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Abstract. Let A ⊆ E be an extension of Hopf algebras such that there exists a
normal left A-module coalgebra map π : E → A that splits the inclusion. We shall
describe the set of all coquasitriangular structures on the Hopf algebra E in terms of
the datum (A, E, π ) as follows: first, any such extension E is isomorphic to a unified
product A � H, for some unitary subcoalgebra H of E (A. L. Agore and G. Militaru,
Unified products and split extensions of Hopf algebras, to appear in AMS Contemp.
Math.). Then, as a main theorem, we establish a bijective correspondence between
the set of all coquasitriangular structures on an arbitrary unified product A � H and
a certain set of datum (p, τ, u, v) related to the components of the unified product.
As the main application, we derive necessary and sufficient conditions for Majid’s
infinite-dimensional quantum double Dλ(A, H) = A ��τ H to be a coquasitriangular
Hopf algebra. Several examples are worked out in detail.

2010 Mathematics Subject Classification. 16T10, 16T05, 16S40.

1. Introduction. An important class of Hopf algebras is that of quasitriangular
Hopf algebras or strict quantum groups. They were introduced by Drinfeld in [6]
as a remarkable tool for studying the quantum Yang–Baxter equation R12R13R23 =
R23R13R12. That is, if M is a representation of a quasitriangular Hopf algebra (H, R),
then the canonical map m ⊗ n �→ ∑

R1m ⊗ R2n is a solution for the quantum Yang–
Baxter equation. The dual concept, namely that of a coquasitriangular Hopf algebra
(also called braided Hopf algebras in [7], [8] or [11]) was first introduced by Majid
in [12] and independently by Larson and Towber in [10]. These are Hopf algebras A
endowed with a linear map p : A ⊗ A → k satisfying some compatibility conditions.
There is, of course, a dual result concerning the quantum Yang–Baxter equation: if M is
a co-representation of a coquasitriangular Hopf algebra (A, p), then the canonical map
Rp(m ⊗ n) = p(m<1>, n<1>)m<0> ⊗ n<0> is a solution for the quantum Yang–Baxter
equation. However, what makes the coquasitriangular Hopf algebras so important is
the fact that the converse of the above statement is also true. Namely, by the celebrated
FRT theorem for any solution R of the quantum Yang–Baxter equation, there exists a
quasitriangular bialgebra (A(R), p) such that R = Rp ([4]).

Based on this background, (co)quasitriangular Hopf algebras generated an
explosion of interest and were studied for their implications in quantum groups,
the construction of invariants of knots and 3-manifolds, statistical mechanics and
quantum mechanics, but they also became a subject of research in its own right.
Complete descriptions of the coquasitriangular structures have already been obtained
for several families of Hopf algebras, see, for instance, [3, 7, 8] or [11].
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Among the many research topics related to coquasitriangular Hopf algebras, one is
of particular interest: for a given Hopf algebra H, describe (if any) all coquasitriangular
structures that can be defined on H. We can formulate the more general problem:

Let A ⊆ E be an extension of Hopf algebras. What is the connection between the
coquasitriangular structures of A and those of E?

Obviously, if (E, p) is a coquasitriangular Hopf algebra, then A is also a
coquasitriangular Hopf algebra with the coquasitriangular structure given by the
restriction of p to A ⊗ A. The difficult part of the problem is the converse: if
σ : A ⊗ A → k is a coquasitriangular structure on A, could it be extended to a
coquasitriangular structure on E? In this paper, we give a complete answer to this
problem in the case when the extension A ⊆ E splits in the sense of [2]: i.e. there exists
π : E → A a normal left A-module coalgebra map such that π (a) = a, for all a ∈ A.
It was proved in [2] that an extension A ⊆ E splits in the above sense if and only if E
is isomorphic to a unified product between A and a certain subcoalgebra H of E. The
unified product was introduced in [1] as an answer to the restricted extending structures
problem for Hopf algebras. Unified products characterize Hopf algebras that factorize
through a Hopf subalgebra A and a subcoalgebra H such that 1 ∈ H. As special cases
of the unified product, we recover the double cross product or the crossed product of
Hopf algebras (see Examples 1.1).

An outline of the paper is as follows. In Section 2, we recall the construction and
some basic properties of unified products. In Section 3, the notions of generalized
(p, f )—left/right skew pairing and generalized (u, v) braidings are introduced. The
main result of the paper is Theorem 3.6 where a bijective correspondence between
the set of all coquasitriangular structures σ on the unified product A � H and
the set of all quadruples (p, τ, u, v) satisfying some compatibilities is established.
All coquasitriangular structures on the unified product are explicitly described in
terms of this quadruple (p, τ, u, v). In particular, in Corollary 3.7, necessary and
sufficient conditions for a double cross product A �� H associated to a matched
pair (A, H,�,�) of Hopf algebras to be a coquasitriangular Hopf algebra are
given.

Let λ : H ⊗ A → k be a skew pairing between two Hopf algebras and consider
Dλ(A, H) := A ��λ H to be the generalized quantum double as constructed in ([13,
Example 7.2.6]). As the main application of the results in Theorem 4.1, the set
of all coquasitriangular structures on the generalized quantum double Dλ(A, H) is
completely described. In particular, it is proved that a generalized quantum double
is a coquasitriangular Hopf algebra if and only if both Hopf algebras A and H are
coquasitriangular. Several explicit examples are also provided.

2. Preliminaries. Throughout this paper, k denotes an arbitrary field. Unless
specified otherwise, all algebras, coalgebras, tensor products and homomorphisms
are over k. For a coalgebra C, we use Sweedler’s �-notation: �(c) = c(1) ⊗ c(2), (I ⊗
�)�(c) = c(1) ⊗ c(2) ⊗ c(3), etc., with summation understood. For a k-linear map f :
H ⊗ H → A, we denote f (g, h) = f (g ⊗ h).

