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ON THE BOUNDARY OF MODULI SPACES OF LOG
HODGE STRUCTURES, II: NONTRIVIAL TORSORS

TATSUKI HAYAMA

Abstract. In this paper, we determine when a natural torsor arising in the
work of Kato and Usui on partial compactification of period domains of pure
Hodge structure is trivial, and we give an application to cycle spaces.

§1. Introduction

Let D be a period domain of pure Hodge structures defined by Griffiths

[G]. A variation of Z-Hodge structure over the n-product of punctured disk

(Δ∗)n gives the period map (Δ∗)n → Γ\D, where Γ is the monodromy group,

that is, the Z-module generated by the monodromy transformations. We

assume that the monodromy transformations are unipotent. In this article,

we treat partial compactifications of Γ\D so that the period map is extended

over Δn.

In the case where D is Hermitian symmetric, Ash, Mumford, Rapoport,

and Tai in [AMRT] gave partial compactifications of Γ\D (and also com-

pactifications of arithmetic quotients of D). Later, Kato and Usui in [KU]

generalized toroidal partial compactifications for any period domainD which

is not Hermitian symmetric in general, and showed that these are moduli

spaces of log Hodge structures. This partial compactification is given by

using toroidal embedding associated to the cone generated by the data of

the monodromy. In fact, for generators T1, . . . , Tn of the monodromy group

Γ, the partial compactification Γ\Dσ is given by the cone σ =
∑n

j=1R≥0Nj

(Nj = logTj) in the Lie algebra. Here a boundary point is a nilpotent orbit

associated to a face of σ (see Section 3.1).

In the classical situation (i.e., D is Hermitian symmetric), Γ\Dσ is an

analytic space. In contrast, for general period domains, Γ\Dσ may not be
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2 T. HAYAMA

an analytic space. In fact, the boundary components of the partial compact-

ification Γ\Dσ can have codimension greater than 1, although it is 1 in the

classical situation (see Example 3.3). This means that there can be slits on

the boundary of Γ\Dσ. Kato and Usui [KU] define logarithmic manifolds

as a generalization of analytic spaces and state that Γ\Dσ is a logarithmic

manifold.

A part of the geometric structure of Γ\Dσ is given by a torsor Eσ → Γ\Dσ

constructed in [KU] (see Section 3.1). We will discuss these torsors. Our

main result is the following.

Theorem 1.1 (see Theorem 3.4). The torsor Eσ → Γ\Dσ is trivial if and

only if D is Hermitian symmetric or σ = {0}.

In [H1], we proved this result in the case where D is Hermitian symmet-

ric. In this paper, we treat the case where D is not Hermitian symmetric.

To prove Theorem 1.1, we use a result from Fels, Huckleberry, and Wolf

[FHW, Theorem 4.4.3] to show that, unless D is Hermitian symmetric, any

holomorphic function on D is constant.

We used a different strategy to prove the nontriviality of the torsors for

the one example in [H1, Proposition 5.8]. Generalizing this approach, we

give another proof of the nontriviality result in Proposition 4.3. This second

proof is stronger than the first one since it gives a nontriviality on some

open sets around a boundary point. We use cycle spaces and the SL(2)-orbit

theorem there. Some property of cycle spaces induces the nontriviality.

In conclusion, the properties of cycle spaces induce the above nontrivial-

ity results. Cycle spaces can have significance in the study of moduli spaces

of log Hodge structures in a wider framework. In fact, the property of cycle

spaces of Lemma 4.1 induces our later work [H2]. On the other hand, Green,

Griffiths, and Kerr [GGK2] have introduced Mumford–Tate domains as a

generalization of period domains, and they also indicate the importance of

cycle space in relation to cohomology groups of Mumford–Tate domains.

Moreover, Kerr and Pearlstein [KP] have constructed partial compactifi-

cations of Mumford–Tate domains in the same manner as Kato and Usui

[KU]. We expect that our results will fit into the case for the boundaries of

the Mumford–Tate domains.

This article has the following organization. In Section 2.1, we review

period domains of Hodge structures. In Sections 2.2 and 2.3, we discuss

cycle spaces of period domains. In Section 3, we review moduli spaces of
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MODULI OF LOG HODGE STRUCTURES, II 3

polarized log Hodge structures. In Section 4, we reformulate our prior results

from [H1] in terms of cycle spaces.

§2. Cycle spaces of period domains

2.1. Polarized Hodge structures and period domains

We recall the definition of polarized Hodge structures and of period

domains. A Hodge structure of weight w with Hodge numbers (hp,q)p,q is a

pair (HZ, F ) consisting of a free Z-module of rank
∑

p,q h
p,q and a decreasing

filtration on HC :=HZ ⊗C satisfying the following conditions:

(H1) dimCF
p =

∑
r≥p h

r,w−r for all p;

(H2) HC =
⊕

p+q=wHp,q (Hp,q := F p ∩ Fw−p).

