A NOTE ON A CLASS OF SUBMULTIPLICATIVE FUNCTIONS

P. SURYA MOHAN
Department of Mathematics, Indian Institute of Technology, Kharagpur, West Bengal 721302, India e-mail: surya_tc@yahoo.co.in

(Received 14 January, 2003; accepted 2 September 2003)

Abstract

In 1989, Alladi, Erdös and Vaaler confirmed their own conjecture about a class of multiplicative functions by means of a deep result of Baranyai on hypergraphs. In this note we give a simple direct proof of the result which is derived in their proof as a consequence of the above mentioned graph theoretic result.

2000 Mathematics Subject Classification. 11N64.

1. Introduction. In 1984, Alladi, Erdös and Vaaler considered the following conjecture.

CONJECTURE. Let n be a square-free integer and h a multiplicative function satisfying $0 \leq h(p) \leq 1 /(k-1)$ on primes p, where k is a natural number. Then

$$
\sum_{d \mid n} h(d) \leq c_{k} \sum_{d \mid n, d \leq n^{1 / k}} h(d)
$$

where c_{k} denotes a constant depending only on k.
Later in [1], they proved the above conjecture, using a result (namely, the following Proposition) which is a special case of a theorem of Baranyai on hypergraphs [2]. Thus, in view of [3], the above statement automatically holds even when h is a submultiplicative function. In the sequel, we use p (with or without suffixes) to denote primes.

Proposition. Let $k(\geq 1)$ and $\ell(\geq 0)$ be given integers. Suppose $N=p_{1} p_{2} p_{3} \ldots p_{k \ell}$, with $p_{1}<p_{2}<p_{3}<\ldots<p_{k t}$. Then the number of d, such that $d \mid N, d \leq N^{\frac{1}{k}}$ and having exactly ℓ prime divisors, is at least

$$
\frac{1}{k}\binom{k \ell}{\ell}
$$

2. Proof of the Proposition. For $\ell=0$, the Proposition holds trivially. Let $S_{k \ell}=\{1,2,3, \ldots, k \ell\}$. For any permutation $\pi=\left\{\sigma_{1}, \sigma_{2}, \sigma_{3}, \ldots \sigma_{k \ell}\right\}$ of $S_{k \ell}$, set $\xi_{\pi}=$ $\left\{A_{1}, A_{2}, A_{3}, \ldots A_{k}\right\}$ where $A_{j}=\left\{\sigma_{(j-1) \ell+1}, \ldots \sigma_{j \ell}\right\}$. For every B with $|B|=\ell$, let $\delta_{\pi}(B)$ denote 1 if $B \in \xi_{\pi}$, or 0 otherwise. For each subset A of $S_{k \ell}$, there is an associated divisor d_{A} of N given as the product of all primes p_{i}, with $i \in A$, and this association is a bijection. Let ζ_{1} be the collection of all subsets A of $S_{k \ell}$, such that $|A|=\ell$ and $d_{A} \leq N^{\frac{1}{k}}$. Similarly let ζ_{2} be the collection of all subsets B of $S_{k \ell}$, such that $|B|=\ell$ and $d_{B}>N^{\frac{1}{k}}$. Since any $C \subseteq S_{k \ell}$ having ℓ elements belongs to exactly one of ζ_{1} or ζ_{2},
we have

$$
\begin{equation*}
\left|\zeta_{1}\right|+\left|\zeta_{2}\right|=\binom{k \ell}{\ell} \tag{1}
\end{equation*}
$$

Since $\prod_{j} d_{A_{j}}=N, \exists A_{j}$ such that $d_{A_{j}} \leq N^{\frac{1}{k}}$, and so we have for every permutation π,

$$
\left|\zeta_{2} \cap \xi_{\pi}\right| \leq(k-1)\left|\zeta_{1} \cap \xi_{\pi}\right|
$$

which can be written as

$$
\sum_{B \in \zeta_{2}} \delta_{\pi}(B) \leq(k-1) \sum_{A \in \zeta_{1}} \delta_{\pi}(A) .
$$

Now summing over all π, we get

$$
\sum_{B \in \zeta_{2}} \sum_{\pi} \delta_{\pi}(B) \leq(k-1) \sum_{A \in \zeta_{1}} \sum_{\pi} \delta_{\pi}(A) .
$$

Since for any C with exactly ℓ elements, $\sum_{\pi} \delta_{\pi}(C)$ being k times $\ell!(k \ell-\ell)$! is independent of C , the above inequality leads to

$$
\begin{equation*}
\left|\zeta_{2}\right| \leq(k-1)\left|\zeta_{1}\right| \tag{2}
\end{equation*}
$$

From (1) and (2), we obtain

$$
k\left|\zeta_{1}\right| \geq\binom{ k \ell}{\ell}
$$

which completes the proof of the proposition.
Acknowledgements. This work was done at TIFR centre at Bangalore, during the summer visit 2002-2003. I am very grateful to TIFR for the facilities that were provided.

REFERENCES

1. K. Alladi, P. Erdös and J. D. Vaaler, Multiplicative functions and small divisors, II, J. Number Theory 31 (1989), 183-190.
2. Z. S. Baranyai, On the factorization of the complete uniform hyper graph, in Colloquia Mathematica Societatis Janos Bolyai, 10 (Keszthely, Hungary, 1973), 91-102.
3. S. Srinivasan, On an arithmetical inequality, Glasgow Math. J. 36 (1994), 81-86.
