
Proceedings of the Edinburgh Mathematical Society (2005) 48, 635–650 c©
DOI:10.1017/S0013091504001087 Printed in the United Kingdom

THE GENERALIZED GOODWIN–STATON INTEGRAL

D. S. JONES

Mathematics Division, University of Dundee, Dundee DD1 4HN, UK

(Received 21 September 2004)

Abstract Some properties of the generalized Goodwin–Staton integral are derived. Explicit error bounds
for the asymptotic expansion are determined. In addition, results are obtained for the oscillatory case
and when logarithmic factors are present.

Keywords: Goodwin–Staton integral; asymptotics; Stieltjes transform

2000 Mathematics subject classification: Primary 30E15

1. Introduction

The Goodwin–Staton integral ∫ ∞

0

e−t2

t + x
dt

has been discussed by Goodwin and Staton [4], Ritchie [7] and Erdélyi [3]. Its asymptotic
properties can be found in [6]. The aim of the present investigation is to consider its
generalization when a factor tµ is added to the integrand and x is replaced by a complex
variable. The performance of such an integral is of interest because a saddle point, branch
point and pole are present and can interact with one another. The interaction is of special
relevance to asymptotic approximations.

Representations of the generalized integral by means of series are derived in § 2.
Straightforward asymptotic expansions when the pole is in certain regions of the complex
plane are obtained in § 3. In § 4 the question of what happens when the pole approaches
the positive real axis is examined. As a result a formula for the optimal remainder is deter-
mined. That the formula is asymptotic is verified in § 5, which also supplies a bound for
the error committed by truncation. Section 6 is devoted to the consequences of the theory
when the exponent in the integrand is imaginary. Integrals with logarithmic factors are
treated briefly in § 7.

2. Alternative representations

The integral to be discussed is

I(µ, z) =
∫ ∞

0

tµe−t2

t − z
dt (2.1)
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so it can be viewed as a Stieltjes transform. It will be assumed that z does not lie on
the positive real axis. Also, µ will be taken to be real to simplify some formulae, though
many of the results hold for complex µ. The condition µ > −1 will be imposed to secure
convergence of the integral. In general, µ will be regarded as fixed while z varies. However,
it is straightforward to change the value of µ since

I(µ + 1, z) = (1
2µ − 1

2 )! 12 + zI(µ, z). (2.2)

Note also that
d
dz

I(µ, z) = µI(µ − 1, z) − 2I(µ + 1, z) (2.3)

when µ > 0.
Suppose firstly that 1

4π < ph z < 3
4π. Then, with ph(−z2) = 2 ph z−π, |ph(−z2)| < 1

2π.
Hence

I(µ, x) =
∫ ∞

0

tµ(t + z)
t2 − z2 e−t2 dt

=
∫ ∞

0
tµ(t + z)e−t2

∫ ∞

0
e−u(t2−z2) du dt

= 1
2

∫ ∞

0

{
( 1
2µ)!

(u + 1)µ/2+1 +
( 1
2µ − 1

2 )!z
(u + 1)µ/2+1/2

}
euz2

du

after the order of integration is interchanged. Since |ph(−z2)| < 1
2π, the integrals can be

expressed in terms of the complementary incomplete gamma function Γ (λ, z), which is
given by

Γ (λ, z) = e−zzλ

∫ ∞

0
e−zt(1 + t)λ−1 dt

when |ph z| < 1
2π. Therefore,

I(µ, z) = 1
2e−z2{( 1

2µ)!(−z2)µ/2Γ (− 1
2µ,−z2) + ( 1

2µ − 1
2 )!z(−z2)µ/2−1/2Γ ( 1

2 − 1
2µ,−z2)}.

(2.4)
Another version of (2.4) is obtained by the substitution

Γ (λ, z) = (λ − 1)! − γ(λ, z),

where γ(λ, z) is the incomplete gamma function given by

γ(λ, z) = zλ
∞∑

m=0

(−z)m

m!(λ + m)
. (2.5)

Thus

I(µ, z) = −πzµe−µπi−z2

sin µπ

− 1
2e−z2

{
( 1
2µ)!

∞∑
m=0

z2m

m!(m − 1
2µ)

+ ( 1
2µ − 1

2 )!
∞∑

m=0

z2m+1

m!(m − 1
2µ + 1

2 )

}
. (2.6)
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The formula (2.6) has been established subject to 1
4π < ph z < 3

4π. However, I(µ, z) is
regular for 0 < ph z < 2π, and so is the right-hand side of (2.6). Accordingly, by analytic
continuation, (2.6) holds for 0 < ph z < 2π.

