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UNIFORM APPROXIMATION
TO MAHLER’S MEASURE IN SEVERAL VARIABLES

DAVID W. BOYD

ABSTRACT. If f (x1, . . . , xk) is a polynomial with complex coefficients, the Mahler
measure of f , M(f ) is defined to be the geometric mean of jf j over the k-torus Tk. We
construct a sequence of approximations Mn(f ) which satisfy�d2�n log 2+log Mn(f ) �
log M(f ) � log Mn(f ). We use these to prove that M(f ) is a continuous function of the
coefficients of f for polynomials of fixed total degree d. Since Mn(f ) can be computed in
a finite number of arithmetic operations from the coefficients of f this also demonstrates
an effective (but impractical) method for computing M(f ) to arbitrary accuracy.

Introduction. Let f (x1, . . . , xk) be a polynomial with complex coefficients. If f is
not identically zero, the Mahler measure of f is defined by

(1) M(f ) ≥ exp
�Z 1

0
. . .

Z 1

0
log

þþþ f �exp(2ôit1), . . . , exp(2ôitk)
�þþþ dt1 Ð Ð Ð dtk

�
.

So M(f ) is the geometric mean of j f j over the k-torus, Tk. We define M(0) ≥ 0. An
obvious but important property of M is that

(2) M(fg) ≥ M(f )M(g).

Mahler [4] used M(f ) as a tool in a simple proof of the “Gelfond–Mahler inequality”,
a result of importance in transcendence theory. In [2], we indicate a more intrinsic reason
for an interest in M(f ) for polynomials with integer coefficients.

In this paper, we give a rather simple answer to two basic questions concerning M(f ).
The first of these was posed by Andrzej Schinzel who recently asked the author if
lima!0 M(f + a) ≥ M(f ), where a is a complex variable. This is equivalent to asking
whether M(f ) is a continuous function of the coefficients of f . The second is the question
of the effective computation of M(f ) to arbitrary accuracy, a question recently considered
by Everest [3] for polynomials with integer coefficients.

Both of these questions are easily answered if the polynomial f does not vanish on
the torus Tk. For then F ≥ log j f j is a smooth function of (x1, . . . , xk) on the torus. In
particular, F is bounded on Tk and a continuous function of the coefficients of f so the
continuity of M(f ) follows by Lebesgue’s bounded convergence theorem. Similarly, the
effective computation of M(f ) from the definition (1) can, in this case, be accomplished
by any of the standard methods of numerical quadrature.
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However, if f does vanish on the torus, both questions become more delicate since
F ≥ log j f j has logarithmic discontinuities on the zero set of f , a set which can be quite
complicated. Our approach, which relies on a basic inequality of Mahler [4], entirely
avoids the consideration of the zero set of f .

To be more precise about what we will prove, fix k, fix a vector of positive integers
(d1, . . . , dk) and consider f of the form

(3) f (x1, . . . , xk) ≥
d1X

i1≥0
Ð Ð Ð

dkX
ik≥0

a(i1, . . . , ik)xi1
1 Ð Ð Ð xik

k .

Thus the degree of f as a polynomial in xj satisfies degj(f ) � dj. Then M(f ) becomes
a function of the D ≥ (d1 + 1) Ð Ð Ð (dk + 1) variables a ≥ fa(i1, . . . , ik)g. We make no
restrictions on the vanishing of any of these coefficients so possibly degj(f ) Ú dj. We
will show that in this situation M(f ) is a continuous function of a on CD. In this case we
will say that M(f ) is a continuous function of f .

Some approximations to Mahler’s measures. In this section, we will construct a se-
quence of approximations to M(f ) using an obvious generalization of Graeffe’s root
squaring method. A crucial ingredient of the construction is the following inequality
of Mahler [4]. Write deg(f ) ≥

Pk
j≥1 degj(f ) for the total degree of f and d ≥

Pk
j≥1 dj.

Let L(f ) denote the sum of the absolute values of the coefficients of f (the length of f ).
If deg(f ) � d, then

(4) 2�dL(f ) � M(f ) � L(f ).

We begin by defining an operation G on polynomials of k variables by the following
formula:

(5) (Gf )(x1, . . . , xk) :≥
Y

f (šx1Û2
1 , . . . ,šx1Û2

k ),

where the product is over all 2k choices of the signs. To see that Gf is a polynomial, note
that the expression g(y1, . . . , yk) ≥

Q
f (šy1, . . . ,šyk) is a polynomial in y1, . . . , yk which

is invariant under any of the changes of variable yj ! �yj. Hence g(y1, . . . , yk) is an even
function of each yj, and thus is a polynomial, say Gf , in y2

1, . . . , y2
k.

