (2022). In brief, AELA-PCR introduces an amplification strategy that makes use of both exponential and linear amplification of the target nucleic acid. This is done by specifically designed primers and the choice of adequate thermal profiles. A Cy5-labelled primer is used. The PCR amplified DNA is combined with the array hybridization buffer and transferred to a well on the 96-well immunoassay plate. Each well contains one copy of the microarray. The 96-well plate is placed on the heatershaker plate and exposed to elevated DNA denaturing temperature, followed by a hybridization temperature. The well is imaged in a plate scanner. The image processing utilized a proprietary algorithm, where the image intensities are converted to a semiquantitative scale: Scant, +, ++, +++, ++++, where +++++ is approximately 500,000 CFU/ml. Samples indicated as 'scant' were labelled as positive for MMA.

Journal of Dairy Research 3

Table 1. Cross-tabulation of bacterial culture (gold standard) and the new test, molecular microarray assay (MMA) for detection of *Mycoplasma* species in milk samples

Test	Bacterial culture positive	Bacterial culture negative	Total
MMA test positive	79	38	117
	(A)	(B)	
MMA test	8	270	278
negative	(C)	(D)	
Total	87	308	395

Statistical analysis

A traditional gold standard method was employed for the evaluation of the diagnostic performance of MMA, where bacterial culture served as the gold standard/reference test. The collected data were screened for unlikely or missing values before carrying out any valid statistical analysis. Subsequently, a descriptive statistical analysis was performed for both the test results of MMA and bacterial culture tests. A contingency table containing information on the proportion/ frequency of true positive (TP), true negative (TN), false positive (FP) and false-negative (FN) was generated by comparing the MMA and culture tests. The diagnostic sensitivity, diagnostic specificity, positive predictive values (PPV), and negative predictive values (NPV) were estimated. The PPV and NPV were calculated at a different prior probability of infection. Additionally, to assess the level of agreement between the results of the MMA and bacterial culture, we calculated the Kappa coefficient using Epitools (https://epitools.ausvet.com.au/).

Results

A total of 434 milk samples were collected from 31 herds for bacterial culture and MMA testing. Due to high somatic cell count and elevated DNA contents in the MMA testing, 30 samples were inhibited and excluded from the analysis. In addition, nine samples where *Mycoplasma* spp. was not part of the contamination were regarded as contaminated on the bacterial culture (having three different types of colonies). A total of 395 samples with clean and complete observations were submitted to perform the statistical analysis. The results of cross-tabulation between bacterial culture that is combined with PCR test confirmation as the gold standard and the MMA as the new diagnostic test for detection of *Mycoplasma* spp. are presented in Table 1. The number of TP, TN, FP and FN cases is shown in cells A, D, B and C, respectively.

Based on the numbers presented in Table 1, the sensitivity of MMA was 91% (95% CI: 82.68–95.95), the specificity of MMA was 88% (95% CI: 83.46–91.12), the PPV of MMA was 68% (95% CI: 60.51–73.83) and the NPV of MMA was 97% (95% CI: 94.57–98.49). The estimated prevalence was 22%, whereas the test accuracy was 88.4%. At a prior probability of infection of 0.5, the positive predictive value of MMA detection is 88%, which reflects the probability that cows with a positive test (MMA detection) do truly have the infection (*Mycoplasma* spp. positive). The negative predictive value was 91%, which means the probability that cows with a negative test (MMA detection) truly do not have the disease (*Mycoplasma* spp. negative) (Chikere *et al.* 2019). The high NPV of the MMA test supports the use of this test for screening purposes. The calculated Kappa coefficient to quantify the agreement between the two tests was 0.70 (95% CI: 0.618–0.778). According

to the Kappa scale (Landis and Koch, 1977), this result indicates a 'substantial agreement; Kappa between 0.61 and 0.80' between the MMA and bacterial culture for the diagnosis of *Mycoplasma* spp. in milk samples.