A polarization 〈 , 〉 for a Hodge structure (HZ, F ) of weight w is a nonde-

generate bilinear form on HQ :=H ⊗Q, symmetric if w is even and skew-

symmetric if w is odd, satisfying the following conditions:

(P1) 〈F p, F q〉= 0 for p+ q > w;

(P2) ip−q〈v, v̄〉> 0 for 0 �= v ∈Hp,q.

We fix a polarized Hodge structure (HZ,0, F0, 〈 , 〉0) of weight w with

Hodge numbers (hp,q)p,q. We define the set of all Hodge structures of this

type

D :=

{
F

(HZ,0, F, 〈 , 〉0) is a polarized Hodge structure

of weight w with Hodge numbers (hp,q)p,q

}
.

The space D is called the period domain. Moreover, we have the flag mani-

fold

Ď :=

{
F

(HZ,0, F, 〈 , 〉0) satisfies the conditions

(H1), (H2), and (P1)

}
.

The space Ď is called the compact dual of D, and it contains D as an open

subset. Let GA := Aut(HA,0, 〈 , 〉0). Then, GR acts transitively on D, and

GC acts transitively on Ď. The group GR is a classical group such that

GR
∼=
{
Sp(h,R) if w is odd,

SO(hodd, heven) if w is even,

where 2h = rankHZ, Sp(h,R) is the (2h × 2h)-matrix symplectic group,

hodd =
∑

p: odd h
p,q, and heven =

∑
p: even h

p,q.
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4 T. HAYAMA

Let gA = LieGA (A = R,C). We then have the decomposition gC =⊕
p+q=0 g

p,q given by

gp,q =
{
α ∈ gC

∣∣ αHp′,q′ ⊂Hp+p′,q+q′ for p′, q′ ∈ Z
}

with respect to a Hodge decomposition HC =
⊕

Hp,q.

Example 2.1 (Upper half-plane). Let us consider the case where the

Hodge numbers h1,0 = h0,1 = 1, 0 otherwise. Then the corresponding clas-

sifying space D is the upper half-plane {z ∈ C | Imz > 0}, and Ď ∼= P1.

We have GA
∼= SL(2,A) (A= Z,R,C), where the action of SL(2,C) on Ď is

given by the linear fractional transformation. Here gR = sl(2,R) is generated

by

n− =

(
0 1

0 0

)
, h=

(
−1 0

0 1

)
, n+ =

(
0 0

1 0

)
.

We call the triple the sl2-triple. The sl2-triple satisfies the following condi-

tions:

[n+,n−] = h, [n±,h] =±2n±.

The Hodge decomposition of gC with respect to i ∈D is given by

g−1,1 =C(in− − h+ in+), g0,0 =C(n− − n+), g1,−1 = g−1,1.(2.1)

Returning to the general case, the isotropy subgroup L of GR at F0 is

given by

L= {g ∈GR | gF0 = F0}

∼=
{∏

p≤mU(hp,q) if w = 2m+ 1,∏
p<mU(hp,q)× SO(hm,m) if w = 2m.

They are compact subgroups of GR but not maximal compact unless D is

Hermitian symmetric. We define

Heven =
⊕

p: even

Hp,q
0 , Hodd =

⊕
p: odd

Hp,q
0 ,
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MODULI OF LOG HODGE STRUCTURES, II 5

where HC =
⊕

Hp,q
0 is the Hodge decomposition for F0. Here

K = {g ∈GR | gHeven =Heven}

∼=
{
U(h) if w is odd,

S
(
O(hodd)×O(heven)

)
if w is even

is the maximal subgroup containing L (see [CMP, Example 4.3.6], [LS,

Lemma 2.8]). By the connectivity of GR, D is connected if w is odd, D

has two connected components if w is even, and heven, hodd > 0. Here D

is Hermitian symmetric if and only if the isotropy subgroup is a maxi-

mally compact subgroup, that is, if one of the following is satisfied (see [U1,

(1.8)]):

(1) w = 2m+ 1, hp,q = 0 unless p=m+ 1,m;

(2) w = 2m,hp,q = 1 for p=m+ 1,m− 1, hm,m is arbitrary, hp,q = 0 other-

wise;

(3) w = 2m,hp,q = 1 for p=m+a,m+a− 1,m−a,m−a+1 for some a≥
2, hp,q = 0 otherwise.

In the case (1), D is a Hermitian symmetric domain of type III. In the case

(2) or (3), an irreducible component of D is a Hermitian symmetric domain

of type IV. We call the cases (1)–(3) the classical situation.

Example 2.2 (The weight 1 case). We give an example of period domains

of weight 1 and h1,0 = h0,1 = n, 0 otherwise. This case corresponds to case

(1) above. Now GA = Sp(n,A) (A= Z,R,C) and

D =
{
W : 〈 , 〉-isotropic n-planes

∣∣W > 0 for i〈•, •̄〉
}

∼= {Z ∈Cn×n | I −ZZ∗ > 0}(2.2)

∼= Sp(n,R)/U(n),

where > 0 means positive definite. The space D is called the Siegel space of

degree n (see [N] for details).

