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CHARACTERISTIC CLASSES FOR PL
MICRO BUNDLES

AKIHIRO TSUCHIYA*

§0. Introduction.

Let BSPL be the classifying space of the stable oriented PL micro
bundles. The purpose of this paper is to determine H(BSPL:Z,) as a
Hopf algebra over Z,, where p is an odd prime number. In this chapter,

p is always an odd prime number.
The conclusions are as follows.

THEOREM 2-22. As a Hapf algebra over Z,, H(BSPL : Z,) = Zplb1y by + + + ]
®Zp[a(§1)]®/1(‘7(i.f))' A(b__]) =£_:2° b=1;®b=j, bo =1, d‘(f[), O'(E,ﬂ are primitive.

TueorEM 3-1. As a Hopf algebra over Z[1/2],

i) H*BSPL : Z[1/2)] Tyrsion = ZIL/2IR:, Rey + + ]

i) 4R, = '__éoRi®Rj_i, Ro=1. deg R; = 4j.

iii) In H*BSPL : Q) = Q[py, D3, * + + 1 R; are expressed as follows.
R; = 2% (2297t — 1) Num (B,/47) + p; + dec, for some a;EZ.

Let MSPL denote the spectrum defined by the Thom complex of the
universal PL micro bundle over BSPL(n), and A = A, denote the mod p
Steenrod algebra. And ¢ : A— H*MSPL:Z,) is defined by ¢(a) = a(u),
where ueH(MSPL : Z,) is the Thom class.

TurorEM 4-1.  The kernel of ¢ is A(Q Q.), the left ideal generated by
Milnor elements Qo Q..

This is the conjecture of Peterson [12].
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The method is to compute the Serre spectral sequence associated to
the fibering F/PL — BSPL —BSF. The structure of H.(BSF:Z,) is deter-
mined in [9] and [16]. The homotopy type of F/PL is the consequence of
the deep results of Sullivan [15]. In §1 we study the H space structure of
F/PL and the inclusion map SF— F/PL. ‘The main tool is the result of
Sullivan and its extention that tells the existence of the KO3 theory Thom
classes for oriented PL disk bundle.

ProrosiTioN 1-4. For a oriented PL disk bundle = : E—~ X over a finite
CW complex of fiber dim m. Then there is a Thom class u(zx)e KO™(E,dE)p
with the following properties.

i) functorial

) ¢ phulx) = Lix)™.

i) @z @ 1) = oulx).

iv)  Multiplicative mod Torsion t.e ulz, @ ;) = ulmy) - ules). mod forsions.

The proof of this is in §6.

§1. H space structure on F/PL.

1-1. Let F/PL(N) denote the classifying space of PL disk bundle of
fiber dim N with homotopy trivialization. And F/PL denote the limit space
li_r)n F/PL(N). Denote by BO, the classifying space of stable real vector
bundle. F/PL and BO are homotopy commutative H-spaces defined by
Whitney products. BO, denotes the space obtained by localizing BO at
odd primes P i.e. the space which represents the functor [ ,BOI®R,Z[1/2].
Let C» denote the class of abelian groups consisting of 2-torsion group, i.e
abelian group G with G®,Z[1/2]1 = 0. Then the following proposition is due
to Sullivan [15].

ProrosiTioN 1-1.  There exists a continuous map o : F{PL— BOp, with the
following properties.

1) o s Cp homotopy equivalence.

i) o*(phy + pha+ - - +) =—§—(L1 + L, + - --)€ H*™F|PL, Q), where

ph =14 phy + phy+ - - - €H**(BOp, Q) is the Pontrjagin character and
L=1+L +Ly+ -+ -€H*F|PL,Q) is L-polynomial of Hirzebruch.

iii) The map o ts uniquely determined by the property ii) up to homotopy.
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Since the C, homotopy equivalence ¢ is not a H space map. We
introduce another H space structure pg on BO. pg:BO X BO— BO is
defined by the following diagram.

Adx4 idx Txid
(1-1) ¢® : BOXBO —— > (BOXBO0O)x(BOx BO) ————>

toXpu
BOxBOxBOxBO =" oxBo-L% Bo.

where pga : BOXBO —BO denotes the map representing (&, — m) (&, — n) in
KO"(BO(m)x BO(n)), where &, — BO(m), and &, = BO(n) denote the universal
bundles. Then the H-space (BO, pg) is a homotopy commutative H-space.
We denote this H space by BOg simply. Denote by BOgp, the localizing
space of BOg at odd primes P. Then identity map i :BO—BOg can be
uniquely extended to the map ip:BO,—>BOgpr, and ip is a homotopy
equivalence.
Define a continuous map g : F/PL— BOg, by the following diagram.

o 8 i
(1-2) " §:F/PL—>BOp—> BOp—> BOgs.

ProrosiTioN 1-2.  The Cp homotopy equivalence & is a H space map, and
a*1+ phy + phy+ -+ ) =1+ L, + Ly+ - - -€H*™F|PL ; Q).

Proof. Since #*Q1 + phy + phy+ +++) =14+ L, + Ly + - - - follows easily
from proposition 1-1, ii) and (1-2), it is sufficient to prove that the follow-
ing diagram is homotopy commutative.

dXo
F|PLxF|PL——> BOgpxBOgp
F/PL

But by proposition 1-1, any map f:F/PLxF/PL— BOgp is uniquely de-
termined by f**(1 + ph, + phy+ ¢+« < )EH**(F|PLXF[PL ; Q). On the other
hand, p**-0™*(1+ ph) + phy+ « <)=L+ Ly + Lo+ - - )=+ L, + Lo+ - *)
QU+ Li+ Lo+ - ++). And (6x5)*(pep)*™*1 + phy + phe+ + + +) = (GX3)** X
(Ph@ph) =1+ L+ +++)QA+ L+ --+). This showes the proposition.

1-2. Let BO(8N> denote the space obtained by killing the homotopy
group =;(BO), i<8N. Let fy:S* —BO<8N> be the canonical generator of

i Q%
7y (BOBNY) = Z. Then by Bott periodicity, the map S*¥=D—p Q8S8N -3
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2°BO(NY = BOLS(N — 1)) coincide with fy_;. So we can take a limit and
obtain a map.
(1-3) 9=02"f.: ]i_x)n QSN = QS° —>1i_r)n QWBO{8N) = ZX BO.
The spaces BOBN) have product py,y.
(1-4) tun : BOSMY X BOSNY — BOS(M + N)>.

These products define product z on Q*¥BO<8N) = ZxBO, i.e. p:Q%¥x
BO{BM )y x Q8% BOSN)Y — Q¥*¥+MBO(M + N)>. By Bott periodicity, the follow-
ing diagram is homotopy commutative.

Q¥ BOBM ) X 2*N BOBN) ———> Q¥ #*NMBOLZ(M + N)>

Q¥DBOE(M + 1)> X Q53 +D BOCS(N + 1)) —> QUu+¥0BOB(M + N + 2))

And the reduced join product pga : QS X QSNSEN 5 QSMINISHUIN) js com-
patible with the product QB0 (8M)xQ2:#BO{BN) — Q¥¥*MBO(8(M + N)).
Passing to limit we obtain a product gz, on QS'=1lim2¥S*®, And we
have the following commutative diagram.

gxg
(1-5) QS'XQS' ——> (ZXx BO) X(Zx BO)
lﬂ/\ l#
QS ———F > ZXBO
9

Consider the 1 component @,5° of QS° then pga: @,S° X @,S°— Q,S°
cQS® is the H space SF, where SF=l_i_r>nSG(n), SGn) = {f:S"!' >S5,
degree 1}. And it is easy to show that 1 component 1XBO of ZxBO with
product g :(1xBO)x(1xB0O)—+1xBO is the H space (BOg,pg) defined in
(1-1).

So that we have a H map ¢, : SF= Q,S"+1XB0 = BOg.

k
ProrosiTioN 1-3. The map ¢, : SF—>BOg— BOgp, and -k ; SF— F|PL

o
— BOgp coincide.
Before proving this proposition, we prepare some results.

1-3. Let KO*( ) denote 8 graded cohomology theory defined by using
Grothendieck group of real vector bundle. Construct a 4 graded cohomology
theory KO*( )p by KO )p = KO ) ®,Z[1/2]. Consider the generator 7,
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KO(S") = Z, then 7} = 49, € KO¥(S"), 7,€KO~%(S")=Z, generator. 7, is by

definition 7, = -L-7,€KOS",. And define Bott map §: KOYX, 4)p —>
KO (X, A)p by the following.