Recall from [5] that if A and H are two Hopf algebras and λ : A ⊗ H → k is a
k-linear map which fulfills the compatibilities:

(BR1) λ(xy, z) = λ(x, z(1))λ(y, z(2)),
(BR2) λ(1, z) = ε(z),
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(BR3) λ(x, lz) = λ(x(1), z)λ(x(2), l),
(BR4) λ(y, 1) = ε(y),

for all x, y ∈ A, l, z ∈ H, then λ is called skew pairing on (A, H). Notice that a skew
pairing λ is convolution invertible with λ−1 = λ ◦ (S ⊗ Id). Also, by a straightforward
computation, it can be seen that if λ is a skew pairing on (A, H), then λ ◦ (S ⊗ Id) ◦ ν

is also a skew pairing on (H, A) where ν is the flip map.
Moreover, recall from [10] that a Hopf algebra H is called coquasitriangular or

braided if there exists a linear map p : H ⊗ H → k such that relations (BR1) − (BR4)
are fulfilled and

(BR5) p(x(1), y(1))x(2)y(2) = y(1)x(1)p(x(2), y(2))

holds for all x, y, z ∈ H.

2.1. Unified products. We recall from [1] the construction of the unified product.
An extending datum of a bialgebra A is a system 
(A) = (H, �, �, f ), where H =
(H,�H, εH, 1H, ·) is a k-module such that (H,�H, εH) is a coalgebra, (H, 1H, ·)
is a unitary not necessarily associative k-algebra, the k-linear maps � : H ⊗ A →
H, � : H ⊗ A → A, f : H ⊗ H → A are coalgebra maps such that the following
normalization conditions hold:

h � 1A = εH(h)1A, 1H � a = a, 1H � a = εA(a)1H, h � 1A = h, (1)

�H(1H) = 1H ⊗ 1H, f (h, 1H) = f (1H, h) = εH(h)1A, (2)

for all h ∈ H, a ∈ A.
Let 
(A) = (H, �, �, f ) be an extending datum of A. We denote by A �
(A) H =

A � H the k-module A ⊗ H together with the multiplication:

(a � h) • (c � g) := a(h(1) � c(1))f (h(2) � c(2), g(1)) � (h(3) � c(3)) · g(2), (3)

for all a, c ∈ A and h, g ∈ H, where we denoted a ⊗ h ∈ A ⊗ H by a � h. The object
A � H is called the unified product of A and 
(A) if A � H is a bialgebra with the
multiplication given by (3), the unit 1A � 1H and the coalgebra structure given by the
tensor product of coalgebras, i.e.:

�A�H(a � h) = a(1) � h(1) ⊗ a(2) � h(2), (4)

εA�H(a � h) = εA(a)εH(h), (5)

for all h ∈ H, a ∈ A. We have proved in [1, Theorem 2.4] that A � H is an unified
product if and only if �H : H → H ⊗ H and εH : H → k are k-algebra maps, (H,�)
is a right A-module structure and the following compatibilities hold:

(BE1) (g · h) · l = (g � f (h(1), l(1))) · (h(2) · l(2)),
(BE2) g � (ab) = (g(1) � a(1))[(g(2) � a(2)) � b],
(BE3) (g · h) � a = [g � (h(1) � a(1))] · (h(2) � a(2)),
(BE4) [g(1) � (h(1) � a(1))]f (g(2) � (h(2) � a(2)), h(3) � a(3)) = f (g(1), h(1))[(g(2) · h(2)) � a],
(BE5) (g(1) � f (h(1), l(1)))f (g(2) � f (h(2), l(2)), h(3) · l(3)) = f (g(1), h(1))f (g(2) · h(2), l),
(BE6) g(1) � a(1) ⊗ g(2) � a(2) = g(2) � a(2) ⊗ g(1) � a(1),

(BE7) g(1) · h(1) ⊗ f (g(2), h(2)) = g(2) · h(2) ⊗ f (g(1), h(1)),
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for all g, h, l ∈ H and a, b ∈ A. In this case, 
(A) = (H, �, �, f ) is called a bialgebra
extending structure of A. A bialgebra extending structure 
(A) = (H, �, �, f ) is called a
Hopf algebra extending structure of A if A � H has an antipode. If A is a Hopf algebra
with an antipode SA and H has an antipode SH , then the unified product A � H has
an antipode given by

S(a � g) := (SA[f (SH(g(2)), g(3))] � SH(g(1))) • (SA(a) � 1H),

for all a ∈ A and g ∈ H ([1, Proposition 2.8]).
In [2], it was proved that a Hopf algebra E is isomorphic to a unified product

A � H if and only if there exists a morphism of Hopf algebras i : A → E, which has
a retraction π : E → A that is a normal ([2, Definition 2.1]) left A-module coalgebra
morphism.

EXAMPLE 2.1. (1) Let A be a bialgebra and 
(A) = (H, �, �, f ) an extending datum
of A such that the cocycle f is trivial, that is f (g, h) = εH(g)εH(h)1A, for all g, h ∈ H.

Then 
(A) = (H, �, �, f ) is a bialgebra extending structure of A if and only if
H is a bialgebra and (A, H, �, �) is a matched pair of bialgebras in the sense of
[13, Definition 7.2.1]. In this case, the associated unified product A � H = A �� H is
the double cross product of bialgebras in Majid’s terminology (also called bicrossed
product of bialgebras in [9]). Perhaps, the most famous example of a double cross
product is the generalized quantum double (see Section 4 below). If H is a finite-
dimensional Hopf algebra, then the generalized quantum double coincides with the
celebrated quantum double D(H) = H∗op �� H which is a double cross product by the
mutual coadjoint actions:

h � α = α(2)〈h, S(α(1))α(3)〉, h � α = h(2)〈α, S(h(1))h(3)〉,

for all h ∈ H and α ∈ H∗.
(2) Let A be a bialgebra and 
(A) = (H, �, �, f ) an extending datum of A such

that the action � is trivial, that is h � a = εA(a)h, for all h ∈ H and a ∈ A. In this case,
the associated unified product A � H = A#�

f H is called the crossed product of Hopf
algebras. For more details on crossed products of Hopf algebras, we refer to [3].