2.2. Cycle spaces of period domains

Let D0 be an irreducible component including F0 of a period domain D.

Then the identity component GR,0 acts on D0 transitively. Let K0 be the

maximal compact subgroup of GR,0 containing the isotropy subgroup L0 at

F0. We then have the real analytic projection

p :D0
∼=GR,0/L0 →GR,0/K0.
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6 T. HAYAMA

If w is odd,

GR,0/K0 = Sp(h,R)/U(h)(2.3)

is the Hermitian symmetric domain of Example 2.2. If w is even,

GR,0/K0 = SO0(hodd, heven)/SO(hodd)× SO(heven)

is a symmetric space which does not have any complex structure unless the

projection p is trivial (see [CMP, Example 4.3.6]). Moreover, GR,0/K0 is

written as the set of all Heven for F ∈D0 (see [LS, Lemma 2.10]), and the

projection p is given by

F �→Heven.

Then it is not holomorphic even if w is odd. Therefore, we have the following

theorem applying [FHW] to D0.

Theorem 2.3 ([FHW, Theorem 4.4.3]). If D0 is not a Hermitian sym-

metric domain (i.e., L0 �=K0), any holomorphic function on D0 is constant.

Now the fiber of p(F0) is the K0-orbit C0 =K0 · F0. We call C0 the base

cycle of F0. By [FHW, Theorem 4.3.1], K0,C acts on C0 transitively, and

then C0 =K0,C · F0 is a compact submanifold of D0.

Proposition 2.4 ([FHW, Lemma 5.1.3]). Let J = {g ∈GC | gC0 = C0}.
Then J is a closed complex subgroup of GC. The quotient manifold MĎ =

{gC0 | g ∈GC} ∼=GC/J has a natural structure of GC-homogeneous complex

manifold, and the subset {gC0 | g ∈GC and gC0 ⊂D} is open in MĎ.

The topological component of C0 in {gC0 | g ∈ GC and gC0 ⊂ D0} is

called the cycle space of D0. We denote the cycle space of D0 by MD0 . If D0

is Hermitian symmetric, the projection p is trivial; therefore, MD0 =D0.

2.3. Cycle spaces for odd weight cases

We describe cycle spaces explicitly in the odd weight case when D0 is

not Hermitian symmetric according to [FHW, Section 5.5B]. In this case

D =D0. For a base point F0 ∈D, we define

fp
even =

∑
r≥p,

r: even

hr,s, fp
odd =

∑
r≥p,
r: odd

hr,s.

Let V and W be 〈 , 〉-isotropic subspaces, and let

CV,W =
{
F ∈ Ď

∣∣ dim(F p ∩ V ) = fp
even,dim(F p ∩W ) = fp

odd

}
.
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Here gCV,W =CgV,gW for g ∈GC by the definition. Now

F p
0 ∩Heven =

⊕
r≥p,

r: even

Hr,s,

gF p
0 ∩Heven = g(F p

0 ∩Heven) =
⊕
r≥p,

r: even

gHr,s

for g ∈K. Then C0 =CHeven,Hodd .

By (2.3), GR/K is isomorphic to the Siegel space B. In this case, the

cycle space MD is described as follows.

Proposition 2.5. We have

MD =
{
CV,W

∣∣ V < 0 and W > 0 for iw〈•, •̄〉
}∼= B × B̄,

where w is the weight.

Proof. Now the GR-orbit GRH
even is isomorphic to B. Then GRH

odd is

the complex conjugate B̄. Since B (resp., B̄) is an open subset of the flag

manifold GCH
even (resp., GCH

odd), we have B × B̄ ⊂GCH
even ×GCH

odd.

For (Heven,Hodd) ∈ GCH
even × GCH

odd, the GC-orbit GC(H
even,Hodd)

includes B × B̄ by [FHW, Lemma 5.4.1]. Now the isotropy subgroup of GC

at (Heven,Hodd) is KC. Then we have GC/KC ⊃B × B̄.
Since MĎ

∼=GC/J and KC ⊂ J , we have the projection

π :GC/KC →MĎ; g (mod KC) �→ gC0.

By [FHW, Proposition 5.4.3], π is injective on B × B̄. Moreover, by [FHW,

Theorem 5.5.1], π(B × B̄) =MD ⊂MĎ.

§3. Moduli spaces of polarized log Hodge structures

In this section, we review the construction of moduli spaces of log Hodge

structures and state the fundamental properties following [KU] in Sec-

tion 3.1. We state the main result in Section 3.2.

3.1. Construction and fundamental properties

We call σ ⊂ gR a nilpotent cone if it satisfies the following conditions:

(1) σ is a closed cone generated by finitely many elements of gQ;

(2) N ∈ σ is nilpotent as an endomorphism of HR;

(3) NN ′ =N ′N for any N,N ′ ∈ σ.

