
J. Austral. Math. Soc. Ser. B 30(1989), 313-325

EXACT SOLUTIONS OF NONLINEAR EVOLUTION EQUATIONS
OF THE AKNS CLASS

W. L. CHA^AND YU-KUN ZHENG

(Received 1 August 1987; revised 29 April 1988)

Abstract

The problem of obtaining explicit and exact solutions of soliton equations of the
AKNS class is considered. The technique developed relies on the construction of
the wave functions which are solutions of the associated AKNS system; that is, a
linear eigenvalue problem in the form of a system of first order partial differential
equations. The method of characteristics is used and Backlund transformations
are employed to generate new solutions from the old. Thus, families of new
solutions for the KdV equation, the mKdV equation, the sine-Gordon equation
and the nonlinear Schrodinger equation are obtained, avoiding the solution of some
Riccati equations. Our results in the KdV case include those obtained recently
by other investigators.

1. Introduction

The Backlund transformation (BT) is an important tool for constructing a new
solution of a nonlinear evolution equation (NEE) from a known solution of that
equation [5]. Earlier, Konno and Wadati [3] had derived some BTs for the NEEs
of AKNS class [1]. These BTs explicitly express the new solutions in terms of the
known solutions of the NEEs and the corresponding wave functions which are
solutions of the associated AKNS system. Therefore the key step for obtaining
new solutions by the BT is to obtain the wave functions. In this paper, we shall
use some simple methods to find the wave functions and apply the BTs derived
by Konno and Wadati to obtain families of new solutions.

The main objective of this article is not to derive BTs but rather to implement
them in the construction of exact solutions. Indeed, our main contribution is the
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complete integration of the AKNS linear system when the field variable u(x, t)
is of the form u(x — kt), i.e., a travelling wave.

The second generation of solutions, obtained from the seed solution u being
a constant, is not all new. They include 1-soliton solutions. However, they are
also travelling waves, so that, by our method, the wave functions associated with
them can be found. Hence through the known BTs, a new third generation of
solutions has been obtained. One distinct feature here is that the value of the
parameter 77 is kept constant from generation to generation. This is unlike the
case in which solutions are generated by the algebraic method [5] (theorem of
permutability or nonlinear superposition) where the value of 77 must be kept
changing.

It is known that many NEEs can be derived from the following AKNS system

* , = P $ , $ t = Q$, (1)

where

P and Q are two 2 x 2 null-trace matrices

Here 77 is a parameter, independent of x and t, q and r are functions of x and t.
P and Q must satisfy the following integrability condition:

= o, (5)

or in component form:

-Ax + qC-rB = 0, (6)

qt-Bx + 2r]B - 2qA = 0, (7)

rt-Cx + 2rA - 2r?C = 0. (8)

By suitably choosing r, A, B and C in (6)-(8), we will obtain various NEEs
which q must satisfy. Konno and Wadati introduced the function [3]

(9)

and, for each of the NEE, derived a BT with the following form:

), (10)

where q' is a new solution of the corresponding NEE. For use in the sequel, we
list the NEEs and their corresponding BT in the following.
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a) The Korteweg-de Vries (KdV) equation.

-4ri3 - 2r)q - qx -4r)2q - 2q2 - 2r\qx - q

d) The nonlinear Schrodinger (NS) equation.

qt + Qxxx + &qqx = 0, (13)

q' = q- 2IV (14)

b) The modified Korteweg-de Vries (mKdV) equation.

/ -4r?3 - 2r\q2 -4r\2q - 2q3 - «.,HX - Hxx . , .
^ \4r?29 + 2?3 - 2r\qx + qxx Arf + 2r)q2 ) v '

qt + qXXx + 6<?2gx = 0, (17)

q'=q- (2TX)/(1 + T2) = q - 2( tan- J T)x. (18)

c) The sine-Gordon (SG) equation.

-r,
J_/cosU sinU \
4r\ \ sin u - cos u /

uI t = sinu, (21)

r. (22)

/ 2z»j2 + iqq* 2ir\q + i ^
\-2ir,q*+iqx -2ir,* - iqq*

t + qxx + "2q2q* = 0, (25)

|lf). (26)

Now we shall choose some known solutions of the above NEEs and substitute
these solutions into the corresponding matrices P and Q. Next, we solve the
equations (1) for <p\ and <p2- Then, by (9) and the corresponding BT we will
obtain the new solutions of the NEEs.
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2. The known solution is a constant q

a) The KdV equation.