The discontinuity in I(µ, z) as z crosses the positive real axis can be deduced from (2.6).
It is

I(µ, x) − I(µ, xe2πi) = 2πixµe−x2
. (2.7)

Consequently,

I(µ, ze2πi) − I(µ, z) = −2πizµe−z2

or, more generally,

I(µ, ze2kπi) − I(µ, z) = −2πizµ sin kµπ

sin µπ
exp{(k − 1)µπi − z2} (2.8)

(where k is an integer) can be used to extend (2.6) to other ranges of ph z. Alternatively,
one can observe that a change of phase of 2π in z does not alter the integral in I(µ, z).
So the role of (2.8) is merely to adjust the phase of z in the first term of (2.6) to keep it
within the range of (0, 2π).

There is a variant of (2.6) which stems from

γ(λ, z) = (λ − 1)!zλe−z
∞∑

m=0

zm

(m + λ)!
. (2.9)

The insertion of (2.9) in (2.4) leads to

I(µ, z) = − πzµ

sin µπ
e−µπi−z2

+
π

2 sin 1
2µπ

∞∑
m=0

(−)mz2m

(m − 1
2µ)!

− π

2 cos 1
2µπ

∞∑
m=0

(−)mz2m+1

(m + 1
2 − 1

2µ)!
.

(2.10)
When µ is zero or a positive integer neither (2.6) nor (2.10) is very convenient without

modification. Let µ → 0 in (2.6). The first term on the right-hand side combines with
the first term of the series to provide a limit and

I(0, z) = e−z2
{

πi − ln z − 1
2γ − 1

2

∞∑
m=1

z2m

m!m
− 1

2π1/2
∞∑

m=0

z2m+1

m!(m + 1
2 )

}
, (2.11)

where γ is Euler’s constant. Observe that (2.7) and (2.8) remain valid in the limit as
µ → 0.

Expansions when µ is a positive integer can be inferred from (2.11) and (2.2).
When z = −x with x > 0, I(0, z) can be expressed in terms of the extended gamma

function defined by [1,2]

Γ (α, x; b; β) =
∫ ∞

x

tα−1e−t−b/tβ

dt.
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The formula is
I(0,−x) = 1

2e−x2
Γ (0, x2; −2x; − 1

2 ).

The expressions (2.6), (2.10) and (2.11) permit the calculation of I(µ, z) for small to
moderate values of z but are not very suitable for large |z|. The behaviour when |z| � 1
is examined in the next section.

3. Asymptotic expansions

Repeated application of (2.2) leads to

I(µ, z) = −1
2

n−1∑
m=0

( 1
2µ + 1

2m − 1
2 )!

zm+1 +
1
zn

I(µ + n, z), (3.1)

which offers the asymptotic expansion

I(µ, z) ∼ −1
2

∞∑
m=0

( 1
2µ + 1

2m − 1
2 )!

zm+1 (3.2)

when |z| � 1 provided that the last term in (3.1) can be bounded appropriately. It is
assumed that µ is fixed, independent of z, and generally that |z| � µ.

Now, when 1
2π � ph z � π, |t − z| � |z| and so∣∣∣∣ 1

zn
I(µ + n, z)

∣∣∣∣ �
( 1
2µ + 1

2n − 1
2 )!

2|z|n+1 . (3.3)

This shows that the statement (3.2) is valid for 1
2π � ph z � π and supplies a bound for

the error when the series is truncated.
To extend the range of ph z down to 1

6π, we use the fact that

(t2 − 31/2t + 1)−1/2 − 1 − 2t

has a negative derivative and, consequently, does not exceed 0 for t � 0. Then, for
ph z � 1

6π,
1

|t − z| � 1
|z| +

2t

|z|2 ,

so ∣∣∣∣ 1
zn

I(µ + n, z)
∣∣∣∣ �

( 1
2µ + 1

2n − 1
2 )!

2|z|n+1 +
( 1
2µ + 1

2n)!
|z|n+2 . (3.4)

Again (3.2) has been verified and a bound for the error in truncation obtained.
The replacement of z by its complex conjugate does not affect the estimates of |t − z|

above. Therefore, ph z can be changed to − ph z without altering (3.3) or (3.4), and (3.2)
holds for 1

6π � |ph z| � π.
The bound in (3.4) is larger than that in (3.3) and it may be expected that the

bound will increase with reducing ph z if the same technique of estimation is followed;
indeed a possible bound for 0 < |ph z| � 1

2π comes from dividing the right-hand side
of (3.3) by |sin(ph z)|. Therefore, another approach must be adopted for small ph z. This
is considered in the next section.