Discussion

Mycoplasma infections are a significant cause of mastitis, often leading to severe economic losses in the dairy industry. The improved diagnostic accuracy is critical for timely intervention and proper herd management, as Mycoplasma mastitis can spread rapidly through a herd if not properly identified and controlled. Traditional culture methods can be challenging due to the slowgrowing and fastidious nature of Mycoplasma species, which can result in false negatives or delayed diagnosis (Fox et al., 2005). It is challenging to implement timely responses in cows with positive culture results of Mycoplasma species due to the highly contagious nature of this pathogen and the long culture period (Okella et al., 2023). This delay may lead to the rapid transmission of the disease to other animals within the herd. MMA allows for the rapid and accurate detection of Mycoplasma spp. by targeting species-specific DNA sequences, which offer a substantial improvement in diagnostic accuracy over traditional methods.

Our findings reflected that MMA showed good diagnostic sensitivity and specificity estimates compared to the bacterial culture for the diagnosis of *Mycoplasma* spp. from milk samples with IMI. By directly targeting the DNA of *Mycoplasma* spp., MMA can bypass the need for bacterial growth, thereby significantly reducing the time to diagnosis. Previous studies have shown that molecular assays can provide results within hours, as opposed to the days or weeks required for bacterial culture (Parker *et al.*, 2018). In cases of *Mycoplasma* mastitis, this rapid detection is particularly important because *Mycoplasma* infections can spread quickly through a herd, leading to widespread economic losses if not promptly managed.

The sensitivity of MMA is a key factor in their superior diagnostic performance. Sensitivity refers to the assay's ability to correctly identify infected cows (i.e., true positives). Since molecular methods detect the pathogen's genetic material, they are capable of identifying even very low levels of *Mycoplasma* DNA in milk samples, which would likely be undetectable by culture or require special media or a longer period for confirmation. This is particularly relevant in subclinical or early-stage infections, where the bacterial load may be too low to be detected by traditional methods (Koskinen *et al.*, 2009). In such cases, early detection facilitated by MMA can allow for timely intervention, reducing the risk of transmission and progression of the disease.

MMA has the capacity to detect multiple *Mycoplasma* spp. simultaneously, this is a significant advantage over culture methods, which can only identify the *Mycoplasma* at the genus level (NMC, 1990). Different *Mycoplasma* species can cause varying degrees of mastitis severity, and being able to identify the specific species present in a herd, MMA can guide more targeted and effective treatment strategies (Al-Farha *et al.*, 2017). With bacterial culture, the delayed or inaccurate identification of *Mycoplasma* spp. can lead to the inappropriate use of antibiotics, as veterinarians may resort to broad-spectrum treatments while awaiting diagnostic results. By providing faster and more accurate diagnoses, MMA can support the more judicious use of antimicrobials, helping to reduce the risk of antimicrobial resistance in dairy herds (Nicholas *et al.*, 2008). This is particularly relevant for *Mycoplasma* infections,

4 Yasser Mahmmod *et al.*

as they are often resistant to many commonly used antibiotics, and inappropriate treatment can worsen the disease situation (Gelgie *et al.*, 2022, 2024).

Specificity, on the other hand, refers to the assay's ability to correctly identify animals that are not infected (i.e., true negatives). MMAs are designed to target species-specific genetic markers, which minimises the likelihood of cross-reactivity with other organisms present in the milk. This is especially important when dealing with Mycoplasma spp., as mixed infections are common in dairy herds, and other bacterial species may grow more readily in culture, potentially leading to misdiagnosis. Culture methods are unable to differentiate between closely related species. For example, Mycoplasma spp. cannot be distinguished from Acholeplasma, a species considered non-pathogenic, on a modified Hayflick medium without additional tests (Okella et al., 2023). Parker et al. (2018) reported that differentiation between Mycoplasma spp. and Acholeplasma spp., an environmental contaminant, by bacterial culture alone can result in a false Mycoplasma positive sample. In contrast, molecular assays provide a highly specific diagnosis by distinguishing Mycoplasma from other mastitis pathogens (Verbeke et al., 2014). This high level of specificity reduces the risk of false positives, ensuring that treatment decisions are based on accurate pathogen identification. Furthermore, MMA has the capacity to detect multiple *Mycoplasma* spp. simultaneously, which is a significant advantage over culture methods. Different *Mycoplasma* spp. can cause varying degrees of severity in mastitis, and being able to identify the specific species present in a herd can guide more targeted and effective treatment strategies (Al-Farha et al., 2017). For instance, M. bovis is often associated with more severe chronic infections and knowing its presence allows veterinarians to implement stricter biosecurity and control measures to prevent further spread.