Substitute go into the matrices P and Q in (11) and (12), then by (1) we have

d$ = $x dx + $ t dt = P $ dp, (27)

where

( 2 8»

p = x-kt, fc = 2go + 4r?2. (29)

The solution of equation (27) is

o = ( / + p P + p 2 P 2 / 2 \ + P
3 P 3 / 3 \ + ••• ) * 0 , (30)

where 4>o is a constant column vector. According to the sign of the quantity
V2 ~ Qo, the solution (30) may take the following three forms:

i) I2 ~ Qo > 0, a2 = n2 - q0

\ —(l/a)sinhap cosh ap — {rj/a) sinh ap )
_ / cosh ap + (ri/a) sinh ap (go/a) sinh ap \ ^

—(l/a)sinh h {/) i h )

") n2 - Qo < 0, a2 = g0 - V2

ap + (»?/a
—(I/a) sin ap cosap — (TJ/a) sin ap

= /

iii) T?2 - <?o = 0,

$ = / l + ^ P QOP \ ( 3 3 )

V -p i - W
Now, we choose $ 0 = (l,0)T in (31)-(33) and use (9) and the BT (14); we

obtain the new solutions of the KdV equation (13) corresponding to the known
constant KdV solution go as follows:

i) V2 ~ Qo > 0,

q = g0 - 2a2 csch2(ap), a 2 = r?2 - g0; (34)

ii) T)2 - q0 < 0,

g = go -2a2csc2(ap), a2=q0-r)2; (35)

iii) r)2 - q0 = 0,
q = qo - (2/p2). (36)

These solutions had been obtained in [2] by a different method involving the
solution of some Riccati equations. If we choose $o = (0,1)T in (31)-(33),
we will obtain another group of solutions. Obviously all of these solutions are
travelling waves with velocity k = 4r)2 + 2q0.
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b) The mKdV equation.

Substitute go into the matrices P and Q in (15) and (16); then by (1) we have

d$ = $x dx + $t dt = F$ dp, (37)

where

p = x-kt, k = 2{2ri1+ql). (39)

The solution of equation (37) is

$ = (exp pP)$0 = (I + pP + p2P2/2\ + p3P3/3l + • • • )$o- (40)

Similar to the case of KdV equation, by (40), taking $o = (1>O)T> and by (9)
and (18), we obtain three new solutions of the mKdV equation corresponding to
the known constant solution go as follows:

i) V2~<lo > 0, a2 = r)2 - q$,

. _ / c o s h a p + {•q/a) s inhap ( < W a ) s m n a p \ ^ ,.*•>
V —{qo/a)slnhap cosh ap— {r)/a) sinh ap J ° '

77]}1; (42)

$ _ / cos ap + (ri/a) sin ap {qo/a) sin ap \ $ .
V —{qo/a)sinap cos ap — {rj/a) sin ap J °'

q = q0 + 2{tan-J (l/g0)[acot ap + rj\}x; (44)

iii) r)2 - q$ = 0, p = x - 6q$t,

* P ^ >j (45)
-qop 1-qop

q = qo + 2[tan-1((l/qop) + l)]x. (46)

c) The SG equation.

Let the constant solution of (21) be

9 n = n7r, n = 0 ,± l ,±2 , - - - . (47)

Substitute (47) into the matrices P and Q in (19) and (20), then by (1) we have

d$ = <&x dx + $ t dt = P $ dpn, (48)

where

Pn=x-(-ir-1t/(4r,2). (50)
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The solution of (48) is

icadxVPn + BtihnPn 0 \
\ 0 cosh r/p sinh r\pn )

+ BtihnPn 0
\ 0 cosh r/pn - sinh r\p

Choose $o = (1) 1)T m (51), then we have

/ e x p ( W n ) \

\exp(-VPn)J

Substitute (52) into (9), then by (22), we obtain the new solutions of the SG
equation (21)

q n = n w + 4 c o t ~ 1 ( e x p 2 r ) p n ) , n = 0 , 1 , 2 , • • • . (53)

d) The NS equation.
Note that go = 0 is the only constant solution of the NS equation. Substitute

it into the matrices P and Q in (23) and (24), then by (1) we have

d$ = $x dx + $t dt = P$ dp, (54)

where

" - ( I - „ ) • <»>
p = x + 2it]t. (56)

