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A NOTE ON A CLASS OF SUBMULTIPLICATIVE FUNCTIONS
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Abstract. In 1989, Alladi, Erdös and Vaaler confirmed their own conjecture
about a class of multiplicative functions by means of a deep result of Baranyai on
hypergraphs. In this note we give a simple direct proof of the result which is derived in
their proof as a consequence of the above mentioned graph theoretic result.
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1. Introduction. In 1984, Alladi, Erdös and Vaaler considered the following
conjecture.

CONJECTURE. Let n be a square-free integer and h a multiplicative function satisfying
0 ≤ h(p) ≤ 1/(k − 1) on primes p, where k is a natural number. Then

∑
d|n

h(d) ≤ ck

∑
d|n,d≤n1/k

h(d),

where ck denotes a constant depending only on k.

Later in [1], they proved the above conjecture, using a result (namely, the following
Proposition) which is a special case of a theorem of Baranyai on hypergraphs [2]. Thus,
in view of [3], the above statement automatically holds even when h is a submultiplicative
function. In the sequel, we use p (with or without suffixes) to denote primes.

PROPOSITION. Let k(≥ 1) and �(≥ 0) be given integers. Suppose N = p1p2p3 . . . pk�,
with p1 < p2 < p3 < . . . < pk�. Then the number of d, such that d | N, d ≤ N

1
k and

having exactly � prime divisors, is at least

1
k

(
k�

�

)
.

2. Proof of the Proposition. For � = 0, the Proposition holds trivially. Let
Sk� = {1, 2, 3, . . . , k�}. For any permutation π = {σ1, σ2, σ3, . . . σk�} of Sk�, set ξπ =
{A1, A2, A3, . . . Ak} where Aj = {σ(j−1)�+1, . . . σj�}. For every B with |B| = �, let δπ (B)
denote 1 if B ∈ ξπ , or 0 otherwise. For each subset A of Sk�, there is an associated
divisor dA of N given as the product of all primes pi, with i ∈ A, and this association
is a bijection. Let ζ1 be the collection of all subsets A of Sk�, such that |A| = � and
dA ≤ N

1
k . Similarly let ζ2 be the collection of all subsets B of Sk�, such that |B| = �

and dB > N
1
k . Since any C ⊆ Sk� having � elements belongs to exactly one of ζ1 or ζ2,
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we have

|ζ1| + |ζ2| =
(

k�

�

)
. (1)

Since
∏

j dAj = N, ∃Aj such that dAj ≤ N
1
k , and so we have for every permutation π ,

|ζ2 ∩ ξπ | ≤ (k − 1)|ζ1 ∩ ξπ |,
which can be written as ∑

B∈ζ2

δπ (B) ≤ (k − 1)
∑
A∈ζ1

δπ (A).

Now summing over all π , we get
∑
B∈ζ2

∑
π

δπ (B) ≤ (k − 1)
∑
A∈ζ1

∑
π

δπ (A).

Since for any C with exactly � elements,
∑

π δπ (C) being k times �!(k� − �)! is
independent of C, the above inequality leads to

|ζ2| ≤ (k − 1)|ζ1|. (2)

From (1) and (2), we obtain

k|ζ1| ≥
(

k�

�

)
,

which completes the proof of the proposition.
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