For A=R,C, we denote by σA the A-linear span of σ in gA.
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8 T. HAYAMA

Definition 3.1. Let σ =
∑n

j=1R≥0Nj be a nilpotent cone, and let F ∈ Ď.

Then

exp (σC)F ⊂ Ď

is called a σ-nilpotent orbit if it satisfies the following conditions:

(1) exp (
∑

j iyjNj)F ∈D for all yj � 0;

(2) NF p ⊂ F p−1 for all p ∈ Z and for all N ∈ σ.

We define the set of nilpotent orbits

Dσ :=
{
(τ,Z)

∣∣ τ : face of σ,Z is a τ -nilpotent orbit
}
.

For a nilpotent cone σ, we have the abelian group and the monoid

Γ(σ)gp = exp(σR)∩GZ, Γ(σ) = exp (σ)∩GZ.

We define a geometric structure on Γ(σ)gp\Dσ. First, we review some

basic facts about toric varieties. The monoid Γ(σ) defines the toric varieties

toricσ := Spec
(
C
[
Γ(σ)∨

])
an

∼=Hom
(
Γ(σ)∨,C

)
,

torusσ := Spec
(
C
[
Γ(σ)∨gp

])
an

∼=Hom
(
Γ(σ)∨gp,Gm

)∼=Gm ⊗ Γ(σ)gp,

where C in the right-hand side of the first line is regarded as a semigroup

via multiplication and the above homomorphisms are of semigroups. As in

[F, Section 2.1], we choose for a face τ of σ the distinguished point

xτ : Γ(σ)
∨ →C; u �→

{
1 if u ∈ Γ(τ)⊥,

0 otherwise.

Then toricσ can be decomposed by torus orbits as

toricσ =
⊔

τ : face of σ

(torusσ · xτ ).

For q ∈ toricσ, there exists the face σ(q) of σ such that q ∈ torusσ ·xσ(q). By
a surjective homomorphism

e : σC → torusσ ∼=Gm ⊗ Γ(σ)gp; w log (γ) �→ exp (2π
√
−1w)⊗ γ,

q can be written as q = e(z) · xσ(q). Here ker (e) = log (Γ(σ)gp), and z is

determined uniquely modulo log (Γ(σ)gp) + σ(q)C.
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We define the analytic space Ěσ := toricσ × Ď and the subset

Eσ :=

{
(q,F ) ∈ Ěσ

exp (σ(q)C) exp (z)F is a σ(q)-nilpotent orbit,

where q = e(z) · xσ(q)

}
.

Here we endow Eσ with the strong topology (see [KU, Section 3.1]) in Ěσ.

We then define the canonical map

π :Eσ → Γ(σ)gp\Dσ,

(q,F ) �→
(
σ(q), exp

(
σ(q)C

)
exp (z)F

)
mod Γ(σ)gp.

We endow Γ(σ)gp\Dσ with the strongest topology for which the maps π are

continuous. Kato and Usui give the geometric properties of Eσ, Γ(σ)
gp\Dσ

and Eσ → Γ(σ)gp\Dσ by using the language log manifolds (see [KU, Sec-

tion 3.5]).

Theorem 3.2 ([KU, Theorem A]). We have the following:

(1) Eσ and Γ(σ)gp\Dσ are logarithmic manifolds;

(2) we have that the σC-action on Eσ over Γ(σ)gp\Dσ by

a · (q,F ) :=
(
e(a)q, exp (−a)F

) (
a ∈ σC, (q,F ) ∈Eσ

)
,

and Eσ → Γ(σ)gp\Dσ is a σC-torsor in the category of logarithmic man-

ifolds.

Log manifolds are roughly analytic spaces with slits. A typical example

of a log manifold is

C2 ⊃
{
(x, y)

∣∣ x= 0⇒ y = 0
}
,

which is defined by the log differential 1-form yd logx of the log analytic

space C2.

Moreover, Kato and Usui in [KU] define polarized log Hodge structures

(see [KU, Section 2.4]), and they show that Γ(σ)gp\Dσ is a fine moduli space

of polarized log Hodge structures (see [KU, Theorem B]).

In the classical situation, Γ(σ)gp\Dσ is just a toroidal partial compacti-

fication and the boundary is of codimension 1 (see [N]). However, the codi-

mension may be greater than 1 in the nonclassical situation.

Example 3.3 (The (1,1,1,1)-case). Nilpotent orbits in the case where

the Hodge numbers are h3,0 = h0,3 = 1 and h1,2 = h2,1 = 1, 0 otherwise (we

https://doi.org/10.1215/00277630-2394196 Published online by Cambridge University Press

https://doi.org/10.1215/00277630-2394196


10 T. HAYAMA

call it the (1,1,1,1)-case) are classified by [KU, Section 12.3] or [GGK1].