Studies have shown that molecular methods outperform bacterial culture, particularly in subclinical cases or when the bacterial load is low. For example, Koskinen et al. (2009) reported that molecular assays had a higher detection rate of Mycoplasma in milk samples compared to conventional culturing techniques. This improved diagnostic accuracy is critical for timely intervention and proper herd management, as Mycoplasma mastitis can spread rapidly through a herd if not properly identified and controlled. Consequently, the use of MMA in routine diagnostics can lead to better mastitis management, reduced economic losses, and more appropriate antibiotic use, as it provides reliable, quicker, and more comprehensive results than traditional methods.

Future studies should consider the application of Bayesian latent class analysis instead of gold standards as an ideal approach for diagnostic test evaluation of *Mycoplasma* spp. in dairy cows, where none of the tests under evaluation is regarded as a perfect test.

Conclusions

MMA offers substantial advantages over bacterial culture for diagnosing IMI with *Mycoplasma* species in dairy cows. The sensitivity and specificity of the MMA were high, 91% and 88%, respectively, suggesting its usefulness as a routine test for accurate and rapid diagnosis of *Mycoplasma* species IMI in dairy cows. MMA holds promise for enhancing the detection of *Mycoplasma* species and could potentially revolutionize diagnostic practices in the dairy industry and improve udder health management.

Acknowledgements. The authors thank the farmers for their support in making their farms available for conducting our research study. Special thanks to the lab technicians for their great efforts in analysing the milk samples.

Competing interests. Our co-authors, Nicolaas Smit and Holger Klapproth, who are affiliated with Safeguard Biosystems Holding Ltd, the developer of the molecular microarray assay, plan to introduce a product named 'DairyGuard' based on this technology to the veterinary diagnostic market. We confirm that the company had no impact on the data handling, statistical analysis, or presented contents in this paper.

References

- Al-Farha AA, Hemmatzadeh F, Khazandi M, Hoare A, Petrovski K (2017) Evaluation of effects of Mycoplasma mastitis on milk composition in dairy cattle from South Australia. BMC veterinary research 13(1), 351. https://doi. org/10.1186/s12917-017-1274-2
- Banda SR, Klapproth H, Smit N, Bednar S, Brandstetter T and Rühe J (2022) An advanced and efficient asymmetric PCR method for microarray applications. Frontiers in Bioengineering and Biotechnology 10, 1045154.
- Bradley AJ (2002) Bovine mastitis: an evolving disease. *The Veterinary Journal* 164, 116–128.
- Britten AM (2012) The role of diagnostic microbiology in mastitis control programs. Veterinary Clinics of North America: Food Animal Practice 28, 187–202.
- Chikere UCM, Wilson K, Graziadio S, Vale L and Allen AJ (2019) Diagnostic test evaluation methodology: a systematic review of methods employed to evaluate diagnostic tests in the absence of gold standard—an update. PLoS ONE 14, e0223832.
- Fox LK, Kirk JH and Britten A (2005) Mycoplasma mastitis: a review of transmission and control. *Journal of Veterinary Medicine B: Infectious Diseases and Veterinary Public Health* **52**, 153–160. https://doi.org/10.1111/j.1439-0450. 2005.00845 x
- Gelgie AE, Desai SE, Gelalcha BD and Kerro Dego O (2024) Mycoplasma bovis mastitis in dairy cattle. Frontiers in Veterinary Science 11, 1322267. https://doi.org/10.3389/fyets.2024.1322267
- Gelgie AE, Korsa MG and Kerro Dego O (2022) Mycoplasma bovis mastitis.