Na A
(1-6) B8: KOYX, A)p —®v—> KO X, A) pQKO4S% p —> KO (X, A) p.

This Bott map makes KO*( )p, 4 graded cohomology theory.

Let = : E— X be a oriented PL disk bundle over finite complex X of
fiber dim m. Then we can define a fundamental Thom class #(z)eKO™(E, 6E) p
as the following proposition.

ProrosiTiON 1-4. There is a fundamental Thom class u(z)e KO™E,3E)p
with following properties.

i) functorial i.e. for f:Y > X, u(fla) = fl(u(x)).
il) ¢Fphu(z) = Lix)'€eHYX, Q), where oy is Thom isomorphism, and L(r)
is the L polynomial of Hirzebruch for = : E— X.

ag
iil) u(z ®1) = o(u(x)), where o: KO™(E,0E)p —> KO™! (E[6E)\SY)p =
KO™' (E®@1, a(E@1)p is suspension isomorphism.
iv)  Multiplicative mod torsion i.e u(r, @ ms) = ulm,) - u(z,) mod torsion ele-
ments, where =, : E, > X,, and m,: E; > X,.

We shall prove this proposition in the appendix.

1-4. Now we prove proposition 1-3. At first we analyse the map
¢ :Q,S°—>B0Og. Consider the following mapping ¢ : SG(N) X (D¥,3D¥) —
(D¥,9D") defined by ¢(f,z) = cf(z), where cf :(D¥,aD¥)— (D¥,3D¥) be a
map defined by cone of f:9D¥ = S¥1—3DN = S¥1,  Consider the case
N =8M. And consider the canonical generator 7y,& KO (D3, 3Ds¥) =7, then
t¥(1ey) E KOM(SG(BM) X (D3, 5D%M))= KO(SG(8M)) QKO (Ds* 5D8¥),  So that
there is unique element /3, €KO0%(SG@BM)) such that [5Q®nsy = t*(9en). It
is easy to show that for i :SG@BM)—SGEBM + 1)), i*(lswsv) = lsw. And
&(lsx) = 1, where ¢ : KOY(SG(@8M)) - KO'(p.t) = Z be the augmentation. So
passing to the limit, we obtain /€KO%SG) = KO%Q,S"). And since &(I)=1,
[ is represented by a map [:SG = @,5°—~1xBO = BOg G ZxBO.

LemMa 1-5.  The map 1 coincides with g, : @,S°— BOg defined in 1-2.

It is easy to prove this lemma so we omit its proof.
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Proof of proposition 1-3, Let z : E—~X be a PL disk bundle of fiber
dimension 8N over a finite complex X with homotopy trivialization ¢ : (E, 3E)
— (D, 3D%),  Consider the element ¢*(,y)=KO*(E,E)p. By proposition
1-4, there is a Thom isomorphism ¢, : KOYX)p - KO*(E,3E), defined by
¢xo, (@) = i*®) u(z), i:X—E. Then I(E) is by definition ¢%%.(t*(sn)) €
KO"X)p. It is easy to see I(E@8) =I[(E). Since KOYF/PL(8N))p =
LiEKO“(X,,)P, where X, runs through all finite subcomplexes of F/PL(8N),

tﬁe universal bundle =gy : Egy — F/PL(8N), with tsy : (Een, 0Esy) = (D, 9 D8¥)
defines the element [(Eqy)eKOF/PLBN))p. It is easy to see i*(I(Esy+n))=
[(Egy), where ¢ : F/[PL8N)— F/PL(8(N + 1)). Passing to limit, we obtain the
element /eKOYF/PL)p. The natural inclusion ksy : SG8N)— F[PL(8N) is
defined by the classifying map for the F/PL bundle over SG(8N) defined by
t : SG(BN)X(D%,pD8N) — (D8¥, gDy, Since the fundamental Thom class of
this bundle is 1Qn;y KO (SGBN )X (D¥,9D¥))p = KO"(SG(SN))PZD@/Z] Koy
(D*¥,0D%) p. So that kfy(I(Esy)) = lsaws KO(SG@BN))p. So that to prove the
proposition, it is sufficient to prove / =& as elements KO%(¥/PL),. By pro-
position 1-2, it is sufficient to prove phi(l) = ph(s). This follows from pro-
position 1-4, ii).

§2. Determination of H.(BSPL: Z,).

2-1. At first we determine the Hopf algebra over Z,, Hy(F/PL :Z,).
By proposition 1-2, H(F/PL : Z,) E H.BOgp : Z,) = HuBOg:Z,), it is
sufficient to determine H,(BOg : Z,).

ProrosiTioN 2-1.  As a Hopf algebra over Z,, H(BOg : Z,)=Z,[a, G, + * +],
for some a;eH,;(BOg : Z,). And da; = Z]ai®aj_i, a =1,
i=0

Proof. It is sufficient to prove that for any non zero element z€H,
(BOg : Z,), 2?+0. By the same method as (BOg, #3), c.f. (1-1), we obtain
a H space (BUg, pg) as the 1 component of ZxXBU, where ZxBU is the
representation space of complex K theory. Let j:BOg—BUg denote the
natural H map defined by complexifying vector bundle. Since j, : H.(BOg :
Z,) —~ HBUg : Z,) is monomorphism, it is sufficient to prove (j.())” =0 for
2eH,(BOg :Z,), ©+0. Let B=H/(BUg:Z, and B* denote dual Hopf
algebra Hom, (B,Z,), So that B*=H*(BUg : Z,) = Zllci,cs + + + 1}, ¢; is
i-th Chern class. Let a:B-—B denote the Hopf algebra homomorphism
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defined by ea(z) = ?, and «*:B*— B* denote dual of a. We compute
a*(l4+c,+c,+ ). Let eeK(BUg) = K(BU) denote the universal element
with augmentation. (&) =0. Then it is easy to show [a*(c)]? = ¢((1 + &)7)
= c@ - c(@®. . . cer- 1>(p31>c(5p) in H*(BUg : Z,). So that a*(c)=c(&) - c(e2) 7
oo c(EP" ‘)T(P 1) c(E") . Using Chern character it is easy to show that
‘c(s’) =1+ decomposable in ¢, in H*(BUg : Z), j=2. And the same argu-
ment show that the coefficient of ¢Z in ¢(¢?) is zero in H*(BUg : Z,), when
n=2. So that a*(c)=1+4+¢;+¢c;+ -+, mod{decomposable + ¢;,}. This
shows that a* : H**(BUg : Z,)/(c,) > H**(BUg : Z,)/(¢;) is onto mapping, where
(c,) denote the ideal generated by ¢, and as a*(c,) =0, @&* is well defined.
Since j**(c,) = 0 where j*:H*(BUg :Z,)—» H*BUg :Z,), this shows that
for any « =0, [j.(x)]? 0.

Remark 2-2. Indeed we can show that H(BUg : Z,) = I',[b,)® Z,[b}, b},
-1, where degb, =2, degbj = 2j.

2-2. Now we study the map k, : H(SF : Z,) > H(F[PL : Z,). By pro-
position 1-3 it is sufficient to study gy, : Ho(@,S' : Z,) > H(BOg : Z,). Since
g :QS"—>ZxBO is a infinite loop map, g is a H; map in the sense of
Dyer-Lashof [8]. So that the following diagram is commutative, where
W(z,) =W is a acyclic free z,, CW complex, and =, is the cyclic group of
order p.

id X(g)*
W>< (QSY? ——>W>< (ZxBO)?

@-1) la . lo
QS —— ZxBO

At first we analyes the map 6 : W><(Z X BO)? = Zx BO defined by infinite
loop structure ZxBO = lgnQ*’"BO<8n> "Let X be a finite CW complex, for
any element xeKO0O(X), we define a element P(z)eKO(W x(X)?) as follows.

Represent z as ¢ = &~ where £ and » are vector bungﬁes over X, and
define P(xz) = P(&) — P(3). Where P(¢) and P(y) are defined by P(¢): W><

—-)WXX” P(m) : W xE;>WxX?. Then P(x) is independent to the
expressmn x=&—1. Apnd the cgnstruction P has the following properties.