Another way of finding bounds similar to the above is set out in the appendix.
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4. The optimal remainder

The remainder in the expansion

I(µ, z) = −1
2

n−1∑
m=0

( 1
2µ + 1

2m − 1
2 )!

1
zm+1 +

1
zn

I(µ + n, z) (4.1)

as z approaches the positive real axis is dictated by the performance of I(µ + n, z) and
this section is concerned with deriving suitable estimates of this integral.

Instead of dealing with the remainder for general n, our attention will be concentrated
on that value of n for which the remainder is optimal. A bound for general n which covers
part of the region ph z � 1

4π including a portion of the upper side of the positive real
axis is in Equation (A 7) of the appendix.

The ratio of the moduli of successive terms in the series of Equation (4.1) is roughly
(µ + m)1/2/(2|z|) as m increases. Hence the optimal remainder occurs when µ + n is
approximately 2|z|2. Choose n such that µ + n − 1 < 2|z|2 and µ + n � 2|z|2. Then
µ + n = 2|z|2 + ν, where 0 � ν < 1.

Let z = |z|eiθ with 0 < δ � |θ| � π. Then

I(µ + n, z) = |z|µ+nJ(ν, z), (4.2)

where

J(ν, z) =
∫ ∞

0

tr+νe−rt2/2

t − eiθ dt (4.3)

and r = 2|z|2.
The integrand of J(ν, z) has a saddle point at t = 1 on account of the largeness of

r. The standard method of dealing with the saddle point [6] is to make the change of
variable

s = 1
2 t2 − 1

2 − ln t (4.4)

with s non-negative. Then, for small s, t − 1 ≈ s1/2 when t � 1 and t − 1 ≈ −s1/2 when
t � 1. The asymptotic series is obtained by expansion about t = 1 of that part of the
integrand which does not involve the saddle point. In terms of s the form of expansion is

tν+1

(t − eiθ)(t2 − 1)
=

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

∞∑
m=0

amsm/2−1/2, t � 1,

∞∑
m=0

am(−)m+1sm/2−1/2, t � 1.

(4.5)

As a result,

J(ν, z) ∼ 2
r1/2 e−r/2

∞∑
m=0

(m − 1
2 )!

a2m

rm
(4.6)

for |z| � 1.

https://doi.org/10.1017/S0013091504001087 Published online by Cambridge University Press

https://doi.org/10.1017/S0013091504001087


640 D. S. Jones

It is evident from the mode of derivation of (4.5) that the coefficients am become
infinite as eiθ → 1. Therefore, a restriction such as π � |θ| � δ > 0 must be applied
to (4.6). Note that a change in θ by 2π does not affect (4.6).

To allow θ to approach 0, the influence of the pole has to be separated off. Put s = u2

in (4.4). Take u to be negative when t < 1 and positive when t > 1. In other words

t − 1 ≈ u (4.7)

when t is in the neighbourhood of 1. The change of variable gives

J(ν, z) = e−r/2
∫ ∞

−∞

2utν+1e−ru2

(t − eiθ)(t2 − 1)
du.

Extract the pole by writing

2utν+1

(t − eiθ)(t2 − 1)
=

eiνθ

u − α
+ f(u), (4.8)

where
α2 = 1

2e2iθ − 1
2 − iθ. (4.9)

As θ → 0, α ≈ iθ to comply with (4.7). Since Imα cannot change sign according to (4.9)
when π � θ � 0, it follows that α is in the upper half of the u-plane for π > θ > 0.
Correspondingly, α is in the lower half of the u-plane when −π < θ < 0.