In this case, D ∼= Sp(2,R)/(U(1)× U(1)) and dimD = 4. Here D is not a

Hermitian symmetric space. All possible nilpotent cones are of rank 1. For

a nilpotent orbit (R≥0N, exp (CN)F ), we have the limiting mixed Hodge

structure (W (N), F ) by [S] twisting W (N). Here (W (N), F ) is one of the

following types:
Type-I: N2 = 0,dim(ImN) = 1. Type-II: N2 = 0,dim(ImN) = 2.

(2,2)
•

N
(3,0)
•

(0,3)
•

(1,1)
•

(3,1)
•

N

(1,3)
•

N

(2,0)
•

(0,2)
•

Type-III: N3 �= 0,N4 = 0. Dimensions of boundaries

(3,3)
•

N

(2,2)
•

N

(1,1)
•

N

(0,0)
•

dim(Dσ −D)

Type-I 2

Type-II 1

Type-III 1

Geometrically, type-I or type-III degeneration occurs in the quintic-mirror

family, and type-II degeneration occurs in the Borcea–Voisin mirror family

(see [GGK1, Part III.A], [U2]).

3.2. Whether the torsors are trivial

By Theorem 3.2, we have the torsor Eσ → Γ(σ)gp\Dσ for a period domain

D and a nilpotent cone σ. In [H1], we showed the triviality of torsors in the

classical situation. We show a nontriviality of the torsors in the nonclassical
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situation by using the fact that any holomorphic function on D is constant

in the nonclassical case (see Theorem 2.3).

Theorem 3.4. Let D be a period domain (for pure Hodge structures),

and let (σ,Z) be a nilpotent orbit. Then Eσ → Γ(σ)gp\Dσ is trivial if and

only if D is Hermitian symmetric or σ = {0}.

Proof. By [H1, Theorem 5.6], the torsors are trivial if D is a Hermitian

symmetric space. If σ = {0}, the torsor is just the identity map D → D;

therefore, the torsor is trivial. Thus it suffices to show that the torsor is

nontrivial if D is not Hermitian symmetric.

We assume that π :Eσ → Γ(σ)gp\Dσ is trivial for a non-Hermitian sym-

metric space D and for a nilpotent cone σ �= {0}. Now

π−1
(
Γ(σ)gp\D

)
=Eσ ∩ (torusσ × Ď)

by the definition of Eσ, and this is a complex analytic space since torusσ×Ď

has trivial log structure. Thus the restriction of the torsor to π−1(Γ(σ)gp\D)

is a torsor in the category of complex analytic spaces, and we have a section

Γ(σ)gp\Dσ →Eσ and a holomorphic map Φ :D→ (C∗)l such that we have

the following diagram:

Γ(σ)gp\Dσ

⊂

Eσ

⊂

Φ :D
quot.

Γ(σ)gp\D Eσ ∩ (torusσ × Ď)
proj.

torusσ ∼= (C∗)l,

(3.1)

where l= rankΓ(σ)gp.

For a nilpotent N in the relative interior of σ, we have

lim
y→∞

exp (iyN)F =
(
σ, exp (σC)F

)
(3.2)

through D → Γ(σ)gp\D ↪→ Γ(σ)gp\Dσ by [KU, Proposition 3.4.4]. Then

Φ(exp (iyN)F ) has to converge to 0 ∈ toricσ as y → ∞. This contradicts

Theorem 2.3.

§4. Remarks on [H1]

We showed the nontriviality of the torsor in [H1, Proposition 5.8] using a

method different from that used in Theorem 3.4. We formulate it by using
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12 T. HAYAMA

the SL(2)-orbit theorem and cycle spaces, and we give a second proof of the

nontriviality result for a special case. While this second proof requires some

special conditions, the result is stronger than the first one since it says that

there exists no section over certain open sets around a boundary point. A

property of some cycle spaces induces this result. We observe the property

of cycle spaces in the (1,1,1,1)-case explicitly in Section 4.3. In this section,

we assume that D is not Hermitian symmetric.

4.1. SL(2)-orbits and cycle spaces

Let (R≥0N, exp (CN)F ) be a nilpotent orbit. By [S] there exists the mon-

odromy weight filtration W (N), and (W (N), F ) is a mixed Hodge structure.

By [CKS, Proposition 2.20] there exists the R-split mixed Hodge struc-

ture (W (N), F̂ ) associated to it. We then have the Deligne decomposition

HC =
⊕

p,q I
p,q for (W (N), F̂ ), where

F̂ p =
⊕
r≤p

Ir,s, W (N)k =
⊕

r+s=k

Ir,s, Ip,q = Iq,p.