2-2) i) P:KO(X)—>KOW xX?) is abelian group homomorphism.

il) P is natural, i.e. for a map f:X—Y the following diagram is
commutative.
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P
KOY)———— KO(WxY”)

I p l(def")'
X) ——> KO(W x X?)

ili) Let L, = W/z, be the mod p lens space. And NeKO(L,) denote
the element defined by regular representation ;;,—+SO(p). Then
4*P(x N®x in KO(L,xX) where 4:L,xX—WxX?,

p

Since KO(W x(ZxBO)?) = 1é_mKO(W><X£’), where X, runs all finite com-

o

plexes of ZxBO, the above construction P define a map P: W x(ZxBO)?
—+ ZXBO. '

CoNJECTURE 2-3. The two maps 6 and P: W xX(ZxBO)? — ZxBO coincide.

Since we can not prove this conjecture, we can prove more weak form
of the conjecture.

ProposiTION 2-4. 6(1) = P(1) as an element of KO(L,) = KO(W X(x)?),
where 1€ KO((*)). ’

Proof. The Dyer-Lashof map 6 : W““”X(Q"X)”——)Q"X is reconstructed
in [18] as follows. Let S} denote S = S"V:.:VS"®, the one point union of

p sheres. Define g : Q"Six(Q"X)? > Q"X by sy ly » ooy lp) = UV - =V ip)~
cee VI,
o S"—> S*V e yS” L %X The cyclic group =, operates on 2"Sj,

by induced action of z, on S;, defined by o((w, i))=(=, (i), cErp, (2,i)ESE.
And z, acts on (2"X)? by permutation. Then g is a =z, equivariant map
and define p:Q"S;x(Q"X)? >Q"X. On the other hand, there is a =z,
equivariant map 4, :ﬂi/VU"“)(:"")]—)Q"S;, such that the image is in the con-
nected component represented by 1+ « -+« +1€n(Q"S))=Z+ -2, n=2.
The Dyer-Lashof map 6 : Wi= 1><”'1>1><( "X)? -+ Q"X is defined by g-(0,%xid):
W=D (9"X)? — "5} X X(2"X)? - @ X.

Now cons1der the element 0(1)eKO(L,). Let 9sy€KO0®(S*¥), and sy
KO"(S*¥) be the canonical generators. Then 6(1)®nsy KO (L,IXS) is, by
Bott periodicity, defined by the adjoint map of #(1) : L, - ZxBO=2" BO8N>,
where XXY = XxY/Xx(*). By the definition of 6(1), on (8N — 1)(p — 1) skel-
ton of L,, 6(1)@7sy is defined by the following z, equivariant map.
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NenV ¢+ Vsu
———> BO<8N).

[/}
W[(aN—l)(p—l)]IXSBNLN) SEV\/ o o 0\ SV

On the other hand the mapping P: WX (0x BO)? — (0xBO) can be
diftable on P : WX(BO{8N))? - BO8N). And denfie a T, equivariant map
P : WIX(BOBN>)? Z» BO(8N>. Then the following diagram is z, equivariantly

homotopy commutative.

NewV + + + Vsy
NICAVACIRIRR VAN > BOBN >

l L idX(new)? P
WX(SEv)? —— > WIX(BO{8NY? ———— > BOL8N>

\ . _ )
\ld\x(ﬂazv) id X (z)? lﬂ
TS W IK(0x BO)?

——>0XBO

‘where 7 : S?¥V .« . VSN 5 WX(S™)? is defined by i((x, /)= (c"(@e); *X + + + XxXx
X+ ++ Xx), where o=r, : generator s,t o(i) = o(i +1) mod p, and w,sW :
fixed element.

On the other hand, by equivariant cohomology theory due to Bredon
[4], the following diagram is =z, equivariantly homotopy commutative, c.f.

the argument in [18].

WIsNT Sev

N li
1dX(d,)™
WM(SXN)P

On
__)SSNV, . ,VSSN

So that z-(B(1)®nsy) : LEYIXSN - BOBN)Y -0xBO is by Bott periodicity
I1)R7sy in KOULEYNKSY) on the other hand the above two commutative
diagrams show that z - (6(1)®nsy) is represented by 4*(P(5sy)) in KO(L VX S),
‘On the other hand by (2-2) iii) shows that 4*(P(7syx)) = N®7sy. This shows
(1) =N in KO'(L$"V), so limiting to N—oco we obtain 6(1) = N in KO%(L,).
‘On the other hand P(1) = N in KO%L,). This shows the progosition.

ProrpositioN 2-5.  The Dyer Lashof operations on H(ZxBO : Z,) defined by
8 and P coincide.

Proof. Let p: (ZXBO)X(ZXB0O)— Zx BO denote the product defined by
tensor product. Then the two diagrams are homotopy commutative.
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P
W x(ZxBO)? — > ZXBO

liaxa, noia o
Wz, X(ZXxBO) ——> (p x BO) X (Zx BO)

0

W x(ZxBO)? ———> Zx BO
lidx"p Nxid T"

Wz, X (ZX BO) ——> (p X BO) X (Z x BO)

On the other hand any element of H (W X(ZxBO0)? : Z,) of the form e,&(x)?
is in the image of (idXd,): H*(W/an(ZQBO) 1 Zy) > HW X(ZXBO)? : Z,),
c.f. Lemma 2-1 of [17]. This proves the proposition. ’

2.3. Now we determine the map gy : Hy(Q,S": Z,) > H(BOg : Z,).
We remember the result of [17] about the Pontrjagin ring H.(Q,S": Z,) =
H(SF:Z,). Let H={] = (6, j1,€s Jo * * *1€1 7,)} be the set of sequences [
satisfying,

(2-3) 1) r=1
i) j;=0mod(p—1), i=1-+-,7
iii) j, =0mod 2(p — 1).
v) p-D=jih=<---=/j,.
v) &=0or 1
vi) if g4, =0, then j,/(p —1) and j.../(p —1) are even parity.
if €;41 =1, then j;/(p —1) and j;../(p — 1) are odd parity.

And h:L,—>Q,S is defined by h: Wiz, > W x(id)? > W x(Q,S°)? —0—> Q,S"
And %, : L,—> Q,S" is by definition %, = hV(-—;)pz‘d). Theﬁ %; = howlesjip-n)
EH;j(p-(@:S" : Zp). And for J = (e 6,7, )EH, =, is by definition
By=B3Q,c * Bs1Q;, Byx; pp-0EH(QS : Z,). And &,=iu(w,)EH(SF : Z,),
i:Q0oS"—>SF. Then Theorem I of [17] is as follows,

(2-4) H.(SF: Z,) is free commutative algebra generated by %,, J=H.
LemMa 2-6. For J=(y,j1y * * *1&ry j-)EH with e,=1 for some i, ¢4(%,)=0.

Proof. Since the following diagram is commutative.
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g
Q,S° SN OxBO
\L : '] l ¢
Q,S° ——— > 1xBO
G(Es) = gl*i*(.B?Qj, A .81‘}'501‘,/2(17—1)) = i*(ﬂZlejl tet ﬂ;’go*(xj,/z(p—l)))- On
the other hand in Hy(BO : Z,), the Bockstein map g, is zero map, so the
lemma {ollows.

ProvosiTioN 2-7.  The elements 94(%,;) are indecomposable in H(BOg : Z,).
And the image of Hu(SF:Z,) by gi. coincides with the subalgebra generated by
01X 5).

Proof. Since j, : H(BOg : Z,) > H{(BUg : Z,) is monomorphism of Hopf
algebra, it is sufficient to prove analog proposition for g,= (5« g1)s : Hx(Q:5°: Z)p)
- H.BUg : Z). By lemma 2-6, the kernel of §} contains ideal generated
by ¢j, 750 (p—1). Let A= Z[&,&, - ]C H.(Q,S": Z,) denote the sub-
algebra generated by %, then this is a subHopf algebra. A* denotes the
dual Hopf algebra of 4, and i:H*®Q,S: Z,)—~> A* denotes the dual of in-
clusion. Then to prove the proposition, it is sufficient to prove 7ogf:H*
(BUg : Z,) — A* is onto. We construct A* and ¢og* concretely as follows.
Let h, = hoVid : L, > @5, and consider & :L, > @S — BUg — BUsg.
Then, by Proposition 2-4, h, determines the element 1+ NeK(L,), where
N 15 the element determined by regular representation, and N= N—p. For

. ﬁX . Xﬁl 222
large [ consider H; : L, = L,X + + » XL,—————BUgX* - X BUg~—> BUg.