For Im α > 0,

∫ ∞

−∞

e−ru2

u − α
du = i

∫ ∞

−∞
e−ru2

∫ ∞

0
e−iy(u−α) dy du = i

(
π

r

)1/2 ∫ ∞

0
eiyα−y2/4r dy

after interchanging the order of integration. The final integral can be expressed in terms
of the complementary error function

erfc(w) =
2

π1/2

∫ ∞

w

e−y2
dy

and ∫ ∞

−∞

e−ru2

u − α
du = πie−rα2

erfc(−iαr1/2)

when Im α > 0. For Im α < 0, change i to −i on the right-hand side. Then, since

erfc(−w) = 2 − erfc(w), (4.10)∫ ∞

−∞

e−ru2

u − α
du = πie−rα2{2H(Im α) − erfc(iαr1/2)}, (4.11)

where H(x) is the Heaviside step function which is 1 for x > 0 and 0 for x < 0.
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The function f(u) has no singularity at u = α and is regular in that part of the u-plane
mapped by the t-plane. Hence f(u) can be expanded in a power series about the origin
in the form

f(u) =
∞∑

m=0

fm(θ)um. (4.12)

In fact, it is clear from (4.8) and (4.5) with s = u2 that

fm(θ) = 2am +
eiνθ

αm+1 . (4.13)

The first few am are given by

2a0 =
1

1 − eiθ ,

2a1 =
−1

(eiθ − 1)2
− 3ν + 1

3(eiθ − 1)
,

2a2 = − 1
(eiθ − 1)3

− 2ν + 1
2(eiθ − 1)2

+
1 − 3ν2

6(eiθ − 1)
,

2a4 = − 1
(eiθ − 1)5

− 5 + 6ν

6(eiθ − 1)4
+

5 − 12ν − 18ν2

36(eiθ − 1)3

− 1 − 16ν − 6ν2 + 12ν3

72(eiθ − 1)2
− 1 + 24ν − 6ν2 − 24ν3 + 9ν4

216(eiθ − 1)
.

In the limit as θ → 0,

f0 → ν + 1
6 ,

f1 → 1
2ν2 − 1

6ν − 5
36 ,

f2 → 1
6ν3 − 1

4ν2 − 1
12ν + 37

540 ,

f4 → 378ν5 − 2205ν4 + 2730ν3 + 1890ν2 − 2583ν − 215
45 360

.

The substitution (4.8) now gives

J(ν, z) ∼ e−r/2
[
πie−rα2+iνθ{2H(Im α) − erfc(iαr1/2)} +

∞∑
m=0

(m − 1
2 )!

f2m(θ)
rm+1/2

]
. (4.14)

If Im α < 0 and |αr1/2| � 1, the asymptotic expansion

erfc w ∼ e−w2

πw

∞∑
m=0

(m − 1
2 )!

(−)m

w2m
(|phw| < 1

2π) (4.15)

together with (4.13) shows that (4.14) reproduces (4.6) for −π � θ � −δ. Likewise,
invocation of (4.10) and (4.15) reveals that (4.14) coincides with (4.6) for δ � θ � π.
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On the other hand, (4.14) continues to hold as θ → 0, so, if x > 0,

J(ν, x ± i0) ∼ e−x2
[
±πi +

∞∑
m=0

(m − 1
2 )!

f2m(0)
2m+1/2x2m+1

]
as x → ∞. (4.16)

It can be shown that the expansion (4.14) is asymptotic for |θ| � π. However, it is
most useful for the smaller values of θ, since larger values have been dealt with in § 3.
Also, for numerical purposes, it is desirable to have some idea of the error committed
when the series in (4.14) is truncated and, usually, the estimates increase as the range
of θ widens. For these reasons the discussion of the asymptotic properties of (4.14) in the
next section is limited to smaller values of θ.

As regards the last term of (4.1) it can be inferred from (4.2) that

I(µ + n, z) ∼ πizµ+ne−z2{2H(Im α) − erfc(iα21/2|z|)}

+ |z|µ+ne−|z|2
∞∑

m=0

(m − 1
2 )!

f2m(θ)
2m+1/2|z|2m+1 (4.17)

and, for x > 0,

I(µ + n, x ± i0) ∼ xµ+ne−x2
{

±πi +
∞∑

m=0

(m − 1
2 )!

f2m(0)
2m+1/2x2m+1

}
. (4.18)

Formula (4.17) not only provides an estimate of the error in optimal truncation of the
asymptotic series for I(µ, z) but also offers an asymptotic expansion for the generalized
Goodwin–Staton integral when both parameters are large.