3. Coquasitriangular structures on the unified products. In this section, we
describe the coquasitriangular or braided structures on the unified product. In other
words, we determine all braided structures that can be defined on the monoidal
category of A � H comodules. First, we introduce some new definitions as natural
generalizations for the concepts of braiding and skew pairing.

DEFINITION 3.1. Let A be a Hopf algebra, H = (H,�H, εH, 1H, ·) a k-module
such that (H,�H, εH) is a coalgebra, (H, 1H, ·) is a unitary not necessarily associative
k-algebra, f : H ⊗ H → A a coalgebra map and p : A ⊗ A → k a braiding on A. A
linear map u : A ⊗ H → k is called generalized (p,f) right skew pairing on (A, H) if the
following compatibilities are fulfilled for any a, b ∈ A, g, t ∈ H:

(RS1) u(ab, t) = u(a, t(1))u(b, t(2)),
(RS2) u(1, h) = ε(h),
(RS3) u(a(1), g(2) · t(2))p(a(2), f (g(1), t(1))) = u(a(1), t)u(a(2), g),
(RS4) u(a, 1) = ε(a).
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DEFINITION 3.2. Let A be a Hopf algebra, H = (H,�H, εH, 1H, ·) a k-module
such that (H,�H, εH) is a coalgebra, (H, 1H , ·) is a unitary not necessarily associative
k-algebra, f : H ⊗ H → A a coalgebra map and p : A ⊗ A → k a braiding on A. A
linear map v : H ⊗ A → k is called generalized (p,f) left skew pairing on (H, A) if the
following compatibilities are fulfilled for any b, c ∈ A, h, g ∈ H:

(LS1) p(f (h(1), g(1)), c(1))v(h(2) · g(2), c(2)) = v(h, c(1))v(g, c(2)),
(LS2) v(h, 1) = ε(h),
(LS3) v(h, bc) = v(h(1), c)v(h(2), b),
(LS4) v(1, a) = ε(a).

REMARK 3.3. If H is a bialgebra and f = ε ⊗ ε is the trivial cocycle, then the notion
of generalized (p,f ) left/right skew pairing on (A, H) coincides with the notion of skew
pairing on (A, H).

DEFINITION 3.4. Let A be a Hopf algebra, H = (H,�H, εH, 1H, ·) a k-module
such that (H,�H, εH) is a coalgebra, (H, 1H , ·) is a unitary not necessarily associative
k-algebra, f : H ⊗ H → A a coalgebra map and p : A ⊗ A → k a braiding on A, u :
A ⊗ H → k a generalized (p, f ) right skew pairing and v : H ⊗ A → k a generalized
(p, f ) left skew pairing. A linear map τ : H ⊗ H → k is called a generalized (u, v) skew
braiding on H if the following compatibilities are fulfilled for all h, g, t ∈ H:

(SBR1) u(f (h(1), g(1)), t(1))τ (h(2) · g(2), t(2)) = τ (h, t(1))τ (g, t(2)),
(SBR2) τ (1, g) = ε(g),
(SBR3) τ (h(1), g(2) · t(2))v(h(2), f (g(1), t(1))) = τ (h(1), t)τ (h(2), g),
(SBR4) τ (g, 1) = ε(g),
(SBR5) τ (h(1), g(1))h(2) · g(2) = g(1) · h(1)τ (h(2), g(2)).

REMARK 3.5. If H is a bialgebra and f = ε ⊗ ε is the trivial cocycle, then the notion
of generalized (u, v) skew braiding on H coincides with the notion of coquasitriangular
structure (or braiding) on H.

THEOREM 3.6. Let A be a Hopf algebra and 
(A) = (H, �, �, f ) a Hopf algebra
extending structure of A. There is a bijective correspondence between:

(i) The set of all coquasitriangular structures σ on the unified product A � H.
(ii) The set of all quadruples (p, τ, u, v) where p : A ⊗ A → k, τ : H ⊗ H → k,

u : A ⊗ H → k, v : H ⊗ A → k are linear maps such that (A, p) is a coquasitriangular
Hopf algebra, u is a generalized (p, f ) right skew pairing, v is a generalized (p, f ) left skew
pairing, (H, τ ) is a generalized (u, v) skew braiding and the following compatibilities are
fulfilled:

v(h(1), b(1))(h(2) � b(2)) ⊗ (h(3) � b(3)) = b(1) ⊗ h(1)v(h(2), b(2)), (6)

(g(1) � a(1)) ⊗ (g(2) � a(2))u(a(3), g(3)) = u(a(1), g(1))a(2) ⊗ g(2), (7)

τ (h(1), g(1))f (h(2), g(2)) = f (g(1), h(1))τ (h(2), g(2)), (8)

u(a(1), g(2) � c(2))p(a(2), g(1) � c(1)) = p(a(1), c)u(a(2), g), (9)

τ (h(1), g(2) � c(2))v(h(2), g(1) � c(1)) = v(h(1), c)τ (h(2), g), (10)

p(h(1) � b(1), c(1))v(h(2) � b(2), c(2)) = v(h, c(1))p(b, c(2)), (11)

u(h(1) � b(1), t(1))τ (h(2) � b(2), t(2)) = τ (h, t(1))u(b, t(2)). (12)
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Under the above bijection, the coquasitriangular structure σ : (A � H) ⊗ (A � H) → k
corresponding to (p, τ, u, v) is given by

σ (a � h, b � g) = u(a(1), g(1))p(a(2), b(1))τ (h(1), g(2))v(h(2), b(2)), (13)

for all a, b, c ∈ A and h, g, t ∈ H.