And consider Hy : H¥(BUg : Z,) = H*L} : Z,) = Z,[B;, + + +, 81® Alay, + + +, a1).
Then the image of HY is contained in SZ,f™, - - -,pr"'], where SZ,87",
.« -, g1 means invariant subHopf algebra of Z,[p77!, - - -, p77'] by the action
of permutation group 4. SZJB, « -+, 8771 =Zylay, + - -, 0], where o is
the i-th elementary symmetric function of g~', - -, ™" And up to dim
2l(p — 1), A* and i-g7} is represented by SZ, 817, «--,f7']= Zlo1, +  +,01]
and H* Consider the element Hi(l4c¢, + + ), and we shall show, for
1=s=<1, the coeficient of g, in H¥1+ ¢, + -+ +) is (=1)" Then this shows
the proposition, since HF is algebra homomorphism, and {c;} and {o,} are
algebra generator of H*(BUg :Z)) and SZI87Y -« B By definition
HQ+ci+ - )=c@+N) -+ 1+ AN), where N,eK(L) is the element
defined by 1®- - -@LONRL®- - -Q@1K(LY) = K(L,) ®- + - ®K(L,), where
N is in the i-th factor. N
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]

c((X+ Ex) «e e (1 +:L))
= e(W,)» TLe(NN,) -« - We(; - - - Ko
i = 1<j —= =
And
Te() = TI(1 — g7~")
=1l—o+ +++ +(—1)g

Then the following lemma show the proposition,

LeEMMA 2-8.

11 C(Nil .
IKig<eee<i <L =

in - N;) is zero.
Proof. We prove in the case ¢ =2, since proof is

t >2, since it is tediously long.

In the above situation, for 2t <1, the cogfficient of o,y 1 <s=<1,

analog for the case

i1 c(_l!ﬁj) IO c((V; — p)(N; — p))
1Li<ji<i 1<i<j<l ==

=[ 0 WN)L T (c(N)eN,)I™
ILi<jgl == 1Li<j<Ll == =

= ¢(N;N;) mod decomposable
1Li<jgl ==

=[ 1l (_JSIE )]“2'[,_1_[ (_1)7_15/)]"
];]in:l - isleel ==

=[ II O 1+ af; +ap)12-[ 10 I (1+(a+b)8)]
i=1leeel g;=00eep—1 i=leee]l @=0e¢eep—~1
j=1leeel @j=0eesp—1 b=0eeep~1

=0 I () -8 Aa L I T (+a8)1?
a;_=0- p-—l

= [.-1 H, (14a8:)"" — o1(14-a;,B;)7 ¢~V - +(—=1)e, - (14 a;B;)' 1
Grueep—1
mod dec.

=[ O ((1+aB)"—a+ « + (—1)!¢;)]* mod dec.
et

=0 I (1+aep)) +pl—a+ - + (=) mod dec.
la;_-_—lt;::.p—l

=1 mod dec.

where mod decomposable means in SZ,[8}7}, B = Zle, +++ya). This

proves the lemma.
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2.4, Let y;€H,;,-1-1(SO : Z,) denote the unique element defined by
the following conditions, j = 1,2, - - «, i) <a(g;), y,> =1, ii) y, is a primitive
element. Denote i,(y;) by §; for i.: H (SO : Z,) > H(SF: Z,).

CONJECTURE 2-9. §; 15 contained in the subalgebra of H.(SF :Z,) generated
by Fip BpFe k=1,2, ¢ .

Since we can not prove this conjecture, we prepare the following two
lemmas, which are proved in §5.

Lemma 2-10.  There are continuous maps, f:L,—SF and g:CP>— F|O
with the following properties.

1) The following diagram is commutative.

L,————>SF

Lo

cpr ——— FJO

b
i)  The map L, — SF— F|PL— BOgy, represents in KO(Ly)y the element

p-|2-1 N, where BOgy denote the localized space of BOg at prime p and

KO(L,)py = KOL)QZI1/2,1/3, + + -, 1/p, » + + 1.

1+

Lemma 2-11.  The following formula are valid, for some ¢ + 0.

{2-5) Silesspo-0) = ¢+ a;, a; €6, j=1,2,¢ -,
Felesspmnmr) = €Bp®; + by b;€Ge J=1,2, ¢+,
Now we define the subsets of A as follows.
{2-6) i) Hi={/J=0p—112j(p—1)€H j=12— -}
i) Hy={/=0p—-1 L2i(p—~1)€H, j=12+--}
i) Hi,=1{J =10, j5 0y 75+ + -,0,j,)EH, 1 =2}
) Hiy=1{/=(@Q ji, 0, jo ++ -0, j,)EH, r=2}
V) Hi,={] = (& ji € j»r ***, &r j)EH, 1=2,
f1=p—1, dega, =even, JEHT, )
vi) Hi,=1{J = (e j1s* &y jr)EH, r=2,
h#=p—1, dege, =odd, J&HT, }.
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Now we define the element xj€ H,jp-1-1(Q0S°: Z,), j=1,2,+++, by
25 = Sfoxlesjp-p) for fo:L,—Q,S°, where L,:L,—Q,S" is defined by
fo= fV(—id) for f:L,— SF defined in lemma 2-10.

For J = (1515 * *y&n JT)EH; we define T, EH(SF . Zp) bY i*(ﬂ;}Qh' M
Bu2 jaipery), Where 7ot Ha(QoS" : Z,) = Ho(SF : Z,).

LemmMa 2-12.  As the algebraic generators for H(SF : Z,), we can choose the
Jollowing elements.

1) &5B8,85 j=12-+--.
ii) &, IeH!, UHt, UH}.
i) Q,-+ - Qpy(Z,), IEHT,, UHT,, UH3.

V) QpsQpy- + +Q,(&s), I€HT, UHT, UH3.

Where Q,_,, and Q,., are the Dyer-Lashof operations on H(SF : Z,) defined in
[17].

Proof of this lemma is analog of that of proposition 6-8 of [17], so we
omit the proof.

ProposiTioN 2-13.  The elements §; are in the subalgebra of H.(SF :Z,)
generated by Ty, By k=1,2,+++. And §;=c;Bx; mod dec, c; 0.

Proof. Since §; is non decomposable element, §7; = c,;8,%;+ ¢ 1 Q% (%,),
in QH,(SF : Z,)» the vector space of indecomposable elements. Now consider
§; in QH(F|O : Z,). By lemma 2-10, B8,%; is zero in H(F/O : Z,). Since
kernel of QH,;(p-1-1(SF : Zp) = QHyjp-n-1 (F|O : Z,) is 1 dimensional, other
elements Q%_,(%;) are linear independent. On the other hand, §; =0 in
H(F|O : Z,), this shows that §; = ¢;8,%;, ¢; 0, In QHy;p-n-1(SF : Z,). On
the other hand since §; is a primitive element, and 0— PH; ;- (SF : Z,)
— QH;,(p--1(SF : Z,) >0, and the subalgebra of H.(SF:Z,) generated by
T Bpiy k=1,2, -+, is subHopf algebra, so that %; belongs to the subal-
gebra generated by Z, B,%:.

Remark 2-14. By lemma 2-10, ¢,.(Z;) = cqis(2;), j=1,2,+++, for g, :
H(SF : Z,)—~ H(BOg : Z,), for ¢+ 0.

For JeHS,,, consider g.(z,), by proposition 2-7 and remark 2-14, there
is a unique element #,EZ,[%,, &, * + +1 Hy(SF : Z,) such that g,(&,) = gi«(i,).

D Q( ) denotes the space of indecomposable elements.
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Define &, =%, —a@,. And for J=(1,,0,7s *+ +,0,7,)EHT,, define z;=8,%/,
where ]l = (0’j1’09j29 v .QO’jT)EHY;I .

ProrosiTiON 2-15. As algebraic gemerators for H(SF:Z,), we can choose
Sfollowing elements.

i Ej’:i/‘j’jzlyzy""

) %, IeHt, UH, and =z}, I€H,.