5. Error bound for the remainder

To establish that (4.14) is asymptotic, put

f(u) =
2p−1∑
m=0

fm(θ)um + gp(u)u2p, (5.1)

where p is a non-negative integer and the series is absent if p = 0.
Then (4.14) is replaced by

J(ν, z) = e−1/2r

[
πie−rα2+iνθ{2H(Im α)−erfc(iαr1/2)}+

p−1∑
m=0

(m− 1
2 )!

f2m(θ)
rm+1/2 +Gp(θ, r)

]

(5.2)
with

Gp(θ, r) =
∫ ∞

−∞
gp(u)u2pe−ru2/2 du. (5.3)

The main interest in estimating Gp occurs for the smaller values of θ on account of the
formulae of § 3. So consider what happens when eiθ lies in a circle with centre t = 1 and
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radius ρ (ρ < 1). In the u-plane the point corresponding to the point t = 1 + ρeiφ on the
circumference of the circle is given by

u2 = ρeiφ + 1
2ρ2e2iφ − ln(1 + ρeiφ). (5.4)

There is no difficulty in checking that, as φ moves round the circle with ρ = 3
4 , |u|2 has a

minimum of 0.471 634 and a maximum of 0.917 544. Therefore, when ρ = 3
4 , the boundary

in the u-plane of the map of the circle lies between the circles with centre the origin and
radii 0.686 753, 0.957 885. Similarly, when ρ = 1

2 , the bounding circles in the u-plane are
of radii 0.468 546 and 0.564 045.

The value of |α| increases with θ. In particular, |α| = 0.614 629 when θ = 1
5π and

|α| = 0.515 66 when θ = 1
6π. Hence α lies in the inner of the two bounding circles in the

u-plane for |θ| � 1
5π when ρ = 3

4 . However, the α corresponding to θ = 1
6π lies outside

the inner circle when ρ = 1
2 . Accordingly, to have a region which includes θ = 1

6π (so
that there is an overlap with the region covered by (3.1) and (3.4)) and which keeps α

within the inner circle, the choice ρ = 3
4 will be made. Also the restriction |θ| � 1

5π is
enforced.

Let b = 0.686 753. By virtue of (4.8)

|f(u)| � 3.43
0.75 − 2 sin( 1

2 |θ|)
+

1
b − |α| (5.5)

on the boundary in the u-plane. Denote the right-hand side of (5.5) by A(θ) so that

A(0) = 6.02. (5.6)

By Cauchy’s inequality and (5.5)

|fm(θ)| � A(θ)
bm

. (5.7)

A bound for Gp is derived by splitting the interval of integration into three pieces. In
the first piece |u| � 1

2b and here

|gp(u)| =
∣∣∣∣

∞∑
m=2p

fm(θ)um−2p

∣∣∣∣ � 2A(θ)
b2p

on account of (5.7). Therefore,
∣∣∣∣
∫ b/2

−b/2
gp(u)u2pe−ru2/2 du

∣∣∣∣ � 2A(θ)
b2p

∫ b/2

−b/2
u2pe−ru2/2 du

� 2A(θ)
b2p

γ(p + 1
2 , 1

8rb2)
(

2
r

)p+1/2

. (5.8)

Outside the interval just discussed, some information about dt/du is required. Now

d2t

du2 =
4t

(t2 − 1)3
{(t2 + 1) ln t − t2 + 1}.
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Furthermore,
d
dt

{
ln t − t2 − 1

t2 + 1

}
=

(t2 − 1)2

t(t2 + 1)2

which is non-negative. Consequently, (t2 + 1) ln t − t2 + 1 is an increasing function of t

which is negative for t < 1 and positive for t > 1. Hence d2t/du2 is always non-negative.
It follows that dt/du is an increasing function of t which starts at 0 when t = 0 and
approaches 21/2 as t → ∞, passing through 1 at t = 1. In particular dt/du < 21/2

throughout the interval t � 0.
For u � 1

2b, the properties of dt/du just established show that t−1 > u. Since t = 1.36
when u = 1

2b it is clear that t � 4u. Hence,∣∣∣∣ tν

t − eiθ

dt

du

∣∣∣∣ < 22ν+1/2uν−1.

The points α lie close to the imaginary axis in the u-plane for |θ| � 1
5π. Hence, from

Equation (4.8),
|f(u)| < 22ν+1/2uν−1 + 1/u

on u � 1
2b. It follows from (5.1) and (5.7) that, for u � 1

2b,

|gp(u)| < Bp, (5.9)

where

Bp =
(

2
b

)2p+1

{2ν+1/2bν + 1 + A(θ)b}, (5.10)

the term involving A(θ) being omitted when p = 0. Hence
∣∣∣∣
∫ ∞

b/2
gp(u)u2pe−ru2/2 du

∣∣∣∣ < 1
2Bp

(
2
r

)p+1/2

Γ (p + 1
2 , 1

8rb2). (5.11)

