BULL. AUSTRAL. MATH. SOC. VOL. 33 (1986), 177-187.

SYMMETRY GROUPS ON ORDERED BANACH SPACES

Sadayuki Yamamuro

A symmetry of an ordered Banach space is an order and norm isomorphism which commutes with its ideal centre. A class of ordered Banach spaces is introduced to show that, for a space in this class, the group of symmetries is trivial if and only if the space is lattice-ordered. When this group becomes larger, the space approaches an antilattice. This phenomenon is also investigated.

1. Preliminaries.

Let B be a real Banach space ordered by a closed and proper positive cone B^+ . Throughout this paper, B is always assumed to be archimedean.

The <u>cannonical half</u>-norm \mathbb{N} associated with B^+ , due to [3], is defined by

 $N(x) = \inf \{ ||x + y|| : y \in B^{\dagger} \} \text{ for all } x \in B.$

An element $x \in B$ is said to be <u>orthogonally decomposable</u> if there exist elements y and z of B^+ such that

Reseived 24 May 1985.

Copyright Clearance Centre, Inc. Serial-fee code: 0004-9727/86 \$A2.00 + 0.00.

$$x = y - z$$
, $||y|| = N(x)$ and $||z|| = N(-x)$.

If every element of B is orthogonally decomposable, then B is said to be orthogonally decomposable. (See [17].)

Let L(B) be the Banach space of all continuous linear operators on B with the operator bound norm. The positive cone $L(B)^+$ consists of ϕ in L(B) such that $\phi(B^+) \subset B^+$. B is said to have the <u>Robinson</u> <u>property</u> if

 $||\phi|| = \sup \{ ||\phi(x)|| : ||x|| \le 1, x \in B^{\dagger} \}$
for all $\phi \in L(B)^{\dagger}$. (See [16].)

An N-automorphism of B is a bijective element ϕ of L(B) such that $N(\phi(x)) = N(x)$ for all $x \in B$. The set of all N-automorphisms of B is deonted by G(B), which is obviously a group. The following two facts have been proved in [17].

(1.1) When B is orthogonally decomposable, $\phi \in G(B)$ if and only if $||\phi(x)|| = ||x||$ for all $x \in B^+$ and ϕ is an o. d. isomorphism (that is, ϕ is a continuous bijection and $\phi(x) = \phi(y) - \phi(z)$ is an orthogonal decomposition of $\phi(x)$ if and only if x = y - z is an orthogonal decomposition of x).

(1.2) When B is orthogonally decomposable and has the Robinson property, then $\phi \in G(B)$ if and only if ϕ is a bipositive isometry.

The <u>ideal centre</u> of *B* is the set Z(B) of all elements *T* of L(B) such that there exists a number λ , depending on *T*, such that $-\lambda x \leq Tx \leq \lambda x$ for all $x \in B^{+}$. For $T \in Z(B)$, we can define a norm

 $||T||_{o} = \inf\{\lambda \ge 0 : -\lambda x \le Tx \le \lambda x \text{ for all } x \in B^{+}\}$. A sufficient condition for $||T||_{o} = ||T||$ for all $T \in Z(B)$ is that both the norms of B and B^{*} , the dual of B, are absolutely monotone. (See [15], Lemma 2.3 and [4], Theorem 1.3.1.) If this is the case, Z(B)is an ordered Banach space with an archimedean order and the multiplicative unit. Hence, by [10], it is an abelian real Banach algebra. For the spectrum Ω of Z(B), the Gelfand transform is an isometric, order and algebraic isomorphism onto $C(\Omega)$. Furthermore, by [15], Corollary 1.13, for every $a \in B^{+}$, the map $T \mapsto Ta$ is a lattice homomorphism of Z(B)

onto a sublattice of B. Following [15], we call B regular if $||T||_{\mathcal{O}} = ||T||$ for all $T \in Z(B)$.