)
)

i) Quy+ - Qp(&;), IEHT, UH; and Q- - - Q,,(%}), I€HT,.
)

iv Qp—ZQp—l' ‘ 'Q—p—l(il)9 IE‘HT.z UH;
and Qp—ZQ—p—I M ‘Q_p—l(i;% IEHT,I .

Proof. For a basis of QH.(SF:Z,), we can choose elements in lemma
2-12. By proposition 2-13, §; = ¢;8,%; ¢; #0, in QH.(SF:Z,). For
IeHs,, & =&+ ¢y, in QHJ(SF : Z,), where [I| = (deg&,) + 1/2(p — 1),
by‘ definition of #; and by proposition 2-13. Since the construction of §4
of [17], defining the H73 structure on SF can be extended on SO, and define
the Hj structure on SO with the following commutative diagram.

W x(SO)? ————> W X (SF)?

7y 7,

So that we can define the operations @; on H,(SO : Z,) compatible with the
operations @; on H.(SF:Z,). So by proposition 2-13 and by the fact that
the image of H.(SO : Z,)—» H,(SF : Z,) is the subalgebra generated by 4,
j=1,2++--, we can easily show that Qi ,(,) are in Z,J&, & +--1®
ABy Ty Bpsy + ++) and Q, Q%L (y;,) =0. So that for Ie H7,, QL. (&) =
Qk_\(&1) + co.0¥p,» in QHLSF : Z,), where yu.n =1y, for 2j/(p—1)—1=deg
(Qk_, (%)), and Q,_.Q% (F)) =Q,_.Q% (&;) in QH,SF:Z,). This shows the
proposition.

2-5. At first we consider the homology spectral sequence associated to
SPL — SF— F|PL, and determine the Pontrjagin ring H.(SPL : Z,).

ProrosiTioN 2-16.  As a Hopf algebra over Z,, H,(Q(F|PL): Z,)=A(d\d,,
coe), degd;=4j—1, j=1,2,+-+. d; are primitive elements.
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ProvpositioN 2-17.  There are elements %, H(SPL : Z,) for JeH%, UH,
UH;, suck that j(%,) = Z;+ dec, for JeH%, UH}%, and j(%;) = &} + dec, for
JeHt . Where j, : H(SPL : Z,) = HSF : Z,).

Proof. Since i.(%;) =0, for JeH%, UH%, and i (%)) =0 for JeH:,,
where i, : H(SF : Z,) - HF|PL : Z,). Proposition follows from the homology
spectral sequences associated to the following two fibering.

2F|PL)—> SPL — *—— Q(F|PL)

|

SF— F|PL

Remark 2-18. For %, I€Hf%, UHi, UHj; we can choose the pair %,
and B,%,.

As in the proof of proposition 2-15, the Hj structure on SO and SF
can be extended on SPL with the following commutative diagram

(2-7) W X (S0)? ———> W X (SPL)? ————> W X (SF)?
s o o
S0

> SPL > SF

Next define elements d,eH,; ,(SPL : Z,) by j«(d;) for j.: H Q(F|PL):Z,)
— H(SPL : Z,), for j=0 (p—1)/2. And define §;€H;;p-n-1(SPL : Z,) by
Jx¥;)y Js P H(SO : Z,) > H(SPL : Z,).

ProposiTioN 2-19. Hy(SPL : Z,) is a free commutative algebra generated by
the following elements.
i) §5 i=142-++. d, j%0(p—1)2
i) &, I€H}, UHI,UH}.
i) Qk_(%;). IeH7, UHT, UH;.
iv) Q,-.Q}-.(%,), I€HT, UHT, UH;.

Proof of this proposition is by using homology spectral sequence associated
to SPL— SF— F|PL.

2-6. Next we define the elements of H,(BSPL : Z,).
Let N:L,— BSO denote the map defined by the regular representation

of z,. Define z; =L\—l*(ezj(,,_l))EHZ,(,,_I)(BSO :Zp). Then z; are non decom-
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posable elements, j=1,2, - - -. Define the element Z;€H,;,-1n(BSPL:Z,) by
2; = ju2,), ja: H(BSO : Z,)— H(BSPL : Z,,).

And define @; € H,;(BSPL : Z,), j=0 (p =12, by @; = i.a;), is:H,
(FIPL : Z,) - H(BSPL : Z,).

Our main proposition is as follows.

ProrosiTiON 2-20. H(BSPL : Z,) is a free commutative algebra generated by
the jfollowing elements.

i) Z;, j=1,2,+--
i) a; j=0 (p—1)2
iii) O’(EJ), ]EHT,] UHT,Q UH;.

Proof. In the spectral sequence E%,=H.(F/PL:Z,QH.(QF|PL:Z,),
E3«=Z,, the following relations hold.

dUPk(a.li’k) = depk.f’ Cj #+ 0, (], p) =1, r=0.
dsjptp-0(@jp%) = Cjp4@)? ' Rd 1, (,0) =1, k=1, cj,+ #0.

And in the spectral sequence E%,=H.(BSO :Z,)QH.SO :Z,), Ez.=Z,, the
following relations hold.

dzj(p—l)p"(zzi’k) = CjYp*js Cj # 0, (.7 p) =1, k=0.
dzj(p-l)p"'l(p—l)(sz") = cjp”(zj)pk—l(p—l)®yjp"_19 (.7 p)=19 k= 1, ij"#o-

And since Hj structure on SPL can be extended on the fibering SPL—
ESPL — BSPL as that of SF— ESF— BSF, c.f. (4-15) of [17]. So that Kudo’s
transgresion theorem holds on the spectral sequence E}, = H.BSPL :Z,)®
H(SPL : Z,), c.f. proposition 6-1 of [17]. These date determine the differen-
tial of the spectral sequence for E,=H.BSPL : Z,)®H.SPL :Z,. And we
obtain the proposition by the same method of the proof of Theorem 2 in
[17].

Cororrary 2-21. Kernel of the i, : H(F|PL : Z,) - H(BSPL : Z,) is ideal
generated by j.(&;), j=1,2, ¢+, for j,: H(SF:Z,)—~ HJ(F|PL : Z,).

By corollary 2-21, the subalgebra Z,[a;], j =0 (p —1)/2 of H(BSPL : Z,)
is the image of i, : Hy(F/PL : Z,)—~ H(BSPL : Z,), so that this subalgebra
is subHopf algebra. And dual algebra of this subHopf algebra is a poly-
nomial algebra, since this subalgebra is realized as a subalgebra of
H*F|PL : Z,).
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By definition of z; 4(%;) =é%§i®é,-_i, z,=1. These two remarks
show that subalgebra generated by F ;» and a@; of H(BSPL : Z,) is a subHopf
algebra and there are elements b, Z,[2, Z;, + « - 1®0Z,[a;], j=0 (p—1)/2, deg
b, = 4k, such that

ZolZ1y Bay + +  IQZ,[G ;1= Zlbsy bzy + « +]
and 4B = D6®b,y bo=1.

TuroreMm 2-22, As a Hopf algebra

1)  HBSPL : Z,)=Z,[b,1QZ,[0(Z )10 a(E,)), where
IeH7, UHY,, UH3;, JeH], UHT,, UH}.

M

i) dA(by) =] 011@51-_“ o(Z;), olZ;) are primitive elements.

1

§3. H*(BSPL : Z[12)/Torsion.
3-1. The purpose of this section is to prove the following theorem.
THEOREM 3-1. As a Hopf algebra over Z[1/2],
i) H*BSPL : Z[12)] Torsion = ZLL21[R1 Ry, + + +1
i) 4R, = Jgé R®R;-, Ro=1, deg R, = 4j.
ii) In H¥BSPL,Q) = Q[py, s, +  +1, R, are expressed as follows.
R; = 2% (2471 — 1) Num (B,/4j) - p; + decomposable for some a,< Z.
At first we study the Bockstein spectral sequence.

Prorosirion 3-2.  In the Bockstein homology spectral sequence, E'=H,(BSPL:
Zy)y E” = (HJ(BSPL : Z)| Torsion) ®Zp, the following formula holds.
If x€E35,, y€E5,_, are such that d"(x) =y, then d™'(x?) = xP"ly.

Proof. For r>1, this is theorem 5-3 of [5], and using HZ structure
6 : Wx(BSPL)? - BSPL, it is easy to show that this holds for » = 1.
Remark 3-3. The above spectral sequence is a Hopf algebra spectral

sequence over Z,.