On the interval u � − 1
2b, t � 0.68, so 0 � dt/du < 1. Consequently,

|f(u)| < 3 +
1
|u| (5.12)

for u � − 1
2b and

|gp(u)| <

{
3 +

2
b

+ 2A(θ)
}(

2
b

)2p

,

the term containing A(θ) being absent when p = 0. Therefore,
∣∣∣∣
∫ −b/2

−∞
gp(u)u2pe−ru2/2 du

∣∣∣∣ <
1
2

(
2
b

)2p(2
r

)p+1/2{
3+

2
b

+2A(θ)
}

Γ (p+ 1
2 , 1

8rb2). (5.13)

The combination of (5.3), (5.8), (5.11) and (5.13) gives

|Gp(θ, r)| <

(
2
r

)p+1/2[2A(θ)
b2p

γ(p + 1
2 , 1

8rb2)

+
(

2
b

)2p+1

{2ν−1/2bν + 3
4b + 1 + A(θ)}Γ (p + 1

2 , 1
8rb2)

]
. (5.14)
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The bound in (5.14) shows that the error in truncating the series in J(ν, z) is O(r−p−1/2).
It confirms that an asymptotic expansion as r → ∞ has been obtained.

Insertion of the inequalities

γ(p + 1
2 , 1

8rb2) < (p − 1
2 )!, Γ (p + 1

2 , 1
8rb2) < (p − 1

2 )!

into (5.14) leads to a bound which is simpler to evaluate. Its disadvantage is that it is
generally quite a bit larger than (5.14) because finite limits of integration are replaced
by infinite ones.

On the other hand, a bound which is lower than (5.14) can be derived by retaining
the dependence on u in the inequalities for longer. An illustration of the technique is
provided by the case p = 0. Instead of calling on (5.9) and (5.10), we employ

|g0(u)| < 22ν+1/2uν−1 +
1
u

.

Then ∣∣∣∣
∫ ∞

b/2
g0(u)e−ru2/2 du

∣∣∣∣ < 22ν+1/2
(

2
r

)ν/2

Γ ( 1
2ν, 1

8rb2) + 1
2Γ (0, 1

8rb2). (5.15)

The formula (5.11) with p = 0 is recovered from (5.15) by using the inequality

Γ (α, x) <
Γ (α + β, x)

xβ
, (5.16)

which is valid for β > 0 and x > 0. Take β = 1
2 − 1

2ν in one Γ and β = 1
2 in the other.

While this method does offer a lower error bound, it is obvious from (5.15) that the
bound becomes much more complicated than (5.14) as p increases.

While the above discussion has been confined to |θ| < 1
5π, the same path may be traced

to verify that (4.14) is asymptotic for |θ| < π. Bounds similar to (5.7) can be based on
Cauchy’s theorem, but the contours are less simple than those used for |θ| < 1

5π. This is
because, although the contour in the t-plane need only enclose the relevant eiθ, the contour
in the u-plane must circumvent the branch lines going from π1/2e±3πi/4 (corresponding
to t = e±πi) to negative infinity. Moreover, it can be expected that the error bounds will
normally be appreciably larger than that of (5.14).

6. The oscillatory case

The preceding theory can be applied in order to supply information about the integral

K(µ, z) =
∫ ∞

0

tµeit2

t − z
dt. (6.1)

The integral converges at infinity for µ < 2 and it will be supposed from now on that
this condition holds for K(µ, z).

If 1
4π < ph z < 2π, deformation of the contour gives

K(µ, z) = eiµπ/4I(µ, ze−iπ/4).
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By virtue of (2.6),

K(µ, z) = −πzµe−µπi+iz2

sin µπ
− 1

2eiz2+iµπ/4
{

( 1
2µ)!

∞∑
m=0

(−i)mz2m

m!(m − 1
2µ)

+ ( 1
2µ − 1

2 )! e−iπ/4
∞∑

m=0

(−i)mz2m+1

m!(m − 1
2µ + 1

2 )

}

(6.2)

and, from (2.11),

K(0, z) = eiz2
{

5πi
4

−ln z− 1
2γ− 1

2

∞∑
m=1

(−i)mz2m

m!m
− π1/2

2
e−iπ/4

∞∑
m=0

(−i)mz2m+1

m!(m + 1
2 )

}
. (6.3)

The formulae (6.2) and (6.3) have been derived for 1
4π < ph z < 2π. They hold for

0 < ph z < 2π by analytic continuation. For this range of ph z,

K(µ, z) = eiµπ/4I(µ, ze−iπ/4) + 2πizµeiz2{H(ph z) − H(ph z − 1
4π)}. (6.4)