Proof. Suppose first that (A � H, σ ) is a coquasitriangular Hopf algebra. We define
the following linear maps:

p : A ⊗ A → k, p(a, b) = σ (a ⊗ 1, b ⊗ 1),

τ : H ⊗ H → k, τ (h, g) = σ (1 ⊗ h, 1 ⊗ g),

u : A ⊗ H → k, u(a, h) = σ (a ⊗ 1, 1 ⊗ h),

v : H ⊗ A → k, v(h, a) = σ (1 ⊗ h, a ⊗ 1).

Before going into the proof, we collect here some compatibilities satisfied by the
maps defined above which will be useful in the sequel. The following are just easy
consequences of the fact that σ is a coquasitriangular structure on A � H, and hence,
it satisfies the normalizing relations (BR2) and (BR4):

p(1, b) = ε(b) = p(b, 1), (14)

τ (1, h) = ε(h) = τ (h, 1), (15)

u(1, h) = ε(h), u(a, 1) = ε(a), (16)

v(1, a) = ε(a), v(h, 1) = ε(h). (17)

Remark that from relation (15), it follows that τ fulfills (SBR2) and (SBR4), while
from relation (17), we can derive that v fulfills (LS2) and (LS4).

First, we prove that relation (13) indeed holds:

σ (a#h, b#g) = σ ((a#1)(1#h), (b#1)(1#g)) =
(BR1)= σ (a#1, (b(1)#1)(1#g(1)))σ ((1#h), (b(2)#1)(1#g(2))),
(BR3)= σ (a(1)#1, 1#g(1))σ (a(2)#1, b(1)#1)σ (1#h(1), 1#g(2))σ (1#h(2), b(2)#1)

= u(a(1), g(1))p(a(2), b(1))τ (h(1), g(2))v(h(2), b(2)).

Next, we prove that (A, p) is a coquasitriangular Hopf algebra, u is a generalized
(p, f ) right skew pairing on (H, A), v is a generalized (p, f ) left skew pairing on (A, H)
and τ is a generalized (u, v) skew braiding on H. Having in mind that (A � H, σ )
is a coquasitriangular Hopf algebra, it is straightforward to see that (A, p) is a
coquasitriangular Hopf algebra by considering x = a#1, y = b#1 and z = c#1 in
(BR1)–(BR5).
Since σ satisfies (BR1), then for all a, b, c ∈ A and h, g, t ∈ H, we have

σ (a(g(1) � b(1))f (h(2) � b(2), h(1))#(g(3) � b(3)) · h(2), c#t)

= σ (a ⊗ g, c(1) ⊗ t(1))σ (b ⊗ h, c(2) ⊗ t(2)). (18)

Moreover, since σ also fulfills (BR3), we have

σ (a#h, b(g(1) � c(1))f (g(2) � c(2), t(1))#(g(3) � c(3)) · t(2))

= σ (a(1) ⊗ h(1), c ⊗ t)σ (a(2) ⊗ h(2), b ⊗ g). (19)
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Furthermore, by (BR5), we have

σ (a(1) ⊗ h(1), b(1) ⊗ g(1))a(2)(h(2) � b(2))f (h(3) � b(3), g(2)) ⊗ (h(4) � b(4)) · g(3)

= b(1)(g(1) � a(1))f (g(2) � a(2), h(1)) ⊗ (g(3) � a(3)) · h(2)σ (a(4) ⊗ h(3), b(2) ⊗ g(4)). (20)

By considering h = g = 1 and c = 1 in (18), we get relation (RS1). If we let b = c = 1
and h = 1 in (19), it yields:

u(a(1), g(3) · t(3))p(a(2), f (g(1), t(1)))τ (1, g(4)t(4))v(1, f (g(2), t(2))) = u(a(1), t)u(a(2), g).

Now using relations (15) and (17), we get (RS3). Hence, we proved that u is a generalized
(p, f ) right skew pairing on (H, A). Considering a = b = 1 and t = 1 in (18) yields:

u(f (h(1), g(1)), 1)p(f (h(2), g(2)), c(1))τ (h(3) · g(3), 1)v(h(4) · g(4), c(2)) = v(h, c(1))v(g, c(2)).

Using (15) and (16), we get that (LS1) holds for v. Moreover, from (19) applied to
g = t = 1 and a = 1, we get that (LS3) also holds for v and we proved that v is indeed
a generalized (p, f ) left skew pairing on (A, H). Next, we apply (18) for a = b = c = 1:

u(f (h(1), g(1)), t(1))p(f (h(2), g(2)), 1)τ (h(3) · g(3), t(2))v(h(4) · g(4), 1) = τ (h, t(1))τ (g, t(2)).

Using (14) and (17), we obtain (SBR1). Now equation (19) applied for a = b = c = 1
yields:

u(1, g(3) · t(3))p(1, f (g(1), t(1)))v(h(2), f (g(2), t(2)))τ (h(1), g(4) · t(4)) = τ (h(1), t)τ (h(2), g).

From (14) and (16), we obtain that (SBR3) holds for τ . Considering a = b = 1 in (20),
we get

τ (h(1), g(1))f (h(2), g(2))#h(3) · g(3) = f (g(1), h(1))#g(2) · h(2)τ (h(3), g(3)).

Having in mind that f is a coalgebra map, we obatin, by applying ε ⊗ Id, that (SBR5)
holds for τ , and therefore τ is a generalized (u, v) skew braiding.