By the SL(2)-orbit theorem (see [S, Theorem 5.13], [CKS, Section 3]), there

exists the Lie group homomorphism ρ : SL(2,C)→GC defined over R and

the holomorphic map φ : P1 → Ď satisfying the following conditions:

(S1) ρ(g)φ(z) = φ(gz);

(S2) φ(0) = F̂ ;

(S3) ρ∗(n−) =N ;

(S4) Hv = (p+ q−w)v for v ∈ Ip,q, where ρ∗(h) =H ;

(S5) ρ∗ : sl(2,C) → gC is a (0,0)-morphism of Hodge structure, where gR

(resp., sl(2,R)) has a Hodge structure of weight 0 relative to φ(i)

(resp., i),

where {n−,h,n+,} is the sl2-triple (see Example 2.1).

Let F0 = φ(i) be a base point of D. We write

ρ∗(n+) =N+, X =
1

2
(iN −H + iN+).(4.1)

Then X ∈ g
−1,1
0 by (S5) and (2.1), where g

−1,1
0 is the (−1,1)-component of

the Hodge decomposition of gC with respect to F0. By (S1) we have

exp (zX)φ(i) = φ
(1 + z

1− z
i
)
;
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therefore,

exp
( y

2 + y
X
)
φ(i) = φ

(
(1 + y)i

)
= exp(iyN)φ(i).(4.2)

Lemma 4.1. Let C0 be the base cycle of F0. If dim(ImN) = 1, then both

(A) and (B) hold:

(A) there exists Ffix ∈C0 such that exp (X)Ffix = Ffix;

(B) exp (zX)C0 ⊂D (i.e., exp (zX)C0 ∈MD) for |z|< 1.

Proof. At first we write X explicitly. Considering the type of the limiting

Hodge structure (W (N), F ), the case where dim(ImN) = 1 is possible only

if the weight is 2m−1 and dim(GrW2m) = dim(GrW2m−2) = 1. We then have an

R-element e in the (m,m)-component Im,m of the Deligne decomposition

of (W (N), F̂ ). Here X is given by

e �→ 1

2
(−e+ iNe), Ne �→ 1

2
(ie+Ne) =−iXe,

Ip,q → 0 for p+ q = 2m− 1.

We write u = exp(iN)e. Since e ∈ F̂m, u ∈ exp (iN)F̂m = Fm
0 . Moreover,

since Ne ∈ F̂m−1,

Ne= exp(iN)Ne ∈ exp (iN)F̂m−1 = Fm−1
0 .

Then

ū= e− iNe= u− 2iNe ∈ Fm−1
0 .

Hence u is in the (m,m−1)-componentHm,m−1
0 of the Hodge decomposition

for F0. Here

Xu=−e+ iNe=−ū, Xw = 0 if 〈w, ū〉= 0.(4.3)

First we show (A). We denote by ‖ • ‖ the norm induced by the positive

definite Hermitian form 〈CF0•, •̄〉, where CF0 is the Weil operator for F0.

Scaling u, we may assume that ‖u‖= 1. We take v ∈Hm−2,m+1
0 such that

‖v‖= 1. We define g ∈Aut(HC) by

gu= v, gv = u, gv̄ = ū, gū= v̄,

and gw =w if w is vertical to u, v, ū, and v̄ for 〈 , 〉. Then

gu= v = gū= ḡu, gv = u= gv̄ = ḡv.

Therefore, g is defined over R and preserves the polarization 〈 , 〉; that is,

g ∈GR. Moreover, g ∈K since g preserves Heven.
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Claim. We have that gF0 ∈C0 is a fixed point for exp (X).

Proof. Now u= gv ∈ gHm−2,m+1
0 . By (4.3), it suffices to show that Xu ∈

gFm−2
0 . In fact,

Xu=−ū=−gv̄ ∈ gHm+1,m−2
0 .

Next we show (B). We take a unitary basis {u1, . . . , ul} of Hm,m−1
0 . We

may assume that u1 = u. Then exp (X)uj = uj if j �= 1 and exp (zX)u1 =

u1 − zū1. Here

i
〈
exp (zX)u1, exp (zX)u1

〉
= ‖u1‖2 − |z|2‖u1‖2 = 1− |z|2.

By Proposition 2.5, exp (zX)C0 ⊂D if and only if |z|< 1.

Remark 4.2. In the (1,1,1,1)-case, a type-I nilpotent N satisfies

dim(ImN) = 1, however other types do not. Above, (4.2) and items (A)

and (B) of Lemma 4.1 correspond to the conditions (5.4), (5.6), and (5.5)

of [H1, Section 5], respectively.

4.2. Nontriviality on some open sets

Let (R≥0N, exp (CN)F ) be a nilpotent orbit. Let (ρ,φ) be the SL(2)-orbit

associated to (N,F ). Taking F0 = φ(i) as a base point, we have the base

cycle C0 and X ∈ g
−1,1
0 as in (4.1). We define the subset

M(ε) =
{
exp (αX)C0

∣∣ 1− ε < α< 1
}
⊂MĎ

for 0< ε. If dim(ImN) = 1, by Lemma 4.1 (B),

exp (αX)C0 ∈MD for − 1<α< 1, exp (X)C0 /∈MD.