An element ϕ of G(B) such that $\phi T = T\phi$ for all $T \in Z(B)$ is called a symmetry. (See [7] and [8].) The set of all symmetries is denoted by S(B), which is obviously a subgroup of G(B).

The positive cone $(B^*)^+$ of the dual B^* is the set of all $f \in B^*$ such that $f(x) \ge 0$ for all $x \in B^+$. An element f of $(B^*)^+$ is said to be <u>order-continuous</u> if $x = \sup(x_{2})$ for an increasing net of positive elements (x_i) implies $f(x) = \sup f(x_i)$. The set of all order-continuous elements of $(B^*)^+$ is denoted by B^{OC} . As in the case of C[0,1], it is possible that B^{OC} can contain only the zero functional. On the other hand, if the norm of B is order-continuous, then $B^{OC} = (B^*)^+$.

An element a of B^+ is said to be (oc)-quasi-interior if f(a) = 0 and $f \in B^{OC}$ imply f = 0.

Now we set

$$B(G) = \{x \in B : \phi(x) = x \text{ for all } \phi \in G(B)\}$$

and

 $B(S) = \{x \in B : \phi(x) = x \text{ for all } \phi \in S(B)\}.$

If B(S) contains an (OC)-quasi-interior point, B is said to be H-finite; otherwise, B is called H-infinite.

2. Problems.

When B is a Banach lattice, we have

 $Z(B) = \{T \in L(B) : |Tx| \leq \lambda |x| \text{ for all } x \in B \text{ and some } \lambda\}.$ It is known ([2], Theorem 3.2) that, when B is σ -complete, $T \in Z(B)$ if and only if T commutes with all band projections.

(2.1) When B is a σ -complete Banach lattice, we have $S(B) = \{1\}$, where 1 denotes the identity operator.

Proof. Let $\phi \in S(B)$. Since Z(B) contains all band projections, ϕ commutes with all band projections. Hence, $\phi \in Z(B)$. Now, B is

orthogonally decomposable, has the Robinson property and norm, together with the dual norm, is absolutely monotone. Therefore, $||\phi|| = ||\phi||_{c} = 1$

and, hence, $0 \le \phi(x) \le x$ for all $x \in B^+$. Similarly, $0 \le \phi^{-1}(x) \le x$ for all $x \in B^+$. Hence, $\phi = 1$.

Now, let B be a general ordered Banach space. The above fact leads to the following question : is B lattice-ordered if $S(B) = \{1\}$? More generally, we shall consider the following problem.

Problem 1. Is B(S) lattice-ordered?

We shall show that the answer is affirmative for a special class of ordered Banach spaces. This shows that, as *B* becomes more latticelike, S(B) will become smaller and B(S) will become larger. An ordered Banach space is called an <u>antilattice</u> if $z = \sup(x,y)$ implies $x \ge y$ or $x \le y$. (See [11] and [13].) Then, B(S) will be the smallest when *B* is an antilattice. We consider this problem in the following three forms.

Problem 2. If B is an H-finite antilattice, is B(S) generated by a single (oc)-quasi-interior point?

Problem 3. If *B* is an *H*-infinite antilattice, do we have $B(S) = \{0\}$?

Problem 4. If S(B) = G(B), is B an antilattice?

3. Ordered Banach spaces of type (P).

Let *B* be an ordered Banach space. We suppose that there is a family $\{P_a : a \in B^+\}$ of projections (the idempotent elements of L(B)). An orthogonal decomposition a = b - c is called proper if the following two conditions are satisfied:

(1) $P_b(c) = P_c(b) = 0$; (2) If $\phi(a) = a$ for some $\phi \in S(B)$, then $\phi(b) = b$. For every $a \in B^+$, we set $B_a^+ = \{x \in B^+ : f(x) = 0 \text{ if } f \in B^{OC} \text{ and } f(a) = 0\}.$ An ordered Banach space B is said to be <u>of type</u> (P) if it is regular and it is equipped with a family $\{P_a : a \in B^{\dagger}\}$ such that the following conditions are satisfied:

(P1)
$$P_a(B^+) = B_a^+$$
 and $a \in B_a^+$ for all $a \in B^+$

(P2) If $a \in B(S)$, then $P_a \leq 1$.