We still need to prove that the compatibilities (6)–(12) hold. Compatibilities (6)
and (7) are obtained from (20) by considering: a = 1 and g = 1, respectively, b = 1 and
h = 1, while (8) can be derived from (20) by considering a = b = 1 and then applying
Id ⊗ ε. The next two compatibilities, (9) and (10), can be obtained by considering
h = t = 1 and b = 1, respectively, a = b = 1 and t = 1 in (19). To this end, relations
(11) and (12) can be derived from (18) by considering g = t = 1 and a = 1, respectively,
a = c = 1 and g = 1.

Assume now that (A, p) is a coquasitriangular Hopf algebra, u is a generalized
(p, f ) right skew pairing, v is a generalized (p, f ) left skew pairing, τ is a generalized
(u, v) skew braiding and σ is given by (13) such that compatibilities (6)–(12) are fulfilled.
Then, using relations (RS2), (SBR2), (LS2) and the fact that p is a coquasitriangular
structure, we can prove that for all a ∈ A, h ∈ H, we have

σ (1#1, a#h) = u(1, h(1))p(1, a(1))τ (1, h(2))v(1, a(2))

= ε(a)ε(h)

= ε(a#h).

https://doi.org/10.1017/S0017089512000444 Published online by Cambridge University Press

https://doi.org/10.1017/S0017089512000444


208 A. L. AGORE

Moreover, using relations (RS4), (SBR4), (LS4) and again the fact that p is a
coquasitriangular structure, we also have

σ (a#h, 1#1) = u(a(1), 1)p(a(2), 1)τ (h(1), 1)v(h(2), 1)

= ε(a)ε(h)

= ε(a#h),

for all a ∈ A, h ∈ H. Hence, σ also fulfills (BR4).
To prove that σ satisfies (BR1), we start by first computing the left-hand side.

Thus, for all a, b, c ∈ A and h, g, t ∈ H, we have

LHS = u(a(1)(g(1) � b(1))f (g(3) � b(3), h(1)), t(1))v((g(6) � b(6)) · h(4), c(2))

p(a(2)(g(2) � b(2))f (g(4) � b(4), h(2)), c(1))τ ((g(5) � b(5)) · h(3), t(2))
(RS1)= u(a(1), t(1))u(g(1) � b(1), t(2))u(f (g(3) � b(3), h(1)), t(3))v((g(6) � b(6)) · h(4), c(4))

p(a(2), c(1))p(f (g(4) � b(4), h(2)), c(3))τ ((g(5) � b(5)) · h(3), t(4))p(g(2) � b(2), c(2))

(BE7)= u(a(1), t(1))u(g(1) � b(1), t(2))u(f (g(3) � b(3), h(1)), t(3))v((g(6) � b(6)) · h(4), c(4))

p(a(2), c(1))p(f (g(5) � b(5), h(3)), c(3))τ ((g(4) � b(4)) · h(2), t(4))p(g(2) � b(2), c(2))

(LS1)= u(a(1), t(1))u(g(1) � b(1), t(2))u(f (g(3) � b(3), h(1)), t(3))p(a(2), c(1))

p(g(2) � b(2), c(2))τ ((g(4) � b(4)) · h(2), t(4))v(g(5) � b(5), c(3))v(h(3), c(4))

(SBR1)= u(a(1), t(1))u(g(1) � b(1), t(2))p(a(2), c(1))p(g(2) � b(2), c(2))

τ (g(3) � b(3), t(3))τ (h(1), t(4))v(g(4) � b(4), c(3))v(h(2), c(4))
(BE6)= u(a(1), t(1))u(g(1) � b(1), t(2))p(a(2), c(1))p(g(3) � b(3), c(2))

τ (g(2) � b(2), t(3))τ (h(1), t(4))v(g(4) � b(4), c(3))v(h(2), c(4))

(11)= u(a(1), t(1))u(g(1) � b(1), t(2))p(a(2), c(1))τ (g(2) � b(2), t(3))τ (h(1), t(4))

v(g(3), c(2))p(b(3), c(3))v(h(2), c(4))
(12)= u(a(1), t(1))p(a(2), c(1))τ (g(1), t(2))u(b(1), t(3))τ (h(1), t(4))

v(g(2), c(2))p(b(2), c(3))v(h(2), c(4))

= RHS,

where in the second equality, we also used the fact that p is a coquasitriangular structure.
To prove (BR3) we start again by computing the left-hand side. Thus, for all a, b, c ∈ A
and h, g, t ∈ H, we have

LHS = u((a(1), (g(5) � c(5)) · t(3))p(a(2), b(1)(g(1) � c(1))f (g(3) � c(3), t(1)))

τ (h(1), (g(6) � c(6)) · t(4))v(h(2), b(2)(g(2) � c(2))f (g(4) � c(4), t(2)))

(RS3)= u(a(1), (g(5) � c(5)) · t(3))p(a(2), f (g(3) � c(3), t(1)))p(a(3), g(1) � c(1))p(a(4), b(1))

τ (h(1), (g(6) � c(6)) · t(4))v(h(2), f (g(4) � c(4), t(2)))v(h(3), g(2) � c(2))v(h(4), b(2))

(BE7)= u(a(1), (g(4) � c(4)) · t(2))p(a(2), f (g(3) � c(3), t(1)))p(a(3), g(1) � c(1))p(a(4), b(1))

τ (h(1), (g(6) � c(6)) · t(4))v(h(2), f (g(5) � c(5), t(3)))v(h(3), g(2) � c(2))v(h(4), b(2))
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(SBR3)= u(a(1), (g(4) � c(4)) · t(2))p(a(2), f (g(3) � c(3), t(1)))p(a(3), g(1) � c(1))p(a(4), b(1))