The solution of (54) is

ft 0 \
\ 0 exp(-r)p)J

Choosing * 0 = (1,1)T in (57), then, by (9) and (26), we obtain the new solution
of the NS equation which reads:

q = -2r) exp(4tV<) sech(2r?z). (58)

3. The known solution q = q(x, t) is a simple function

In this case we cannot solve the system (l)-(4) for the vector $ as a whole,
but we can solve its components (p\ and <pi separately. From (l)-(4), after
inserting the known solution q(x, t) of the NEE into the corresponding matrices
P and Q, we will have the following system of partial differential equations for
the unknowns ipi and <pi'-

fix = V<P\ + Q<P2, (59)

<Pix - r(pi - r)<p2, (60)

fit = A(p! + Bip2, (61)

(62)
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These equations are compatible under the conditions of the assumed values of
matrices P and Q connected with the considered NEEs. Solve <p\ from (60)
giving

<Pi = {l/r)(<p2x + V<P2)- (63)

Substituting this <pi into (62) and together with (8) we get

C<P2x ~ r<p2t = (1 /2)(C S - rt)<p2- (64)

This is a linear first order partial differential equation with <p2 as its unknown
function; it can be solved by the method of characteristics. After <p2 has been
obtained from (64), and substituting it into (63), we will obtain ipi. Thus we have
obtained two general solutions ipi and <p% which contain an arbitrary function / .
This arbitrary function can be determined by demanding that the two solutions
<Pi and f2 satisfy either (59) or (61), which will yield a second order linear
ordinary differential equation with the function / as its unknown. If we can
solve for the function / , we will eventually obtain the two particular solutions
<p\ and <pi- Finally, by applying (9) and the BT corresponding to the NEE we
shall obtain a new solution of the NEE.

Example 1. The KdV equation.
Let

q = x/(6t). (65)

By direct calculation one can check that (65) is a solution of the KdV equation
(13). Inserting (65) into (64), together with (11) and (12), gives

(4??2 + 3f) ^ 2 z + ^ 2 t = 67^2' ^
Equation (66) has the following system of ordinary differential equations as its
characteristic equations,

dx/dt = {x/3t) + 4r)2, (67)

d(p2/dt = <pi/{6t). (68)

Solving these two equations gives the general solution of the unknown ip2 in
equation (66), which reads

<P2 = t1/6f(Z), £ = x r ' / 3 - e r^ 2 / 3 , (69)

where / is an arbitrary differentiable function. Substituting (65) and (69) into
(63) gives the general solution of <px which reads

(70)

To determine the function /(£), we substitute (65), (69) and (70) into (59), and
find that /(£) must satisfy the following Airy equation [4]:

2 2 (71)
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Therefore we obtain the function /(£) as follows:

(72)

where A and B are two Airy functions,

A = A(0, (73)

B = B(0, (74)

and C\ and C<i are two arbitrary constants.
After / has been determined, (69), (70) and (9) lead to

r=-<-1/3^(ln/)-r?; (75)

then substituting this F and (65) into the BT (14), we arrive at the new solution
q' of the KdV equation (13) corresponding to the known solution (65):

Example 2. The NS equation.
We take (58) as the known solution of the NS equation. Referring to the

matrices (23) and (24), the PDE (64) now reads

{iq* - 2iriq*)<p2x + q*<p2t = - ( « W J + i\q\2q*)<P2- (77)

Substituting (58) into (77), after simplifying we have

2r)(l + taiih2r)x)<p2X + i<P2t = 2r?2(2sech2 2??x - tanh2r7z)v?2- (78)

Solving (78) we obtain the general solution for <P2'-

(p2 = expfaz + (1/8)? - 2ir]2t) sech(2r?a;)/(f), (79)

where / is an arbitrary differentiable function of f and

f = 4r)x + sinh Ar\x — cosh Ar\x + I6iri2t. (80)