(P3) Every element of B admits a proper decomposition.

Before proceding further, we give some examples.

Example 1. Banach lattices which are σ -complete and in which the norms are order-continuous are of type (P). In this case, P_{α} is defined by

$$P_{a}(x) = \sup_{n \ge 1} (x \land na) ,$$

which is the band projection associated with $\{a\}^{\perp\perp}$. By definition, the norms of Banach lattices are absolutely monotone. Hence *B* is regular. Since the norm is order-continuous, $B^{OC} = (B^*)^+$, and B^+_{α} coincides with the "positive bipolar" considered in [14] where the equality (*P1*) has been proved. (*P2*) and (*P3*) follow immediately from (2.1) and the basic properties of band projections.

Example 2. Let M be a von Neumann algebra and $B = M^h$ be the ordered Banach space of all hermitian elements of M. Then B is of type (P). First note that, this is obviously regular. For each $a \in B^+$, define P_a by $P_a(x) = s(a)xs(a)$, where s(a) is the support of a. Since $B^{OC} = (M_*)^+$, the positive part of the predual M_* , f(a) = 0 for $f \in B^{OC}$ implies f(s(a)) = 0, and the relation (P1) can be proved directly or by a modification of a result in [5], p. 357. As to (P2), we first note that $T \in Z(B)$ if and only if $TI \cap M \in M'$ and $Tx = x \cdot TI$ for every $x \in B$. For the proof of this fact, see, for instance, [1]. Since M^h is orthogonally decomposable and has the Robinson property, G(B) is the set of all bipositive isometries on M^h . In other words, G(B) is the set of restrictions, to M^h , of all Jordan *-isomorphisms ϕ of *M* such that $\phi(1) = 1$. Furthermore, it follows from the above characterization of *Z(B)* that $\phi \in S(B)$ if and only if ϕ is the restriction of a Jordan *-isomorphism of *M* which is identical on the centre $M \cap M'$. Hence, we have $B(S) = (M \cap M')^h$. Therefore, if $a \in B(S)$, then s(a) is an central projection. Hence, $P_a(x) \leq x$ for all $x \in B^+$. Finally, the condition (*P3*) is satisfied because the usual orthogonal decomposition $a = a^+ - a^-$, $a^+ a^- = 0$, is a proper decomposition.

Example 3. Let M be a von Neumann algebra on a Hilbert space Hand suppose that there is a cyclic and separating vector $\xi_{O} \in H$ for M. Then, by the Tomita-Takesaki theory, there are a conjugation operator Jand a modular operator Δ associated with ξ_{O} . The real part of H,

$$H^{J} = \{\xi \in H : J\xi = \xi\}$$

is then an ordered Hilbert space ordered by the "natural cone"

$$H^{+} = \{\Delta^{\frac{1}{4}} x \xi_{O} : x \in M^{+}\}$$

(See [6] and [9].) This is of type (P). Since the norm is absolutely monotone, H^J is regular. We define P_{ξ} by $P_{\xi} = p_{\xi} j(p_{\xi})$, where p_{ξ} is the projection on the subspace $[M'\xi]$ and $j(p_{\xi}) = Jp_{\xi}J$. By [9], Theorems 4.5 and 4.6, we have

$$P_{\xi}(H^{\dagger}) = \{ \eta \in H^{\dagger} : (\eta, \rho) = 0 \text{ if } \rho \in H^{\dagger} \text{ and } (\rho, \xi) = 0 \}.$$