 Current Research in Microbial Sciences 3, 100123. https://doi.org/10.1016/j.crmicr.2022.100123
- Gioia G, Addis MF, Santisteban C, Gross B, Nydam DV, Sipka AS, Virkler PD, Watters RD, Wieland M, Zurakowski MJ and Moroni P (2021) Mycoplasma species isolated from bovine milk collected from US dairy herds between 2016 and 2019. *Journal of Dairy Science* 104, 4813–4821.
- Gioia G, Moroni P and Smit N (2018) A novel high-throughput diagnostic array-based assay for the detection and characterization of Mycoplasma species associated with bovine mastitis. The International Bovine Mastitis Conference, Milan, Italy, 11-13 June.
- Gioia G, Werner B, Nydam DV and Moroni P (2016) Validation of a mycoplasma molecular diagnostic test and distribution of mycoplasma species in bovine milk among New York State dairy farms. *Journal of Dairy* Science 99, 4668–4677.
- Gourlay RN, Thomas LH and Wyld SG (1989) Increased severity of calf pneumonia associated with the appearance of Mycoplasma bovis in a rearing herd. Veterinary Record 124, 420–422. https://doi.org/10.1136/vr.124.16.420
- Koskinen MT, Holopainen J, Pyörälä S, Bredbacka P, Pitkälä A, Barkema HW, Bexiga R, Roberson J, Sølverød L, Piccinini R, Kelton D, Lehmusto H, Niskala S and Salmikivi L (2009) Analytical specificity and sensitivity of a real-time polymerase chain reaction assay for identification of bovine mastitis pathogens. *Journal of Dairy Science* 92, 952–959. https://doi.org/10.3168/jds.2008-1549
- Kusiluka LJM, Kokotovic B, Ojeniyi B, Friis NF and Ahrens P (2006) Genetic variations among Mycoplasma bovis strains isolated from Danish cattle. FEMS Microbiology Letters 192, 113–118.
- Lam TJGM, Olde Riekerink RGM, Sampimon OC and Smith H (2009) Mastitis diagnostics and performance monitoring: a practical approach. *Irish Veterinary Journal* **62**, 34–39.

Journal of Dairy Research 5

Landis JR and Koch GG (1977) The measurement of observer agreement for categorical data. *Biometrics* 33, 159–174. https://doi.org/10.2307/2529 310

- Nicholas RAJ, Ayling RD and Jones M (2008) Mycoplasma bovis: disease, diagnosis, and control. *Journal of Veterinary Diagnostic Investigation* 20, 1–8.
- NMC (1990) Microbial Procedures for the Diagnosis of Bovine Udder Infection. 3rd. Arlington, VA, USA: National Mastitis Council.
- NMC (1999) Laboratory Handbook on Bovine Mastitis. Madison, WI: National Mastitis Council Inc.
- Okella H, Tonooka K and Okello E (2023) A systematic review of the recent techniques commonly used in the diagnosis of Mycoplasma bovis in dairy cattle. *Pathogens* 12, 1178. https://doi.org/10.3390/pathogens12091 178
- Parker AM, Sheehy PA, Hazelton MS, Bosward KL and House JK (2018) A review of Mycoplasma diagnostics in cattle. *Journal of Veterinary Internal Medicine* 32, 1241–1252. https://doi.org/10.1111/jvim.15135
- **Rosengarten R and Citti C** (1999) The role of ruminant mycoplasmas in systemic infection. *EUR Report* **18756**(3), 14–17.
- Schukken YH, Köhler H and Fox LK (2013) The role of mycoplasmas in mastitis. Veterinary Microbiology 168, 132–140.
- Spergser J, Kaser R and Koinig H (2007) Mycoplasma mastitis in dairy cows: prevalence, risk factors, and management strategies. *Journal of Veterinary Medicine* 54, 415–421.
- Verbeke J, Piepers S, Supré K and De Vliegher S (2014) Pathogen-specific incidence rate of clinical mastitis in Flemish dairy herds, severity, and association with herd hygiene. *Journal of Dairy Science* **97**, 6926–6934. https://doi.org/10.3168/jds.2014-8173