τ (h(1), t(3))τ (h(2), g(5) � c(5))v(h(3), g(2) � c(2))v(h(4), b(2))
(RS3)= u(a(1), t(1))u(a(2), g(3) � c(3))p(a(3), g(1) � c(1))p(a(4), b(1))τ (h(1), t(2))

τ (h(2), g(4) � c(4))v(h(3), g(2) � c(2))v(h(4), b(2))

(BE6)= u(a(1), t(1))u(a(2), g(2) � c(2))p(a(3), g(1) � c(1))p(a(4), b(1))τ (h(1), t(2))

τ (h(2), g(4) � c(4))v(h(3), g(3) � c(3))v(h(4), b(2))
(9)= u(a(1), t(1))p(a(2), c(1))u(a(3), g(1))p(a(4), b(1))τ (h(1), t(2))

τ (h(2), g(3) � c(3))v(h(3), g(2) � c(2))v(h(4), b(2))

(10)= u(a(1), t(1))p(a(2), c(1))u(a(3), g(1))p(a(4), b(1))τ (h(1), t(2))

v(h(2), c(2))τ (h(3), g(2))v(h(4), b(2))

= RHS.

Note that in the second equality, we used the fact that p is a coquasitriangular structure.
In order to show that σ also fulfills (BR5), we need the following compatibilities that
can be easily derived from (6) and (7) by applying ε ⊗ Id:

v(h(1), b(1))(h(2) � b(2)) = h(1)v(h(2), b), (21)

(g(1) � a(1))u(a(2), g(2)) = u(a, g(1))g(2). (22)

Computing the left-hand side of (BR5), we obtain

LHS = u(a(1), g(1))p(a(2), b(1))τ (h(1), g(2))v(h(2), b(2))a(3)(h(3) � b(3))

f (h(4) � b(4), g(3))#(h(5) � b(5)) · g(4)

(BE7)= u(a(1), g(1))p(a(2), b(1))τ (h(1), g(2))v(h(2), b(2))a(3)(h(3) � b(3))

f (h(5) � b(5), g(4))#(h(4) � b(4)) · g(3)

(6)= u(a(1), g(1))p(a(2), b(1))τ (h(1), g(2))a(3)b(2)f (h(4) � b(4), g(4))#

h(2) · g(3)v(h(3), b(3))

= u(a(1), g(1))τ (h(1), g(2))b(1)a(2)p(a(3), b(2))f (h(4) � b(4), g(4))#

h(2) · g(3)v(h(3), b(3))

(SBR5)= u(a(1), g(1))b(1)a(2)p(a(3), b(2))f (h(4) � b(4), g(4))#(g(2) · h(1))

τ (h(2), g(3))v(h(3), b(3))
(7)= b(1)(g(1) � a(1))p(a(4), b(2))f (h(4) � b(4), g(5))#(g(2) � a(2)) · h(1)

u(a(3), g(3))τ (h(2), g(4))v(h(3), b(3))

(22)= b(1)(g(1) � a(1))p(a(3), b(2))f (h(4) � b(4), g(5))#(g(3) · h(1))u(a(2), g(2))

τ (h(2), g(4))v(h(3), b(3))
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(21)= b(1)(g(1) � a(1))p(a(3), b(2))f (h(3), g(5))#(g(3) · h(1))u(a(2), g(2))

τ (h(2), g(4))v(h(4), b(3))

(8)= b(1)(g(1) � a(1))p(a(3), b(2))v(h(4), b(3))τ (h(3), g(5))f (g(4), h(2))#

(g(3) · h(1))u(a(2), g(2))

(BE7)= b(1)(g(1) � a(1))p(a(3), b(2))v(h(4), b(3))τ (h(3), g(5))f (g(3), h(1))#

(g(4) · h(2))u(a(2), g(2))

(22)= b(1)(g(1) � a(1))p(a(4), b(2))v(h(4), b(3))τ (h(3), g(5))f (g(2) � a(2), h(1))#

(g(4) · h(2))u(a(3), g(3))

(22)= b(1)(g(1) � a(1))p(a(5), b(2))v(h(4), b(3))τ (h(3), g(5))f (g(2) � a(2), h(1))#

((g(3) � a(3)) · h(2))u(a(4), g(4)

= RHS.

In the forth equality, we used the fact that p is a coquasitriangular structure. Thus,
(BR5) holds for σ and this ends the proof. �

The following result that characterizes the coquasitriangular structures on a double
cross product can be obtained from Theorem 3.6 by considering f = ε ⊗ ε to be
the trivial cocycle.

COROLLARY 3.7. Let A �� H be a double cross product of Hopf algebras. There is a
bijective correspondence between:

(i) The set of all coquasitriangular structures σ on the double cross product A �� H.
(ii) The set of all quadruples (p, τ, u, v), where p : A ⊗ A → k, τ : H ⊗ H → k,

u : A ⊗ H → k and v : H ⊗ A → k are linear maps such that (A, p) and (H, τ ) are
coquasitriangular Hopf algebras, u and v are skew pairings on (A, H), respectively, on
(H, A) and the following compatibilities are fulfilled:

v(h(1), b(1))(h(2) � b(2)) ⊗ (h(3) � b(3)) = b(1) ⊗ h(1)v(h(2), b(2)),

(g(1) � a(1)) ⊗ (g(2) � a(2))u(a(3), g(3)) = u(a(1), g(1))a(2) ⊗ g(2),

u(a(1), g(2) � c(2))p(a(2), g(1) � c(1)) = p(a(1), c)u(a(2), g),

τ (h(1), g(2) � c(2))v(h(2), g(1) � c(1)) = v(h(1), c)τ (h(2), g),

p(h(1) � b(1), c(1))v(h(2) � b(2), c(2)) = v(h, c(1))p(b, c(2)),

u(h(1) � b(1), t(1))τ (h(2) � b(2), t(2)) = τ (h, t(1))u(b, t(2)).