Therefore, we have the equality (P1) if the norm is order-continuous. To prove this, suppose that $\eta = \sup(\eta_i)$ for an increasing net $(\eta_i) \in H^t$. Then, $-\eta \leq \eta_i \leq \eta$. The element η can be assumed to be cyclic and separating, because otherwise we can take $\eta + (1 - p_\eta)j(1 - p_\eta)\xi_o$ instead of η . Since $\eta \in H^t$, H^t is equal to the closure of $\{\Delta_{\eta} \stackrel{i_q}{\to} x \eta : x \in M^t\}$ and there is an order isomorphism Φ of M^h onto the set

$$\{\rho \in H^{\mathcal{O}} : -\lambda\eta \leq \rho \leq \lambda\eta \text{ for some } \lambda\}$$

defined by $\Phi(x) = \Delta_{\eta}^{\frac{1}{4}} x \eta$. ([9], Theorem 2.7.) Since (η_i) is contained in this set, there are $x_i \in M^h$ and $x \in M^h$ such that $\Phi(x_i) = \eta_i$, $\Phi(x) = \eta$ and $x = \sup(x_i)$. Furthermore, $||x_i\xi - x\xi|| \to 0$ for every $\xi \in H$. Then, since $||J(x_i - x\xi)|| \to 0$,

$$\begin{split} \left| \left| n_{i} - n \right| \right|^{2} &= \left(\Delta_{\eta}^{\frac{1}{4}} (x_{i} - x)_{\eta} \right), \quad \Delta_{\eta}^{\frac{1}{4}} (x_{i} - x)_{\eta} \right) \\ &= \left(\Delta_{\eta}^{\frac{1}{2}} (x_{i} - x)_{\eta} \right), \quad (x_{i} - x)_{\eta} \right) \\ &= \left(J(x_{i} - x)_{\eta} \right), \quad (x_{i} - x)_{\eta} \right) \\ &\leq \left| \left| J(x_{i} - x)_{\eta} \right| \left| \cdot \left| \left| (x_{i} - x)_{\eta} \right| \right| \neq 0 \right]. \end{split}$$

To prove (P2), we start with a result in [7] that $Z(H^J) = (M \cap M')^h$. On the other hand, $G(H^J)$ is obviously the set of all unitary operators $u \in L(H)$ such that $u(H^+) = H^+$. Hence, $S(H^+)$ is the set of all unitary operators u in R(M,M'), the von Neumann algebra generated by M and M', such that $u(H^+) = H^+$. Now, suppose that $\xi \in H^J(S)$. Then, $uj(u)\xi = \xi$ for all unitary element u of M, because $uj(u) \in S(H^J)$. Since $j(u)\xi = u^*\xi$, we have $[M'\xi] = [M\xi]$, which means that p_{ξ} is a central projection. Therefore, $p_{\xi} \leq 1$, and, hence, $P_{\xi} \leq 1$. The condition (P3) is satisfied because the usual orthogonal decomposition $\xi = \xi^+ - \xi^-$, $(\xi^+, \xi^-) = 0$, is a proper decomposition.

4. Problems 1, 2 and 3.

We start with a lemma.

(4.1) Suppose that B is an ordered Banach space which is regular and B^+ is generating. Then, if B is an antilattice and $0 \le P = P^2 \le 1$, then P = 0 or P = 1.

Proof. Since $P \in 2(B)$ and $1 - P \in 2(B)$, for each $a \in B^+$ we have that Pa and (1 - P)a belong to a lattice-ordered subset of B, because B is regular. Then, since B is an antilattice, Pa and

(1 - P)a must be comparable, that is, $Pa \leq (1 - P)a$ or $Pa \geq (1 - P)a$. It then follows that, for every $a \in B^+$, we have either Pa = 0 or Pa = a. Suppose that there are nonzero elements a and b of B^+ such that Pa = 0 and Pb = b. Then, P(a + b) = b and $a + b \neq b$, which is a contradiction. Hence, since B^+ is generating, we have either P = 0 or P = 1.