ProrosiTiON 3-4.  As a Hopf algebra over Z,, E~ = (H{(BSPL : Z)| Tyrsion)

=Z,[(by)s (By), = - -1, (b)) = SNb)Rb;;), where (b)) is the class which is repre-
sented by b, in Theorem 2~22.

https://doi.org/10.1017/5002776300001446X Published online by Cambridge University Press


https://doi.org/10.1017/S002776300001446X

PL MICRO BUNDLES 187

Proof. By Theorem 2-22, as a Hopf algebra over Z,, H(BSPL: Z,) =
Z 16,1027 ,(0(%1))®A(a(%,;)). By remark 2-18, in «(Z;) and o(Z,), if o(Z,) ap-
pears then «(8,%,) = B,0(Z,;) also appears. So that Z,[o(Z;)1® Ale(Z,)] is de-
composed following two types of Hopf algebras. Z,[o(Z;)1®4(8,0(Z;)) and
Z,[Byo(%,)I®A(0(Z,)). So that the proposition follows from proposition 3-2,
remark 3-3, and the fact that 4! = 8,.

Proof of Theorem 3-1. Since p is any odd prime, proposition 3-4 shows
that H*(BSPL : Z[1/2])/ Torsion = Z[1/21[R, Ry, + + +1, 4(R;) = zj(})Ri@R,-_l, for
some R;. Since P(H,;(BSPL : Z)| Torsion ®Z,)" is l-dimensi:)nal, over Z,,
and spanned by the image of PH,;(BSO : Z,) and PH,,(F|PL :Z,), so that
P(H,;(BSPL : Z[1/2)/ Torsion)=Z[1/2] and spanned over Z[1/2] by the image
of PH,;(BSO : Z)=Z, and PH,;(F|PL: Z[1/2])=Z[1/2]. On the other hand
there is a generator m;sPH,;(BSO :Z)=Z, such that <p,,m;> =1, and
#, € PH,;(F|PL, Z[1/2]) = Z[1/2] such that <L,, 7> = (2]—11)—, But since L,=

285+1(225-1—1) Num (B ;/47) denom (B /4j)
(27—1)! denom (B ;/47) 28412871 —1)Num (B, /45)
So that in PH,;(BSPL : Q), P(H,;(BSPL,Z[1/2)/Torsion)=Z[1/2] is generated
over Z[1/2] by m; and 221“(2(211‘?1‘]3?1)1{1131 Jﬁ ]()BJ 1) " But odd prime factor
of denom (B,/45) and (227! — 1) Num (B,/4j) are relatively prime, so that

) . ‘ i i m;
P(H,;(BSPL : Z[1/2])/Torsion) is spanned over Z[1/2] by @ =1 Num (B/j)"
So that we can take R; by R, =2%(227'—1) Num (B,/4j)p; + dec in H*

(BSPL : @), for some a;=Z.

p,+dec, so that {(p,, #,;>=

§4. Determination of ¢ : A~ HYMSPL : Z,).

4-1. Let A= A, denote the mod p Steenrod algebra over Z,, and
¢ : A~ H¥MSPL : Z,) is defined by the following, where usH*(MSPL : Z,)
is the Thom class.

(4-1) #(a) = a(u).
The object of this section is to prove the following theorem.

TuEOREM 4-1.  The kernel of ¢ is the left ideal generated by Qo, Qi Where
Q, is the element defined by Mulnor.

The following lemma is proved in 4-2.

D P ( ) denote the space of primitive elements.
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Lemma 4-2. ¢(Q,)#0 for j=2.

Proof of the Theorem. Since ¢(Qo) = ¢(Q:) =0, ker$2A(Q, Q1), where
A(Qo, Q) = the left ideal generated b—}_l Q. and @,. MSPL has the product
p: MSPLAMSPL — MSPL, defined by Whitney sum. So that H*MSPL :
Z,) has the coalgebra structure over Z,. And it is well known that ¢ is a
coalgebra homomorphism. Let X : A— A denote the canonical anti-automorph-
ism of A. And define §: A—H*(MSPL :Z,) by ¢(a) = xa)-u. To prove
the theorem, it is sufficient to prove that, kernel of ¢ is the right ideal
generated by %(Qo) = —Q,, %(Q) = —Q,. Let A, denote the dual algebra of
A, then by Milnor Ay = Zp[é: &y o ~-—]®A(ro, Ty » + +). 1t is easy to show the
following.

(((AIAQo, @1))* = Z 61y €2y + » » IR A(Tos 75, » » + ) C Ase
Consider the algebra homomorphism, &, : HJ(MSPL : Z,) - A,. Since dual
basis of £[1852. « «ziery is QpQf- - - PR, where R = (r,7; ). So it is
sufficient to prove ¢7(PR)7E(—)T _;nd #(Q;)+0 for j=2. But since in H*
(MSO : Z,), $(P®) = $(x(P®) = APE)\w)=0. And by lemma 4-2, §Q,) =
s(2(Q;) = —9(Q;) = —Q;(u) 0 for j=2. This proves the theorem. N

4.2.  Proof of lemma 4-2. Let K is a CW complex of the form.

K = SP""1yef " Ue@thry el p = 2(p — 1),

P L3 »

And let f:K— BSPL be the map which represents g in jofoi : $P™!' K
— BSPL - BSF. Then s is represented by a PL disk bundle E; over K of
fiber dim N, N3>0. And X = Xy denotes the Thom complex of E,. Then
Xy is the following form,

XN = SNgeN+pr—1 U eN+prU eN+(p+1)rUeN+(p+1)r+1.
1 r (3% ?

Then the action of A on H*Xy:Z, is the following, for se H¥(Xy),
epr1 € HY*P"°UXY), ey, € H'?"(Xy), epinr € HVYEW(Xy) and epiness €
HN+@+Dr+1( X ),

1) P?(s) = ey,
i) P'P?(s) = P?*(s) = epsnyrs PPPY(s) =0
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i) 6P?*I(s) = 6PIPP(s) = ecprprare
PPr*4(s) = PPP'§(s) = 6PPPY(s) = P?P3P(s) = 0.
P15P?(s) = 0.

iv)  d(epr-1) = €prs

V)  PYepr) = €pinry 0P epr) = €penrt

Vi) d(eqrnr) = eprnreie

So that the Milnor homomorphism 2 : H¥(Xy : Z,) > HYXy : Z,)QA; is given
by the following.

1) As) = e®L + €, QE} + epsn - R(EPH — &)

+ epenrn@EF 7o — Eato — T + 72).

1) Aepra1) = €pr1Q1 + €,:Q70 + €171 + eprnr 1@T1T0

i)  2epr) = €pr@L + eGpen- Q&1 + eprnr+1®€ito

V) Aeginr) = e QL + eprnr+1®o

V) Aeinre) = epenr1®lL.
Now consider the following construction. Let z : W — B be a oriented PL
disk bundle over B of fiber dim N. Then W X(E)? >W xB? is a PL disk

bundle of fiber dim pN. Then the Thom complex of this bundle is of the
form,

WIKIMEA « + « AME) = W x(MEA « - - AME)W X ,

where ME is the Thom complex of z:E—~X. If ueHY(ME :Z,) is the
Thom class of z : E— X, then P(u)sH*(WX(ME)® : Z,) is the Thom class

of Wx(E)f’—p>W><X”, where P(u) is the Steenrod construction of u, c.f.

Steenrod cohomoplogy operations, ¢k VII.
Now consider the case z,:E=E,—K. And consider the twisted
diagonal map,

4y = AXd, 2 Wz XXy —> WX (Xy)?.

Then by the definition of the Steenrod reduced powers,

V=2/)(p—1)
A¥(P(s)) = ]go(—1)N+j+mN(N+l)/2(m!)Nﬂ 2 ®P(s),
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=2~ 4
+ SV (—1)NHIHMNE D2 ()W« B 2 Q8P (s).

7

where m=-2"L1 acH(W/z,: Z,), BEH Wz, : Z,).