The discontinuity in K when z crosses the real axis satisfies

K(µ, ze2πi) − K(µ, z) = −2πizµeiz2
. (6.5)

The asymptotic behaviour of K can be deduced from that of I and (6.4). It is of the
form

K(µ, z) = − 1
2ei(µ+1)π/4

n−1∑
m=0

( 1
2µ + 1

2m − 1
2 )!

eimπ/4

zm+1

+ Rn(µ, z) + 2πizµeiz2{H(ph z) − H(ph z − 1
4π)} (6.6)

as |z| → ∞. Various bounds for Rn are available from § 3. In particular

|Rn(µ, z)| �
( 1
2µ + 1

2n − 1
2 )!

2|z|n+1 +
( 1
2µ + 1

2n)!
|z|n+2 (6.7)

for 5
12π � θ � π and − 3

4π � θ � 1
12π, which includes the critical range around θ = 0.

Sections 4 and 5 are pertinent when θ is in the vicinity of 1
4π. To take advantage

of (4.17) in evaluating Rn, allowance must be made for the change of phase from θ to
θ − 1

4π. Let φ = θ − 1
4π and define α1 by

α2
1 = 1

2e2iφ − 1
2 − iφ,

so α1 ≈ i(θ − 1
4π) as θ → 1

4π. Then

Rn(µ, z) + 2πizµeiz2{H(ph z) − H(ph z − 1
4π}

= πieiz2
zµ{2 − erfc(iα121/2|z|} + e−|z|2+iµπ/4−inφ|z|µ

∞∑
m=0

(m − 1
2 )!

f2m(φ)
2m+1/2|z|2m+1 ,

(6.8)
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which shows that K(µ, z) is continuous as ph z passes through 1
4π. This behaviour is

consistent with (6.1). Indeed, when z = xeiπ/4, the right-hand side of (6.8) reduces to

e−x2
(xeiπ/4)µ

{
πi +

∞∑
m=0

(m − 1
2 )!

f2m(0)
2m+1/2x2m+1

}
. (6.9)

A bound for the error in truncating the series in (6.8) is available from Gp(φ, r), as given
by (5.14) and the subsequent discussion. A(φ) is obtainable from (5.5) with α replaced
by α1.

The somewhat more general integral
∫ ∞

0

tµewt2

t − z
dt =

eiµπ/2

wµ/2 I(µ,−iw1/2z) + 2πizµewz2{H(ph z) − H(ph z + 1
2 phw − 1

2π)}

for 1
2π � phw � π can be dealt with in a similar manner.

7. Other integrals

Logarithmic terms can be introduced by taking derivatives with respect to µ. For exam-
ple,

∫ ∞

0

tµ ln t

t − z
e−t2 dt

=
πzµe−µπi−z2

sin µπ
(πi + π cot µπ − ln z)

− 1
4e−z2

[
( 1
2µ)!

∞∑
m=0

{
ψ( 1

2µ)
m − 1

2µ
+

1
(m − 1

2µ)2

}
z2m

m!

+ ( 1
2µ − 1

2 )!
∞∑

m=0

z2m+1

m!

{
ψ( 1

2µ − 1
2 )

m − 1
2µ + 1

2

+
1

(m − 1
2µ + 1

2 )2

}]

(7.1)

where ψ(z) = z!′/z!. Allow µ → 0 in (7.1) and then
∫ ∞

0

ln t

t − z
e−t2 dt = e−z2{ 1

8γ2 − 7
48π2 − 1

2 (ln z − πi)2}

− 1
4e−z2

[ ∞∑
m=1

z2m

m!

{
1

m2 − γ

m

}

+ π1/2
∞∑

m=0

z2m+1

m!

{
1

(m + 1
2 )2

− γ + 2 ln 2
m + 1

2

}]
. (7.2)

The analogue of (3.2) is
∫ ∞

0

tµ ln t

t − z
e−t2 dt ∼ −1

4

∞∑
m=0

( 1
2µ + 1

2m − 1
2 )!ψ( 1

2µ + 1
2m − 1

2 )
zm+1 , (7.3)
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whereas the analogue of (4.1) is

∫ ∞

0

tµ ln t

t − z
e−t2 dt ∼ −1

4

n−1∑
m=0

( 1
2µ + 1

2m − 1
2 )!ψ( 1

2µ + 1
2m − 1

2 )
zm−1

+ πie−z2
zµ ln z{2H(Im α) − erfc(iα21/2|z|)}

+ e−|z|2−inθ|z|µ
∞∑

m=0

(m − 1
2 )!

