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ON THE GENERALIZED HEAT-EQUATION

by C. NASIM and B. D. AGGARWALA

(Received 18th September 1983)

1. Introduction

The general heat equation is defined as

82u 2vdu a2 _du

8x2 x 8x x2 8t

or

du . 82 2v 8 a2

where v is a fixed positive number and a is a fixed number. If v = a = 0, then (1.1)
reduces to the ordinary heat equation

d2udu

where u(x,t) is regarded as the temperature at a point x at time t, in an infinite
insulated rod extended along the x-axis in the xf-plane. If we set v=j , then (1.1)
becomes

82F 82F 8F

the heat equation in two dimensions, where the solutions are of the type

F(x, y;t) = u{r,i) sin a9,

in polar coordinates; and represents the temperature in a plane sector of angle n/a.
Further, if we put v = l and <x2 = w(n+l), then (1.1), yields the heat equation in three

dimensions

<^F d^F_ 82F_dF

~8xI + ~8yI + lh2~~dt
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262 C. NASIM AND B. D. AGGARWALA

where the solutions are of the form

F(x,y,z;t) = u(r,t)Pn(cos<j))

in spherical coordinates representing the temperature in a cone of angle <f>. Here Pn(z)
are the Legendre polynomials. Consequently, the heat equation (1.1) can be regarded as
representing a general situation for the flow of heat.

The object of this paper is to study the analytic consequences of the general heat
equation. We shall devote our main effort towards establishing some properties of the
source solution and an algorithm for the inversion of the heat transform. The case <x=0
has been dealt with thoroughly in [1].

2. The source solution

Consider the temperature at x = £, as instantaneously enormous at £ = 0+ but levelling
off rapidly. Thus there is a source at x = £; and the temperature function is now defined
as the source solution. To find the source solution u{£,,x,t) of (1.1), we consider the
equation

d2u 2vdu a2 du
(2.1)

where 3 is

then (2.1)

the Dirac

gives,

32u
jdx2

2v du a.2 du

x dx x2 dt

delta function. If

32u

dx2

00

u= \u{x,t)e~s'dt,

2 v d u a 2 _ ,

x dx x2

The solution, then, is

and by the inverse Laplace transform, [2, p. 284],

U = l/(£, x; t) = £,2yG (£, x; t), (2.2)

where
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say, and fi2=(v—i)2 + a2, fi> — 1, t>0. We shall call the function U to be the source
solution of the general heat equation (1.1). And for simplicity we shall say that

U(£,x;t)eH. (2.3)

Next we shall discuss some of the more interesting properties of the source solution and
in particular, the so-called Green's function G(£, x; t). We note that

x; £) = ( J ue--2J,(iu) J,(xu)du,
o

where n> — 1, £>0, [3, p. 51]. As a direct result of the definition of the function
£, x; t), we have the following theorem.

Theorem 2.1. Let U(£, x; t) be as defined above. Then

(i) £/(&*;t)>0, £,
(ii)

(iii)

Theorem 2.2. Let U(£,, x; t) be as defined above. Then

(ii)

where s = o + ix, <J > 0, — oo < T < oo,

(iii) 8

(iv)
3/2( i

+ 2 t '
(2.5)

(2.6)

Proof. Conclusion (i) follows by direct computation. From the definition given in
(2.2) and the asymptotic behaviour Iv(z)~(l/s/2nz)ez, we have

and it follows that
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Also,

ds
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It

_
Is

ds[2t

V + fl

It "\2t

It

thus,

- [{a - i

proving the assertion (iii). To prove the assertion (iv), by direct computation, we have

d_ _1_

hence

<cr 3 ' 2 ( -

as required.

Theorem 2.3. / /0^x<oo ,0^> '<oo and 0<tt<t2, then

(i) I
(ii) J,

where

k = n — v + j and /x> — 1.

Proof. By using the estimates derived in the last theorem, it is easy to show that the
integrals in the assertions (i) and (ii) above exist. Now, by. direct evaluation, [2, p. 197].
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as required. Also, the assertion (ii) can, similarly, be established. Note that assertion (ii)
can be considered as the inversion of the integral equation in (i).

3. The heat transform

If we now consider the source solution U as the kernel, then for a suitable /, its heat
transform F is defined by

] (3.1)

where k = n — v + \, n2={v—|)2 + a2 and n> —1.

Theorem 3.1. Iff(x) is bounded and continuous in 0<x<oo, and has a heat transform
F(x,t), then xkF{x,t)eH, t>0, where k = fi — v+j,n>—l.

Proof. From (3.1) above,

using the estimate (2.4), where A = u.b.f(x), 0<x<oo. Hence the integral defining the
function F exists and is in fact absolutely convergent. Now

Ax[x*F(x,r)] =
b
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proving that xkF(x,t) satisfies the heat equation (1.1), hence xkF(x,i)eH, provided one
can justify interchanging the operators Ax and d/dt with the integral sign. Now, using
(2.6), we have

d_
Hi

for all x > 0 and t>0, and making use of the fact that

hence

giving us the desired justification.

Theorem 3.2. Iff(x) is bounded and lontinuous inO<x<co, then

(i) s*F(s,t) = JS>C/(&s;iK*/(0#, (3.2)

0, — OO<T<OO, and

(ii) skF(s,t) is analytic in the complex half plane Res>0.