Then M(ε) is a nearby set of the boundary point exp (X)C0 ∈MD.

Proposition 4.3. Let U be an open set including the boundary point

(σ, exp (σC)F̂ ) in Γ(σ)gp\Dσ, where σ =R≥0N with dim(ImN) = 1. If there

exists 0< ε< 1 such that q(C)⊂ U for any C ∈M(ε) and the quotient map

q :D→ Γ(σ)gp\D, then no section over the open set U exists.

Proof. We assume that there exists a local trivialization over U . Similar

to the proof of Theorem 3.4, we have a section U →Eσ and the holomorphic

map Φ : q−1(U)→C∗ given by the following diagram

U

⊂

Eσ

⊂

Φ : q−1(U) U ∩
(
Γ(σ)gp\D

)
Eσ ∩ (C∗ × Ď) C∗.

https://doi.org/10.1215/00277630-2394196 Published online by Cambridge University Press

https://doi.org/10.1215/00277630-2394196


MODULI OF LOG HODGE STRUCTURES, II 15

By (4.2) and the assumption, we have

q
(
exp

( y

2 + y
X
)
F0

)
= q

(
exp (iyN)F0

)
⊂ U

for

1− ε <
y

2 + y
< 1, that is,

2(1− ε)

ε
≤ y.

By (3.2), Φ(exp (iyN)F0) has to converge to 0 ∈ toricσ as y→∞.

Now Φ is constant on the compact complex submanifold C ∈M(ε). By

Lemma 4.1, we then have

Φ
(
exp (iyN)F0

)
=Φ

(
exp

( y

2 + y
X
)
F0

)
=Φ

(
exp

( y

2 + y
X
)
Ffix

)

=Φ
(
exp

( y′

2 + y′
X
)
Ffix

)
=Φ

(
exp (iy′N)F0

)
for y, y′ > 2(1− ε)/ε. This contradicts the convergence of Φ(exp (iyN)F0).

Remark 4.4. Above X , Ffix and F0 correspond to the notations N ′, F∞
and F0 in [H1, Section 5], respectively.

4.3. The (1,1,1,1)-case

The conditions (A) and (B) of Lemma 4.1 induce Proposition 4.3. In our

later work [H2], condition (B) also plays an important role in the study of

boundary structure. We then expect that Γ\DΣ has good properties if Σ

satisfies the conditions (A) or (B). Therefore, it is important to determine

which cone satisfies (A) or (B). As we saw in Example 3.3, the types of

nilpotent orbits in the (1,1,1,1)-case are well known. Type-I nilpotents

satisfy (A) and (B). We show that (A) or (B) does not hold in other types

below.

Let (R≥0N, exp (CN)F ) be a nilpotent orbit, and let (ρ,φ) be the SL(2)-

orbit associated (N,F ). We can choose a unitary basis

u3 ∈H3,0
0 , u2 ∈H2,1

0 , ū2 ∈H1,2
0 , ū3 ∈H0,3

0

for the Hodge decomposition for F0 = φ(i). Here the base cycle of F0 is

C0
∼= U(2)/(U(1)×U(1))∼= P1. The isomorphism P1 ∼→C0 ⊂D is given by

F 3
z = spanC{zū2 + u3}, F 2

z = spanC{zū2 + u3, u2 − zū3},

F 3
∞ = spanC{ū2}, F 2

∞ = spanC{ū2, ū3}.
(4.4)
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The properties (A) and (B) of Lemma 4.1 depend on X ∈ g
−1,1
0 . For a

type-I nilpotent, X is given by

(3,0)
•

(2,1)
• X (1,2)

•
(0,3)
• (u2 �→ −ū2 �→ 0).

We determine the type of X in the case for type-II and for type-III, and

consider whether (A) or (B) holds or not.

4.3.1. Type-II. We have the following.

Proposition 4.5. If N is of type-II, then (B) holds; however, (A) does

not hold.

Proof. Let v be a nonzero element in I3,1 of the Deligne decomposition

of (W (N), F̂ ). Then

Nv ∈ I2,0, v̄ ∈ I1,3, Nv̄ ∈ I0,2.

We write u3 = exp(iN)v. Since v ∈ F̂ 3, u3 ∈ F 3
0 =H3,0

0 . Here the sl2-triple

is given by

N+Nv = v, N+Nv̄ = v̄, N+v =N+v̄ = 0,

Hv = v, Hv̄ = v̄, HNv =−Nv, HNv̄ =−Nv̄.

Then we have

H2,1
0 �Xu3 =−v+ iNv =− exp (−iN)v.

We write u2 =Xu3. Then Xu2 = 0. Moreover, ū2 ∈H1,2
0 and

Xū2 = v̄− iNv̄ = ū3.

Summarizing these, X ∈ g
−1,1
0 is given by

(3,0)
• X (2,1)

•
(1,2)
• X (0,3)

• (u3 �→ u2 �→ 0, ū2 �→ ū3 �→ 0).