Under the above bijection, the coquasitriangular structure σ : (A �� H) ⊗ (A �� H) → k
corresponding to (p, τ, u, v) is given by

σ (a � h, b � g) = u(a(1), g(1))p(a(2), b(1))τ (h(1), g(2))v(h(2), b(2)), (23)

for all a, b, c ∈ A and h, g, t ∈ H.

4. Applications: Coquasitriangular structures on generalized quantum doubles. Let
A and H be two Hopf algebras and λ : H ⊗ A → k be a skew pairing. Then (A, H) is
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a matched pair of Hopf algebras with the following two actions:

h � a = h(2)λ
−1(h(1), a(1))λ(h(3), a(2)),

h � a = a(2)λ
−1(h(1), a(1))λ(h(2), a(3)).

The corresponding double cross product is called the generalized quantum double and
it will be denoted by A ��λ H ([13, Example 7.2.6]). As a special case of Corollary 3.7,
we get

THEOREM 4.1. Let A and H be two Hopf algebras and λ : H ⊗ A → k be a skew
pairing. There is a bijective correspondence between:

(i) The set of all coquasitriangular structures σ on the generalized quantum double
A ��λ H.

(ii) The set of all quadruples (p, τ, u, v), where p : A ⊗ A → k, τ : H ⊗ H → k,
u : A ⊗ H → k and v : H ⊗ A → k are linear maps such that (A, p) and (H, τ ) are
coquasitriangular Hopf algebras, u and v are skew pairings on (A, H), respectively, on
(H, A) and the following compatibilities are fulfilled:

v(h(1), b(1))b(3) ⊗ λ−1(h(2), b(2))λ(h(4), b(4))h(3) = b(1) ⊗ h(1)v(h(2), b(2)), (24)

a(2)λ
−1(g(1), a(1))λ(g(3), a(3)) ⊗ g(2)u(a(4), g(4)) = u(a(1), g(1))a(2) ⊗ g(2), (25)

u(a(1), g(2))λ(g(3), c(3))p(a(2), c(2))λ−1(g(1), c(1)) = p(a(1), c)u(a(2), g), (26)

τ (h(1), g(2))λ(g(3), c(3))v(h(2), c(2))λ−1(g(1), c(1)) = v(h(1), c)τ (h(2), g), (27)

p(b(2), c(1))λ−1(h(1), b(1))v(h(2), c(2))λ(h(3), b(3)) = p(b, c(2))λ(h, c(1)), (28)

u(b(2), t(1))λ−1(h(1), b(1))τ (h(2), t(2))λ(h(3), b(3)) = τ (h, t(1))u(b, t(2)). (29)

Under this correspondence, the coquasitriangular structure σ : (A ��λ H) ⊗ (A ��λ

H) → k corresponding to (p, τ, u, v) is given by

σ (a ⊗ h, b ⊗ g) = u(a(1), g(1))p(a(2), b(1))τ (h(1), g(2))v(h(2), b(2)), (30)

for all a, b, c ∈ A and h, g, t ∈ H.

THEOREM 4.2. Let (A, p) and (H, τ ) be two coquasitriangular Hopf algebras and
λ : H ⊗ A → k be a skew pairing. Then the generalized quantum double A ��λ H is a
coquasitriangular Hopf algebra with the coquasitriangular structure given by

σ (a �� h, b �� g) = λ(S(g(1), a(1)))p(a(2), b(1))τ (h(1), g(2))λ(h(2), b(2)). (31)

Proof. We make use of Theorem 4.1: take v := λ and u := λ−1 ◦ ν, where ν is the
flip map. We need to prove that relations (24)–(29) are fulfilled. We have

LHS(24) = b(3) ⊗ λ(h(1), b(1))λ(S(h(2)), b(2))λ(h(4), b(4))h(3)

= b(1) ⊗ h(1)λ(h(2), b(2)) = RHS(24),

LHS(25) = a(2)λ(S(g(1)), a(1))λ(g(3), a(3))λ(S(g(4)), a(4)) ⊗ g(2)

= a(2)λ(S(g(1)), a(1)) ⊗ g(2) = RHS(25),
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LHS(26) = λ(S(g(2)), a(1))λ(g(3), c(3))p(a(2), c(2))λ(S(g(1)), c(1))

= λ(S(g(1)), c(1)a(1))p(a(2), c(2))λ(g(2), c(3))

= λ(S(g(1)), a(2)c(2))p(a(1), c(1))λ(g(2), c(3))

= λ(S(g(2)), c(2))λ(S(g(1)), a(2))p(a(1), c(1))λ(g(3), c(3))

= λ(S(g(2))g(3), c(2))λ(S(g(1)), a(2))p(a(1), c(1))

= λ(S(g), a(2))p(a(1), c) = RHS(26),

LHS(27) = τ (h(1), g(2))λ(g(3), c(3))λ(h(2), c(2))λ(S(g(1)), c(1))

= τ (h(1), g(2))λ(h(2)g(3), c(2))λ(S(g(1)), c(1))

= τ (h(2), g(3))λ(g(2)h(1), c(2))λ(S(g(1)), c(1))

= τ (h(2), g(3))λ(g(2), c(2))λ(h(1), c(3))λ(S(g(1)), c(1))

= τ (h(2), g)λ(h(1), c) = RHS(28),

LHS(28) = p(b(2), c(1))λ(S(h(1)), b(1))λ(h(2), c(2))λ(h(3), b(3))

= p(b(2), c(1))λ(S(h(1)), b(1))λ(h(2), b(3)c(2))

= p(b(3), c(2))λ(S(h(1)), b(1))λ(h(2), c(1)b(2))

= p(b(3), c(2))λ(S(h(1)), b(1))λ(h(2), b(2))λ(h(3), c(1))

= p(b, c(2))λ(h, c(1)) = RHS(28),

LHS(29) = λ(S(t(1)), b(2))λ(S(h(1)), b(1))τ (h(2), t(2))λ(h(3), b(3))

= λ(S(t(1)h(1)), b(1))τ (h(2), t(2))λ(h(3), b(2))

= λ(S(t(2))S(h(2)), b(1))τ (h(1), t(1))λ(h(3), b(2))

= λ(S(t(2)), b(1))λ(S(h(2)), b(2))τ (h(1), t(1))λ(h(3), b(3))

= τ (h, t(1))λ(S(t(2)), b) = RHS(29).
�

As a consequence, we derive the necessary and sufficient conditions for the
generalized quantum double to be a coquasitriangular Hopf algebra.