2
By Milnor i(a) = a®1 + BRco++ » + +B2 @7, + + + +. 2B =BROL+ 2RE,
L NGp-D L N@-1-p(s-1)
4+ oo And 4HP(s) = ((—1)FrmI@En2 (W8 2 ®s + B*°
5N (=D —(p+D (p-1) N (p=1)=(p+D(p-1) —1
®epr + B ®e(p+1)r + af ®(e(1’+l)r'”)]' Apply-

ing 2 and using the fact that 21 is a ring homomorphism we obtain,

1 —
ALHP(s)) = (=L mv@sn s () 287 ®epanrr®rs

L N(p-1)—p?

+ Jén@pl‘ﬁ z ®e(p+1)r+1®1‘j]

r

+ other term with respect to the last term..-Q®g1. &5 ciizste- -

So that @;(4%(P(s)) #0, so that Q;P(s)+0, for j=2. Using naturality of
Thom class, Q,(#)# 0 for ue H(MSPL : Z,). This proves the lemma.

§5. Proof of Lemma 2-10 and 2-11.

5-1. The main idea of this section is come from the work of Adames
[1], and we use his results freely in this section.

Let z: E—~ X be a spin (82) bundle over a finite complex, then it is
well known the existence of the fundamental Thom class in KO theory in
the following form, [3].

(5-1) There exists a Thom class a(z)eKO*(E, E — X) with the following property.

1) functorial
ii)  multiplicative.

i) ¢Fpha(z) = A(x)™, where A(z) is the A polynomial of =.

Now consider z : E— X, a oriented real vector bundle with homotopy
trivialization, ¢ : (E, E — X)— Xx (R, R®» — O0). Consider the following ele-
ment #(z)eK0(X), defined by #(z) Q7s, = (¢7))*(a(z)) € KO**(X X (R%*, R®* — O))
= KO"(X)QKO*(R®*", R*» — 0). Then it is easy to show that 1) e&(@(n)) =
1eK'(p,t) 1) #(z®8) =7z(x) 1) 7 is functorial iv) Ph(z(z)) = A@). And
passing to the limit we obtain a universal element z=KO(F/0), &z) = L.
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Now for any integer k, we define the H-map é*: BOg—>BOg by the
formula, &1 +¢&) =¥*1 +¢)/1+¢, where 14+ €14+ KO(BOg) denotes the
universal element.

Next for any integer k with (k,») =1, we define a H-map ¢*: BSOs —>
BOg» by the following way. The isomorphism,

P* : KO*(ESO(8n), ESO(8n) — BSO(8n))p —> KO**(ESpin(8n),
ESpin(8n) — BSpin(8n))p.

define the Thom class (p~)*(a(ESO(8%r)) = KO (ESO(8n), ESO(8n) — BSO(8%))p,
and we also write this Thom class by a(ESO(8#r)). Then this element defines
the Thom isomorphism ¢, : KO (BSO (8n)), - KO** (ESO (8n), ESO (8n) —
BSO(8n))p defined by o¢go(x) = z*(2)-a(ESO(8n)). Then define ¢%, : BSO(8n)
— BO®p by ¢f, = —lil—nso}‘o?lf"(a(ESO(Sn)), then it is easy to show that i*@k,.p
= ¢%, for i : BSO(8n)—> BSOB(n +1)). So passing to the limit we obtain
¢* : BSO - BOg(». Then it is easy to show the following, cf Adames [1].

ProposiTioN 5-2, The following two diagrams are homotopy commutative.

T

i) ' F|O0 ————> BOg

l " l5~

BSO —————5 BOgn

k

¢
11) BSO ——— BOg(yp
E__ Py
l(lf 1 0" lo
BSO ——— BO@(p)

Let 7— L, and r— CP~ denote the canonical complex line bundle and
7r—>L,, Tr—>CP~ denote the corresponding real vector bundle of dim 2,
and £,€KO(L,) or KO(CP") is the element &z =7r— 2.

ProrosiTioN 5-2. In KO(L,)p, P+ (Er) represent the element 1+'ﬂ2—TZ—v— R
where N €KO(L,) i the class corresponding the regular representation.
Proof of this is due to the Theorem 5-9 of [1].

5-2.  Proof of lemma 2-10. For &,KO(CP=), consider the element
@?*(ep)el + KO(CP*),). And consider (¥?*! — 1)(&z), then by Adames con-
jecture, there is a map g : CP”— F/O with the following commutative dia-

gram.
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o LN 7 > BSOg
l‘sR w‘P+1__l €DP+1 1/51”-1
BSO — BSO — BSOg(p»
5p+1

Since [CP~, BO®(p)]——+ [CP~, BOg(,] is monomorphism, the above commutative
diagram and the following commutative diagram
ER P+1
CcP> > BSO > BSOg(p)
lw’]"’-l_l SDP+] l(;pﬂ
BSO ————> BSO@(p)

show that the two maps ¢?*, &; and 7og: CP°°—->BO®(,,) is homotopic. So
that Togomw L, — CP~ F/O — BOg, represents 1+ N —~2_N by proposition 5-2.

E w‘p'i'l
And since L, 5 CcP- ——> F|O — BSO is homotopic to L, 5 CP~— BSO ————->

+

. o /
BSO, so that this map is trivial. So that gozx : L,— F/O factors L,— SF
— F/O. And it is easy to show the following commutative diagram.

| ( !
'SF——> F/O

lf SRR

F|PL —— BOgp

So that gojof : L,— BOgy» is equal to 7oiof, and 7oiof is cqual to Togor :
L, CP~— F|O - BOg, and this element represent 1+ —_I_—lg This shows

the lemma.

5-3. Proof of lemma 2-11. We prove this lemma by induction on j.
For j=1. Since gojof : L, SF— F/PL— BOg, represents 1 +_i_\7, so that
(Gojof)*(P,_y) 0. So that fi(lexp-n) = c2 for some non zero c€Z,. So
that f*(ezg,_z”_,) = fu(Bpestp-v) = cBp%;. Suppose we can prove the lemma for
j< o fo=2, we prove the case of jo. Put files; m-0) = €%, + @y, and
Fales;p-v-1) = C5,Bp% 5, + by, for some c¢; €Z, and a;, b; € GCo. We prove

Cjp=C=C = *** =Cjo. But the following lemma 5-4 shows that for some
1=<1< jo Plesjyp-v = desjp-rrp-ns OF Pleajyp-n-1 = deésjo-idp-1-1 for some
0#deZ, Then for example PLf(e; p-n) = €;,Pix;, + Pila;) = ¢;d%;,x

+ Plla;,) Plgcgf(ezjo(p—l)) = f(P¥erjp-0) = f(dez(jo-k)(p—l)) =d X (jp-00 T dabjo—k’
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But Pi(a, )G, by definition of G, in [17] and by Nishida [11], so that
¢;,d =dc and c; =c. This prove the lemma.

Lemma 5-3. Ir HJ(L,,Z,) and for any jo>1, there is a infeger 1=k < j,
such that Pl(es;p-n) # 0 or Piles; p-n-1) 7 0.
Proof is easy.

§ 6. Appendix.

6-1. The object of this section is to prove propostion 1-4, the exis-
tence theorem for KO theory fundamental Thom class for oriented PL disk
bundles. The essential idea of this section depends on the work of Sullivan
[15].

At first we remember the result of Sullivan [15]. Let z:E—X be a
oriented real vector bundle over a finite complex of fiber dim m. Then
there is a fundamental Thom class u(x) € KO™(X#%+), with the following
properties, where X% is Thom complex of = : E— X.

(6-1) i) functorial.
i) multiplicative.
i) ¢3phulz) = Lix) e H (X, 0).

Let KO.( )p denote the homology KO 'theory localized at odd primes
P, and make 4-graded by the same method (1-6). And Q% ), and Q. )’
denote the oriented real cobordism and bordism theory. Then above Thom

class induces following multiplicative cohomology and homology operations. .
(6-2) w7 )>KO¥ )p
2 )=>KO{ )p.

By (6-1) iii) and Index theorem of Hirzebruch. The map « :Q.(p, )=
Q*(p, t) = KO (p, t)p = KO*(p, t) = Z[1/2] is the map defined by associating to
each represented manifold its index. And we consider Z[1/2] as a 2, = Q*
module by this map. Then the natural transformations in (6-2) define the
following natural transformations.

(6-3) u i Q% )@*2[1/2]—>KO*< )pe
u Q. )(?Z[I/Z]*KO*( )pe

Then the following proposition is due to Sullivan [15].
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Prorosition 6-1.  The natural transformations in (6-3) give equivalence of
functors.