We now give the answers to the first three problems when B is of type (P) .

(4.2) Let B be an ordered Banach space of type (P).

(1). B(S) is lattice-ordered.

(2). If B is an H-finite antilattice, B(S) is generated by an (oc)-quasi-interior point.

(3). If B is an H-infinite antilattice, $B(S) = \{0\}$.

Proof. (1). Let $a \in B(S)$ and a = b - c be a proper decomposition. By (P3), $b \in B(S)$. Therefore, $P_b \leq 1$ by (P2). Furthermore, (P1) implies $P_b \geq 0$. Therefore, if $x \geq a$ and $x \geq 0$, we have $b = P_b a \leq P_b \ x \leq x$. This means $b = \sup(a, 0)$.

(2). Since B(S) is a sublattice of an antilattice, it is totally ordered. Hence it is generated by a single element. Since B is H-finite, the element must be an (oc)-quasi-interior point.

(3). Suppose that $a \in B(S)$ and $a \neq 0$. By (P3), we can assume that $a \in B^+$. By (P1) and (P2), we have $0 \leq p_a \leq 1$. Hence by (4.1), we have $P_a = 0$ or $P_a = 1$. However, by (P1), $p_a = 0$ implies a = 0, a contradiction. Hence, $P_a = 1$, or, equivalently, $B_a^+ = B^+$ by (P1). Hence, a is an (oc)-quasi-interior point. This contradicts the assumption.

An immediate consequence of (4.2) (1) is the following fact.

(4.3) When B is an ordered Banach space of type (P), $S(B) = \{1\}$ implies that B is lattice-ordered.

5. Problem 4.

The answer to this problem is in the negative. We shall give a negative example when B is a finite-dimensional von Neumann algebra. We recall that every finite-dimensional von Neumann algebra M is a direct sum

$$M = M_{k_1} \oplus M_{k_2} \oplus \cdots \oplus M_{k_m},$$

where M_{k_n} is the algebra of all $k_n \ge k_n$ matrices. The set $\{k_1, k_2, \dots, k_m\}$ characterizes the structure of M. We shall show that $G(M^h) = S(M^h)$ if and only if the numbers in this set are different.

(5.1) Let M be a finite-dimensional von Neumann algebra. Then, $G(M^h) = S(M^h)$ if and only if M is a direct sum of factors which are not mutually Jordan *-isomorphic.

Proof. There are factors M_n (n = 1, 2, ..., m) such that M is a direct sum : $M = M_1 \oplus M_2 \oplus ... \oplus M_m$. Since the centre of M is the direct sum of centres of M_n , the central projections of M are linear combinations of the following projections:

$$e_1 = 1 \oplus 0 \oplus \dots \oplus , e_2 = 0 \oplus 1 \oplus \dots \oplus 0 ,$$
$$e_m = 0 \oplus \dots \oplus 0 \oplus 1 .$$

Now, suppose, for instance, that M_1 and M_2 are Jordan *-isomorphic and Ψ is the isomorphism. Then, the map defined by

$$\phi(x_1 \ \theta \ x_2 \ \theta \ \dots \ \theta \ x_m) = (\psi^{-1}(x_2) \ \theta \ \psi(x_1) \ \theta \ x_3 \ \theta \ \dots \ \theta \ x_m)$$

is a Jordan *-isomorphism of M and $\phi(e_1) = e_2$. Therefore,

 $G(M^h) \neq S(M^h)$. To prove the converse, let $\phi \in G(M^h)$. Since ϕ preserves the minimal projections, ϕ maps the set $\{e_1, e_2, \dots, e_m\}$ into itself. If ϕ is not identical on the centre of M, we may suppose that $\phi(e_1) = e_2$. Then, a map $\psi : M_1 \neq M_2$ is defined by the following relation:

$$\begin{split} \phi(x \ \theta \ 0 \ \theta \ \dots \ \theta \ 0) &= \phi((x \ \theta \ 0 \ \theta \ \dots \ \theta \ 0)e_1) \\ &= \phi(x \ \theta \ 0 \ \theta \ \dots \ \theta \ 0)e_2 \\ &= 0 \ \theta \ \psi(x) \ \theta \ 0 \ \theta \ \dots \ \theta \ 0. \end{split}$$

This ψ is a Jordan *-isomorphism of M_1 onto M_2 .