2m+1/2|z|2m+1

{
f2m(θ) ln |z| +

∂f2m(θ)
∂µ

}
.

(7.4)

The derivative of f2m occurs in (7.4) because it depends on ν = µ + n − 2|z|2.
The expansions in (7.3) and (7.4) must be regarded as purely formal until suitable

error bounds have been determined. A quick bound can be found for (7.3) by using

|ln t| < t − 1 +
1
t
, t > 0. (7.5)

This follows immediately from

ln t < t − 1, t > 1, (7.6)

when t > 1. It is verified for t < 1 by replacing t by 1/t in (7.6). With the aid of (7.5),
an error bound for (7.3) on truncation when 1

2π � |ph z| � π is

{( 1
2µ + 1

2n)! + (1
2µ + 1

2n − 1)! − ( 1
2µ + 1

2n − 1
2 )!}

2|z|n+1 .

Clearly, the methods employed earlier can now be adapted to this case but, as the for-
mulae become increasingly complex, details will be omitted.

Appendix A.

In this appendix we describe the determination of error bounds by taking advantage of
the representations of § 2. It is known that (2.6) holds for 0 < ph z < 2π. By reversing
the steps which led to (2.6), it can be confirmed that (2.4) is also valid for 0 < ph z < 2π

on the understanding that ph(−z2) = 2 ph z − π. Therefore, asymptotic results can be
deduced from those of the complementary incomplete gamma function.

The pertinent formula is

(−λ)!w−λewΓ (λ, w) = −
q−1∑
m=0

(m − λ)!
(−w)m+1 + εq (|ω| < 3

2π), (A 1)

where ω = phw. Various bounds are available for εq [5,6]. For instance, if λ < 1,

|εq| � (q − λ)!
|w|q+1 (|ω| � 1

2π) (A 2)
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and

|εq| � (q − λ)!
|w|q+1|sin ω| ( 1

2π � |ω| < π). (A 3)

An alternative to (A 3) is

|εq| � (q − λ)!
|w|q{|w| cos(|ω| − 3

4π) − 21/2(q − λ + 1) ln 2}
( 1
2π � |ω| < π), (A 4)

so long as the denominator is positive. Although (A 4) has a restriction on |w|, in regions
where it is valid it is a more satisfactory bound than (A 3) as |ω| → π.

The insertion of (A 1) in (2.4) gives

I(µ, z) = −1
2

n−1∑
m=1

( 1
2µ + 1

2m − 1
2 )!

zm+1 + ηn, (A 5)

provided that an appropriate value of q is chosen for each of the Γ which occur.
From (A 2) it can be concluded that

|ηn| �
( 1
2n + 1

2µ − 1
2 )!

2|z|n+1 +
( 1
2n + 1

2µ)!
2|z|n+2 (A 6)

for 1
4π � ph z � 3

4π.
This bound is similar to those in (3.3) and (3.4). It is not quite the same because they

hold in different regions of the complex z-plane.
For 1

4π � ph z > 0, (A 3) and (A 4) can be called on. As far as (A 3) is concerned it
adds the factor sin 2θ, θ = ph z, to the denominators of (A 6). Then the bound becomes
very large as z approaches the positive real axis. On the other hand, (A 4) gives

|ηn| �
( 1
2n + 1

2µ − 1
2 )!

|z|n−1{2|z|2 cos(2θ − 1
4π) − (n + µ + 1)21/2 ln 2}

+
( 1
2n + 1

2µ)!
|z|n{2|z|2 cos(2θ − 1

4π) − (n + µ + 2)21/2 ln 2}
(A 7)

subject to |z| being large enough for both denominators to be positive. Allow θ → 0.
Then (A 7) supplies an error bound on the upper side of the positive real axis in that
part where x2 > (n + µ + 2) ln 2. The larger x is, the more useful is the bound and,
generally, (A 7) is more useful the larger |z|.

References

1. M. A. Chaudry and S. M. Zubair, On a class of incomplete gamma functions with
applications (Chapman & Hall/CRC, London, 2001).

2. M. A. Chaudry and S. M. Zubair, Extended incomplete gamma functions with appli-
cations, J. Math. Analysis Applic. 274 (2002), 725–745.

https://doi.org/10.1017/S0013091504001087 Published online by Cambridge University Press

https://doi.org/10.1017/S0013091504001087


650 D. S. Jones
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