Substituting (79) into (63) we obtain the general solution for ipi:

<Pi = exp(r)x + (l/8)f + 2irj2t)[{l - tanh2r/z + p)f + 16p/j], (81)

where
p = 1/(16T7)<TX- (82)

To determine the function /(?), (79) and (81) are substituted into (61) and using
(24) we arrive at a second order ordinary differential equation

64/£ + 16/; + / = 0. (83)

Solving this equation gives

(84)
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where C\ and C2 are two constants. Now, by (9), (79) and (81) we have

r = exp{4ii]2t)[l - tanh2r)x + p + 16p{lnf)i}cosh2r)x. (85)

Substituting (84) into (85) we get

T = exp(4i>72t)(l - tanh2r?z -p + (16 />CI ) / (CK + C2)) cosh 2771. (86)

Finally substituting (58) and (86) into (26), we obtain the new solution of the
NS equation (25)

q' — 2r?exp(4z'?72£)sech2?7z

• {1 - 2 (1 - tanh2?7z - p + (16Cip)/(C1f + C2))

/[sech2 2rjx + (1 - tanh2r?x - p + (16Ci/>)/(Ci? + C2))

(1 - tanh2r?x -p + (16C^p)/[CW + C^)}} . (87).

4. The known solution is a travelling wave

q — q(p), p = x — kt, (A; a constant). (88)

Such a solution does exist for many NEEs as we have seen in Section 2. In this
case the AKNS system (l)-(4) has a general solution. Let us consider the more
general case. Suppose that the components q and r of the matrix P are functions
of p:

Q = q(p), r = r{p); (89)

then the components A, B and C of the matrix Q determined by equations
(6)-(8) are also functions of p:

A = A(p), B = B(p), C = C(p). (90)

Under these assumptions, we have the following result, which is crucial in our
subsequent exact solution.

PROPOSITION I . The matrix

M = {kP + Q)2 (91)

and the quantity

kr) (92)

are constants with respect to p (or x and t).
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PROOF. Substituting the matrices (4) and (5) into (91) we have

M W( * 9\.(A B\V [A + kr, B + kq
=[k[r-f, ) + {c - A ) \ ={c + kr -A-kt,)

( 9 3 )

To prove the assertions of the proposition we only need to show that the deriva-
tive of the matrix M in (91) with respect to p is zero; this can be done by the
following direct calculation.

Using (88)-(90) and (5) we get

dM/dp = (k dP/dp + dQ/dp){kP + Q) + {kP + Q)(k dP/dp + dQ/dp)

= {-Pt + Qx)(kP + Q) + (kP + Q){-Pt + Qx)

= {PQ - QP){kP + Q) + (kP + Q)(PQ - QP)

= kPQP + PQ2 - kQP2 - QPQ + kP2Q - kPQP + QPQ - Q2P

= P{A2 + BC) - kQ{r,2 + qr) + k(r)2 + qr)Q - {A2 + BC)P

= 0. (94)

We now solve the system (59)-(62) by applying the method of characteristics
as in Section 3. The PDE (64) possesses the following characteristic equations:

dt dx d<p2
-r C ^(Cx-rt)<p2-

Using (88)-(90), we have

Substituting (96) into (95) gives
dt dp

(95)

(97)
-r C + kr l(C + kr)'p<p2

These equations yield the following system of ordinary differential equation:

d(ln <P2)/dp ={C + kr)'p/{2{C + kr))t (98)

dp/dt = -(C + kr)/r. (99)

Integrating equation (98) leads to

f>2 = k2{C + A T ) 1 / 2 , (100)

where fa is an integration constant. Integrating (99) we get
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where fci is another integration constant. Denote

cTTrdp- <102)
Substituting (102) into (101), we have

a(p) + t = ki. (103)

From (100) and (103), we obtain the general solution of the equation (64):

<p7 = {C + kr)l'2f(<)t (104)

where
S = <r(p)+t, (105)

and /(f) is a differentiate function of f. Substituting (104) into (63) gives the
general solution of <pi:

<p1 = (C + kr)-1/*[f; + (A + kn)f]. (106)

To determine the function / , (104) and (106) are substituted into (59) and we
find that / must satisfy the following second order ordinary differential equation