Proof.

due to (2.4). Hence the function s*F(s, t) exists and is defined by a uniformly convergent
integral for a > 0 and t > 0. To prove that skF(s, t) is analytic in the complex half plane
<T > 0, we need to show that
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converges uniformly. Now, using (2.5) we have

d_
Us

which converges uniformly for all a > 0 and t > 0 as seen above. Hence the theorem.

Corollary. |s*F(s,t)|£C(ff2 + T2)*-*»e-(<rl+t2)/41. (3.3)

Theorem 3.3. Let F(x, t) be as defined above. Then

x"F(x,t + tl) = ]u(l;,x;tKkF(Z,t1)dZ (3.4)
o

for a fixed t^O.

Proof. It is easy to see that the integral in (3.4) exists. Now,

, x; t) U(y, £ t j

= ] U(y,x;t + t1)/f(y)dy
o

= xkF(x,

making use of the result of Theorem 2.3 and the equation (3.1).
The change of order of integration in the above analysis is justified due to absolute

convergence. This establishes the equation (3.4).

Corollary. Iftl—>0, then (3.4) yields the heat transform (3.1), formally.
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4. The inversion

In this section we shall find the inversion of the integral equation (3.4), and then
deduce the inversion of the heat transform (3.1).

Theorem 4.1. Let F(x, t) be defined as above. If

then

xkF(x, tj = | U{{, ix; t)0YF(»£, t + tjdt, (3.5)

where t, tu v>0, /i> — 1 and k = n — v+\.

Proof. Now from (3.4),

(ix)kF(ix, t + tt) = J U(£, ix; t) t;kF(Z, tjdt;,
o

or simplifying,

If we put x = 2ty, then the above equation gives,

which is the usual form of the Hankel transform, and therefore on inverting gives

Again, let v = Itt,, and simplify to get

Corollary 1. (3.4) can alternatively be written as

K,y;-t)xkF(x,t + t1)dx. (3.6)
o
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Corollary 2. Let tt ->0. Then

HmF(x,t1)=/(x)

and the pair of heat transforms (3.4) and (3.5) reduce to, respectively,

00

(3.7)

and

xkf(x) = J t/(£,ix; t)( 7 ) F(ix, t)d| (3.8)

formally.

5. Operational calculus

By Taylor series expansion, we have

x /•(x.t+tj-x 2. -7 ̂ ~

Since xkF(x,t)eH, that is

Therefore from above,

X*F(X t + t )= Y — (

The heat transform (3.4), can now be written, symbolically as,

e'A'[x'IF(x,t1)]=x*F(x,t + t1), (5.1)

where

https://doi.org/10.1017/S0013091500022392 Published online by Cambridge University Press

https://doi.org/10.1017/S0013091500022392


270 C. NASIM AND B. D. AGGARWALA

Therefore the inversion of (5.1) is then,

x*F(x,t1) = e-'A'[xkF(x,t + t1)], (5.2)

where from (3.6),

J
o

In particular if we let tj-^O, then formally, (5.1) and (5.2) reduce to the pair

e'**[xkf(x)l = xkF{x,t) (5.3)

and

x*/(x) = e-|A-[x*F(x,t)], (5.4)

respectively, giving us a pair of heat transforms in operator form.

Example 1. Let

/(x) = x*-*-»/|1(x).

Then its heat transform is, [4, p. 197],

Now,

e -' *' [xkF(x, t)] = e ~ '** [e'x*

n = 0 "•

But

hence,

(A VTx*~v/ <x)l — x*"v/ (xl « —0 1 2

and

00 / f\n
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where

/(x) = x*-v-k/,(x),

as predicted.

Example 2. Let

F(x,t) = l.

Then

n=0 "!

Now,

:2 x dx x2

= 0,

since k = fi — v + j and /i2 = (v—^)2 + a2. Therefore

and

so that

Thus f{x) = 1 and F(x, t) — l gives us a pair of heat transforms, which can be verified
by evaluating the integrals (3.7) and (3.8).

6. Some special cases

Let a = 0. The general heat equation (1.1) reduces to

d2u 2v du du

6

which has the solution, from (2.3), as

8x2+x dx dt'

https://doi.org/10.1017/S0013091500022392 Published online by Cambridge University Press

https://doi.org/10.1017/S0013091500022392


272 C. NASIM AND B. D. AGGARWALA

The heat transform (3.1), is then

called the Poisson-Hankel transform, and its inversion is given by

cf [4].
If we let a = v = 0, \i= —\ then (1.1) reduces to

82u du

the ordinary heat equation, whose source solution is

nt

Also from (3.7) and (3.8), we have

and

F(x, t)=-=S e-iW«cosh ^ /(fldfc
Jnt o

/(x) = 4=7e(42+x2) /4 'cosh( ^ )F(U)dZ.
Jnt o

Symbolically, the operator

then (5.3) and (5.4) yield

f(x)=e-'D\F{x,t)-]

which gives the Eddington solution of the ordinary heat equation, [5, p. 85].
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Added in proof. The authors now realize that some of the results proved here may be
deduced more simply from results in [1].
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