Remark. $G(M^h) = S(M^h)$ if and only if every bijective *o*. *d*. homomorphism on *H* is a normal operator. This, and the related problems on *o*. *d*. homomorphisms, will be discussed in a subsequent paper.

References

- [1] E. Alfsen, Compact Convex Sets and Boundary Integrals, (Springer-Verlag, Berlin-Heidelberg-New York, 1971.)
- [2] W. Arendt, "Spectral properties of Lamperti operators", Indiana University Math. J. 32 (1983), 199-215.
- [3] W. Arendt, P. Chernoff and T. Kato, "A generalization of dissipativity and positive semigroups", J. Operator Theory 8 (1982), 167-180.
- [4] C.J.K. Batty and D.W. Robinson, "Positive one-parameter semigroups on ordered Banach spaces", Acta Math. Applicandae 2 (1984), 221-296.
- [5] O. Bratteli, T. Digernes and D.W. Robinson, "Positive semigroups on ordered Banach spaces", J. Operator Theory 9 (1983), 371-400.
- [6] O. Bratteli and D.W. Robinson, Operator Algebras and Quantum Statistical Mechanics I, (Springer-Verlag, Berlin-Heidelberg-New York, 1979).
- [7] W. Bos, "A classification for selfdual cones in Hilbert space", Arch. Math. 30 (1978), 75-82.
- [8] Cho-ho Chu and J.D.M. Wright, "Une théorie des types pour une classe d'espaces de Banach ordonnés", C. R. Acad. Sc. Paris, Serie A 281 (1975), 633-636.
- [9] A. Connes, "Charactérisation des espaces vectoriels ordonnes sousjacents aux algèbres de von Neumann", Ann. Inst. Fourier, Grenoble 24 (1974), 121-155.
- [10] R.V. Kadison, A representation theory for commutative topological algebras, (Memoirs of Amer. Math. Soc., No. 7, 1951).

- [11] R. V. Kadison, "Order properties of bounded selfadjoint operators", Proc. Amer. Math. Soc. 2 (1951), 505-510.
- [12] R. V. Kadison, "Isometries of operator algebras", Ann. Math. 54 (1951), 325-338.
- [13] W. A. J. Luxemburg and A. C. Zaanen, *Riesz Spaces I*, (North Holland, Amsterdam, 1971).
- [14] D. W. Robinson and S. Yamamuro, "Hereditary cones, order ideals and half-norms", Pacific J. Math. 110 (1984), 335-343.
- [15] W. Wils, "The ideal centre of partially ordered vector spaces", Acta Math. 127 (1971), 41-77.
- [16] S. Yamamuro, "On linear operators on ordered Banach spaces", Bull. Austral. Math. Soc. 27 (1983), 285-305.
- [17] S. Yamamuro, "On orthogonally decomposable ordered Banach spaces", Bull. Aust. Math. Soc. 30 (1984), 357-380.
- [18] S. Yamamuro, "Absolute values in orthogonally decomposable spaces", Bull. Austral. Math. Soc. 31 (1985), 215-233.

Department of Mathematics Institute of Advanced Studies Australian National University Canberra, A.C.T. Australia.

Added in proof. 14 January, 1986. The fact, on p.179, that $T \in Z(B)$, for a Banach lattice B, if and only if T commutes with all band projections was given first by W.A.J. Luxemburg in his lecture at the University of Arkansas in 1979.