/ £ - /?/ = 0, (107)

where 0 is a constant defined in (92). According to the sign of/?, (107) will have
the following three different solutions:

/ = cif + c2, when/? = 0, (108)

/ = cisinhw(f + c2), when 0 > 0, J1 = 0, (109)

/ = cisinw(f+ c2), when 0 < 0, w2 = -0, (110)

where c\ and c2 are integration constants. Substituting these solutions into
(106) and (104) respectively, we obtain the corresponding different solutions of
the system (l)-(4):

'2 f + c2) + C(<Pi\ =

W

/V i \ _ /
when /? = 0, (111)

c2)+c;coshG<;(f+ c2)]

when 0 > 0, (112)

c2)+wcosw(f+ c2

when 0 < 0. (113)

These results (111)-(113) are valid for any NEE contained in the AKNS sys-
tem (l)-(4), provided that they meet the assumptions (89) and (90).
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We now apply the results obtained here and the known travelling wave so-
lutions of the NEEs obtained in Section 2 to construct some new solutions of
the corresponding NEEs by means of the BTs. We will only consider the KdV
equation and the SG equation. In these cases, the constant /? denned by (92)
is zero and therefore the corresponding solution of the AKNS system (l)-(4) is
(111). By substituting (111) into (9) we get the common expression of F of these
NEEs.

T = {C + kr)-1{A + kn + l/{$ + co)), co = Ci/C2. (114)

In the following, we omit some tedious calculations but only list the main results
of the KdV equation and SG equation,

(a) The KdV equation.

(i) q = qo-2a2csch2{ap), (115)

f = (sinh2ap - 2ap + 16a3f)/(16a3), (116)

T = -acothap-Masinh2(ap)/[sinh2ap-2ap+16a3(i + c0)], (117)

q' = q0- 8a2 {[2ap - 16a3(t + c0)] sinh2ap + 2(1 - coshap)}

/[sinh2ap - 2ap + 16a3{t + c0)]
2. (118)

(ii) q = 9o - 2 a 2 esc2 (ap), (119)

f = (2ap - sin 2ap + 16a3«)/(16a3), (120)

T = - aco t ap + 4asin(ap)/[2ap-sin2ap + 16a3(£ + c0)], (121)

q' = qo + 8a2 {[2ap + 16a3(t + c0)] sin2ap - 2(1 - cos2ap)}
3 2 (122)

(iii) q = Qo~ 2/p2, (123)

(124)

(125)

q' = 90 - 6p[p3 - 24(« + cQ))/[p3 + 12(t + c0)]2. (126)

(b) The SG equation.

qn = TITT + 4cot"1[exp(2r?pn)], pn = i - knt,

kn = (-l)"+1/4772, n = 0, ±1, ±2, • • • , (127)

fn = * + ^ ( - l ) n + s l ( 4 r / p n + sinh477pn - cosh Ar,pn), (128)

r n = [(-l)"r/(H-cosh27?pn)]/(f + cn) - 1, (129)

q'n = nw + 4cot~1[exp(2r?pn)] + 4 cot"1 Tn. (130)

https://doi.org/10.1017/S0334270000006263 Published online by Cambridge University Press

https://doi.org/10.1017/S0334270000006263


[13] Exact solutions of evolution equations 325

5. Concluding remarks

In this paper, we have considered the construction of exact solutions to the
NEEs of the AKNS class. It has been shown that the implementation of certain
Backlund transformations for a class of nonlinear partial differential equation
requires the solution of the underlying linear differential equation whose coef-
ficients depend on the initial known solution q(x, t) of the nonlinear equation.
We obtain the solution (wave function) of the underlying linear equations by
the method of characteristics. This solution has usually been given only for spe-
cific input solutions qo(x,t), but here our method produces some new explicit
solutions </i (x, t) from a wide class of input solution, including any travelling
wave solution q = qo(x — ki). Employing Backlund transformations involving
explicitly the wave function, new solutions are generated. Some of our results,
when specialised to the case of KdV equation, include those obtained by Fung
et al. [2]. Our approach here is new and enables us to construct new second
and third generations of solutions of these NEEs. One other feature here is
that the parameter r\ of the AKNS system is kept unchanged from generation to
generation.
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