Since X(zū2 + u3) = zū3 + u2, XF 3
z �⊂ F 3

z for z ∈ P1 in (4.4). Then there is

no fixed point for exp (X) in C0.

Next we show that (B) holds. Scaling v, we may assume that ‖u3‖= 1.
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Claim. We have ‖u2‖= 1.

Proof. Let a = 〈v, v̄〉, b = 〈Nv, v̄〉, c = 〈v,Nv̄〉, and d = 〈Nv,Nv̄〉. Then
by orthogonality, we have

〈u3, ū3〉= a+ ib− ic+ d= i, 〈u3, ū2〉=−a− ib− ic+ d= 0,

〈u2, ū3〉=−a+ ib+ ic+ d= 0.

Since v ∈ F̂ 3 and v̄ ∈ F̂ 1, a= 0. Therefore, the simultaneous equation induces

d= 0, b− c= 1, and 〈u2, ū2〉= a− ib+ ic+ d=−i.

Here {u3, u2, ū3, ū2} is a unitary basis. Since

−i
〈
exp (zX)u3, exp (zX)u3

〉
= ‖u3‖2 − |z|2‖u2‖2 = 1− |z|2,

−i
〈
exp (zX)ū2, exp (zX)ū2

〉
= ‖u2‖2 − |z|2‖u3‖2 = 1− |z|2,

exp (zX)C0 ⊂D if and only if |z|< 1 by Proposition 2.5.

4.3.2. Type-III. We give an example of type-III which satisfies neither

(A) nor (B). All nilpotent orbits of type-III are described in [GGK1] explic-

itly. We consider the case where a, b = 1 and e, f, π = 0 in the notation of

[GGK1, (I.C.2), (I.C.10)]. Let HZ =
∑3

j=0Zej . We write

e3 =

⎛
⎜⎜⎝
1

0

0

0

⎞
⎟⎟⎠ , e2 =

⎛
⎜⎜⎝
0

1

0

0

⎞
⎟⎟⎠ , e1 =

⎛
⎜⎜⎝
0

0

1

0

⎞
⎟⎟⎠ , e0 =

⎛
⎜⎜⎝
0

0

0

1

⎞
⎟⎟⎠ ,

where the bilinear form is given by⎛
⎜⎜⎝
0 0 0 −1

0 0 −1 0

0 1 0 0

1 0 0 0

⎞
⎟⎟⎠ .

Let

N =

⎛
⎜⎜⎝
0 0 0 0

1 0 0 0

0 1 0 0

0 0 −1 0

⎞
⎟⎟⎠ , F̂ p ={e3, . . . , ep} (3≥ p≥ 0).
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Then N and F̂ give a nilpotent orbit of type-III, where the limit mixed

Hodge structure (W (N), F̂ ) is R-split.

The sl2-triple of the SL(2)-orbit associated to this nilpotent orbit is given

by

H =

⎛
⎜⎜⎝
3 0 0 0

0 1 0 0

0 0 −1 0

0 0 0 −3

⎞
⎟⎟⎠ , N+ =

⎛
⎜⎜⎝
0 3 0 0

0 0 4 0

0 0 0 −3

0 0 0 0

⎞
⎟⎟⎠ .

Then

X =
1

2

⎛
⎜⎜⎝
−3 3i 0 0

i −1 4i 0

0 i 1 −3i

0 0 −i 3

⎞
⎟⎟⎠ .

Proposition 4.6. For the above example, both (A) and (B) do not hold.

Proof. Let

u3 =

√
3

2
exp (iN)e3 =

√
3

12

⎛
⎜⎜⎝

6

6i

−3

i

⎞
⎟⎟⎠ .

Then ‖u3‖= 1. Now

Xu3 =

√
3

4

⎛
⎜⎜⎝

−6

−2i

−1

i

⎞
⎟⎟⎠ , X2u3 =

√
3

2

⎛
⎜⎜⎝

6

−2i

1

i

⎞
⎟⎟⎠=−2Xu3,

X3u3 =

√
3

2

⎛
⎜⎜⎝
−6

6i

3

i

⎞
⎟⎟⎠=−6ū3.

Here ‖Xu3‖= 3. Letting u2 =Xu3/
√
3, we then have a unitary basis {u3, u2,

ū3, ū2}. Endomorphism X gives the map

(3,0)
• X (2,1)

• X (1,2)
• X (0,3)

•

(u3 �→
√
3u2 �→ −2

√
3u2 �→ −6u3 �→ 0).
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Then XF 3
z �⊂ F 3

z for z ∈ P1 in (4.4), and so there is no fixed point in C0.

Moreover, for ū2 ∈ F 3
∞,

−i
〈
exp (zX)ū2, exp (zX)ū2

〉
= ‖u2‖2 − 3|z|2‖u3‖2 = 1− 3|z|2.

Then exp (zX)C0 �⊂D for |z| ≥ 1/
√
3.
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