Now let = : E-—+ X be a oriented real vector bundle of fiber dim m.
Then we define the following map # by taking Kronecher index < ,u(z)>.

u < uln)y
(6-4) it Q,(E,dE)—> KO (E,0E) p ————> KO py_n(S") 5
Z[1/21 if p—m=004)
where KO, ,(S")p = { .
0 if  p — m=004).

Another map # is defined by the following
Z[12] p—~m=0(4)

(6-5) i:Q2,(EoE)— {
0 p — m x 0(4),

If 2 = (M?,aM? : f)EQ,(E,3E), we can take s satisfying the condition
that f is ¢-regular to the zero section X of E. Then d(z) is by definition
index of (f7/(X)). Then # is well defined. And it is easy to prove the
following proposition.

Prorosition 6-2.  The above two homomorphism @ and & coincide

6-2. For any odd integer g >0 introduce the mod ¢ homology theories
Q. :Z,) and KOy :Z,) as follows. Let M, = S'Ue¢® bc the mod ¢ Moore
q

space, for a finite CW-pair (X, A), we define,
(6-6) (X, A Z) = 11:3[M,/\5“’*'"“% (X]A) AMSO(N)],.
N

KO,(X,A:Z) = MMqA58N+m‘2, (X/A)N(ZXBO)k.
N
As in the case of KO, )p, the homology theory KO, :Z,) is con-
sidered 4-graded by 7,=K0,(S%)s.
Since g is odd integer, by Araki-Toda [2], these modules Q.X, A: Z,)
and KOX, A : Z,) are Z, modules.
And by the method of [2], the Bochstein homomorphism 8,, the reduc-
tion mod ¢ homomorphism ¢, and for «:Z,—~+Z,, an abelian group
homomorphism, the reduction homomorphism ¢, can be defined.

(6-7) Byt Qu(X, At Zp)=> Qur(X, A)y KOW(X, A : Z,) > KOp_ (X, A).
05 (X, A) > Qu(X, A : Z,), KOW(X, A) > KO, (X, A : Z,)
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Cu t 2n(X,A:Z,) > QXA Z,), KOW(X,A: Z,) +>KO,(X,A: Z,).

The homology operation # defined in 6-2 can be naturaly extendable
to the following homology operation u,.

(6-8) w,: 2 1 Z)—>KO( :2Z,).

And this homology operation #, induces the following natural transfor-
mation.
(6-9) Uyt 24l :Zq)(;;)Z[l/z]—)KO*( 2 Z,).

Then proposition 6-1 induces,

ProrosiTioN 6-3.  The natural transformation u, in (6-9) is an equivalence of
Sunctors.

6-3. Now we show the geometric interpretation of the homotopically
defined homology theory Q2.( :Z).

For finite CW-pair (X, A), a singular Z, manifold of dimension m for
(X, A) means the following system (@, f) = (Q, f, ¢, M,) satisfying the following
condition.

(6-10) 1) (@,8Q) is a compact oriented differentiable manifold of dim .

il) 6Q =Q,UQ,, where M, and M, are regular (m — 1) submanifolds,
and QNQ, =00, = 9Q,.

iii) (M, M), compact oriented (m—1) differentiable manifold,
¢ : (UM, UaM,)~(Q,, 6Q,) is an orientation preserving diffeo-
mor};lhism.q Where U means disjoint union of ¢ elements.

iv) f:(Q,Q0)—(X, A), cf)ntinuous map

v) For any inclusion i: M, — U M, the composite map fopoi is
independent of this inclusionl.]

Then as in the usual case, the equivalence relation ‘“bordant” can be
defined. And we denote the set of equivalence classes of singular Z, mani-
folds of dim m for (X, A) by Q4(X,A:Z). Then this becomes an abelian

group, and Q4(X,A:Z,) becomes a right 2.(p,¢) module by defining the
product of manifold.

ProrosiTioN 6-4.  The functor Q4( :Z,) constitutes a generalized homology
theory, and Q4(p,t : Z,)=Q.(p, t)(;)Zq.
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Then by the same method in the case of 2,( ), constructed in Conner-
Floyd [7], we have the following.

ProrosiTiON 6-5.  There ts a natural equivalence, = : QU :Z)—> Q. :Z).

The reduction mod ¢ homomorphism, ¢} :Q2.(X, A)—>2(X,A:Z,) can
be defined by considering the ordinary singular manifolds as Z, singular
manifolds. And for the homomorphism «:Z,— Z, defined by a(l)= (s),
the reduction homomorphism ¢;:Q4(X, A:Z)—> (X, A:Z,) is defined
by ¢l(Q, f)) = (U, Uf)). And the Bockstein homomorphism 8] :Q2.,(X, A:Z,)
= Qn1(X, A) is djsﬁnesd by B(Q, f5 ¢, My) = (M,, fopoi). Then ¢; and ¢! is
compatible with ¢, and ¢, in (6-7), and 8/ and B, are compatible up to
sign.

6-4, Now we define the mod ¢ index homomorphism I, : 24, : Z)
—Z, by the following way. Let (M™,aM) is a Z, manifold, then we define
IL(M™) by

if m=004)

(6-11) I(M™) = .

Py — P, mod g if m=0(4).
Where p, and p_ are the following numbers. Consider the following sym-
metric pairing,

u < ’uM>
H>»(M,oM : RYQH*(M,oM : R)—> H**(M,oM : R) ——— R.

where 4n = dim M. Then p, = the number of the positive eigen values of
the above pairing, and p. is the number of the negative eigen values.

ProposITION 6-6. I, is not depend on the representative, and define a map
1, :Q4p,t : Z)—> Z, and has the following property.

1) Iz +y)= L)+ L(y)

i) Iz, y) = L) I(y) for 2€2(p,t : Z,), yE2.(p,1).

i) I 2)=al(zx), for x€Qup,t : Z,) and a : Z,— Z,, defined by a(1)=(s).
Let 7 : E— X be an oriented PL disk bundle over a finite complex of fiber
dim m. We define the following homomorphism &, #, for odd integer
qg>1.

‘n—m=004)
(6-12) i Q,.(E,0E)—~

“n—m x 0(4)
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Z, n — m=0(4)
@yt Q.E,OF : Z)) —~
0 n — m = 0(4).
Let (@, /)eQ.(E,dE : Z,), we can suppose f is t-regular to the zero-section
X of E. Then f7YX) define a element of Q,_,(p,t : Z,). Define #,((Q, )=
I(f%(X)). The same for #. Then it is easy to show that i(z,y)=u(x)- [y)
for 2 € Qu(E,0E), yEQ.p,t), and @, x,y) = @ (2)I(y), x € QE,F : Z),
yE2«(p,t). So that %, and 7, define the following homomorphism.

B

{ Z[1/2] * — m=0(4)

(6-13) @2 B, 0E)RZ11/2) = KOLE, 0E)p — = 0(4)
* rom

Z, *—m=0(4)

Ky

o QUE O : Z)RZ[1/2] = KOLE,3E : Z,) - {
'Q* 0 * —m E 0(4).

Then these # and #, satisfy the following relations.

0P = g il a,: 22, =2ZlqZ

]

(6-14)

3P = * ﬁq a Zq _*qu; a(l) = (S).

Rl

6-5. Now remember the following duality law for KO¥( ), and KO.( )p.

ProrosiTiON 6-7. For any finite CW-pair, There ts a correspondence between
the following set i) and ii)

i) ueKO™X, A)p
1) aeHomgyy(KOL(X, A)p, Z[1/2]),
#,sHom, (KO, X, A: Z,), Z,), q: odd integers satisfying the following
relations.
a,  Z—>2,=2|qZ
o Z,—>Zy, a(l) =(s),

K
N

®Pg = AgOU,

]
R

¢s%Pa = U,
And the correspondence is given by
< w1 KOR(X, A)p = KOo(S") p = Z[1/2]

u—>
< yuw) i KOR(X, A Z) = KOS : Z,) = Z,.

And these correspondence s jfunctorial.

Proof of proposition 1-4. For PL disk bundle z : E—~ X of fiber dim m,
consider #, and #, defined in (6-13). Then by (6-14) and proposition 6-7,
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there is an unique element «(z)eKO™(E,3E)p. This element is what we
want.
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