It is clear that degj(Gf ) ≥ 2k�1 degj(f ) so deg(Gf ) ≥ 2k�1 deg(f ). Also, M(Gf ) ≥

M(g) ≥ M(f )2k
, from (2), since each of the polynomials f (šy1, . . . ,šyk) has measure

M(f ).
For a given f , define fn ≥ Gnf to be the result of n applications of the operation G to

f . So M(fn) ≥ M(f )2kn
and deg(fn) ≥ 2(k�1)n deg(f ). Now define

(6) Mn(f ) :≥ L(fn)2�kn
.

From Mahler’s inequality (4),

(7) 2�2(k�1)n dL(fn) � M(fn) � L(fn).
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Raising (7) to the power 2�kn and using the definition (6) produces the inequality

(8) 2�d2�n
Mn(f ) � M(f ) � Mn(f ).

THEOREM. For polynomials of bounded degree M(f ) is a continuous function of f .

PROOF. Clearly each of the coefficients of fn is a polynomial in the coefficients of f
so L(fn) and hence Mn(f ) are continuous functions of f . Define èn ≥ 2d2�n

� 1 so èn ! 0
as n !1. Then (8) and (4) imply that

0 � M(f ) �Mn(f ) � ènM(f ) � ènL(f ).

Thus Mn(f ) converges uniformly to M(f ) on any set of the form L(f ) � B and hence M(f )
is a continuous function of f .

REMARK. In the case of polynomials in one variable, one can base a proof of a
weaker result on an alternative expression for the measure. If f (x) ≥

Pd
j≥0 ajxj ≥

ad
Qd

j≥1(x � ãj), Jensen’s formula gives

(9) M(f ) ≥ jadj
dY

j≥1
max(jãjj, 1).

Since the zeros of a polynomial are continuous functions of the coefficients, provided
the leading coefficient does not vanish, it follows from (9) that, for k ≥ 1, M(f ) is a
continuous function of (a0, a1, . . . , ad) on the subset of Cd+1 where ad Â≥ 0. Our theorem
does not require the latter restriction.

Effective computation of Mahler’s measure. The natural approach to the computation of
M(f ) is to use numerical integration to evaluate the integral in (1). While this approach
seems to work well in practice for small values of k, it is difficult to give a general
estimate of the error in such an approximation if f vanishes on Tk since then the integral is
improper. For an example of the difficulties in such an approach, see the paper of Everest
[3] where an estimate is given for the error in approximating (1) by certain Riemann
sums for polynomials with integer coefficients. His proof uses some deep results from
the theory of linear forms in logarithms and discrepancy theory.

In contrast, the computation of Mn(f ) is clearly effective since it involves only the
computation of products and sums of the coefficients of f followed by a final extraction
of a 2kn-th root. The estimate (8) is uniform for f of a fixed total degree, being indepen-
dent even of the number of variables. However, it must be admitted that the method is
totally impractical even for k ≥ 2 because the total number of terms and the size of the
coefficients in the polynomial fn grow exponentially. For k ≥ 1 the method reduces to
one used in [1]. In this case, the number of terms in fn is fixed so the method is less im-
practical and indeed is very useful for obtaining rough estimates of M(f ). But there are
other reasons discussed in [1] for preferring other methods for highly accurate estimates
of M(f ).
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To illustrate the practical difficulties with the effective compuation of M(f ) using
Mn(f ), consider the polynomial f (x, y) ≥ 1 + x + y. This f vanishes on Tk at the two
points (°,°2) and (°2,°), with ° ≥ exp(2ôiÛ3). It is known to have measure

M(1 + x + y) ≥ 1. 3813564445184977933 Ð Ð Ð .

This is easily computed by first reducing to a single integral by Jensen’s formula and
then numerically integrating log

�
max(j1 + xj, 1)

�
over the circle.

We can obtain two-sided estimates of M(f ) from (8), but we obtain a better upper
bound by using the fact that M(f ) � k fk � L(f ), where k fk is the ‡2 norm of f . If
Nn(f ) ≥ k fnk2�kn

then M(f ) � Nn(f ) � Mn(f ). Using the Maple computer algebra system,
the results of the Table are computed fairly quickly, but at high memory cost. In the table,
M�

n (f ) ≥ 2�d2�n
Mn(f ) and “terms” denotes the number of terms in the polynomial fn. For

example, the most accurate estimate, N5(f ) is K1Û2048, where K is an integer with 288
decimal digits.

One could obtain better lower bounds by using Mahler’s estimates for the individual
coefficients of fn in terms of M(fn), but it should be clear that the method should not
be considered as a practical method for computing estimates of M(f ) of high accuracy.
Rather, its interest lies in its generality.

n M�
n (f ) Nn(f ) Mn(f ) terms

0 .7500000000 1.732050808 3 3
1 .8660254040 1.402850552 1.732050808 6
2 1.030964012 1.398974059 1.458003288 15
3 1.177248070 1.383252123 1.399991780 45
4 1.271001650 1.382177945 1.386037128 153
5 1.323901724 1.381514320 1.382515861 561

TABLE: ESTIMATES OF M(1 + x + y)
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