COROLLARY 4.3. Let A and H be two Hopf algebras and τ : H ⊗ A → k be a
skew pairing. Then the generalized quantum double A ��τ H is a coquasitriangular Hopf
algebra if and only if both Hopf algebras A and H are coquasitriangular.

Also, as a special case of Theorem 4.2, we recover Majid’s result [13, Proposition
7.3.1].

COROLLARY 4.4. Let (A, p) be a coquasitriangular Hopf algebra. Then the generalized
quantum double A ��p A has a coquasitriangular structure given by

σ (a ⊗ b, c ⊗ d) = p(S(d(1)), a(1))p(a(2), c(1))p(b(1), d(2))p(b(2), c(2)).

Proof. Consider A = H and σ = τ := p in Theorem 4.2. �
EXAMPLE 4.5. (1) Consider the group algebra k� with the obvious Hopf algebra

structure and let g be a generator of � in multiplicative notation. We have a
coquasitriangular structure p : k� ⊗ k� → k given by: p(gt, gl) = qtl.
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Now consider the polynomial algebra k[X ] with the coalgebra structure and the
antipode given by

�(Xn) =
n∑

k=0

(
n
k

)
Xk ⊗ Xn−k, ε(Xn) = 0, S(Xn) = (−1)nXn, for all n > 0.

Any element, α ∈ k, induces a coquasitriangular structure τ on k[X ] as follows:

τ (Xi, Xj) =
{

0, if i �= j,
i!αi, if i = j.

Moreover, there is a skew pairing λ between the two Hopf algebras k[X ] and k� given
by

λ(Xm, gt) = tm,

with the convention that t0 = 1 even if t = 0. Thus, by applying Theorem 4.2, we obtain
a coquasitriangular structure σ on the generalized quantum double k� ��λ k[X ]:

σ (gt ⊗ Xn, gl ⊗ Xm) =
r+k=m∑

k∈0,m,r∈0,n

(−1)k
(

m
k

)(
n
r

)
tkqtlln−rr!αr.

(2) Let k be a field with chark �= 2 and H4 be Sweedler’s Hopf algebra. That is, H4

is generated as an algebra by elements g and x subject to relations:

g2 = 1, x2 = 0, xg = −gx.

The coalgebra structure and the antipode are given by

�(g) = g ⊗ g, �(x) = x ⊗ g + 1 ⊗ x, ε(g) = 1, ε(x) = 0,

S(g) = g, S(x) = gx.

For any α ∈ k, the map pα : H4 ⊗ H4 → k is a coquasitriangular structure on H4,
where pα is defined as

pα 1 g x gx
1 1 1 0 0
g 1 −1 0 0
x 0 0 α α

gx 0 0 α α

Let α, β, γ ∈ k and consider pα, pβ , pγ the corresponding coquasitriangular structures
on H4. Since any coquasitriangular structure is in particular a skew pairing, we can
construct the generalized quantum double H4 ��pγ

H4. In view of Theorem 4.2, there
is a coquasitriangular structure on H4 ��pγ

H4 given by:

σ (a ⊗ h, b ⊗ g) = pγ (S(g(1)), a(1))pα(a(2), b(1))pβ(h(1), g(2))pγ (h(2), b(2)).
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(3) Let k be a field with char(k) �= 2 and consider the k-algebra Ũ(n) defined by
generators {c, x1, . . . , xn, y1, . . . , yn} and relations:

c2 = 1, x2
i = y2

i = 0, cxi + xic = 0, cyi + yic = 0,

xixj + xjxi = 0, yiyj + yjyi = 0, xiyj = yjxi, 1 ≤ i ≤ n.

Ũ(n) has a Hopf algebra structure given by

�(c) = c ⊗ c, �(xi) = 1 ⊗ xi + xi ⊗ c, �(yi) = c ⊗ yi + yi ⊗ 1,

ε(c) = 1, ε(xi) = ε(yi) = 0, S(c) = c, S(xi) = cxi, S(yi) = yic, 1 ≤ i ≤ n.

Ũ(n) is a quotient of the Hopf algebra U(n) introduced by Takeuchi in [14]. Now
consider B̃− and B̃+ to be the Hopf subalgebras of Ũ(n) generated by {c, y1, . . . , yn},
respectively, {c, x1, . . . , xn}. These are the so-called Borel subalgebras. B̃− and B̃+ are
coquasitriangular Hopf algebras with

τ : B̃− ⊗ B̃− → k, τ (c, c) = −1, τ (c, yi) = τ (yj, c) = 0,

τ (yi, yj) = αij, 1 ≤ i, j ≤ n,

p : B̃+ ⊗ B̃+ → k, p(c, c) = −1, p(c, xi) = p(xj, c) = 0,

p(xi, xj) = βij, 1 ≤ i, j ≤ n.

Moreover, there is a skew pairing λ : B̃− ⊗ B̃+ → k given by

λ(c, c) = −1, λ(c, xj) = λ(yi, c) = 0, λ(yi, xj) = δij, 1 ≤ i, j ≤ n,

where δi,j is the Kronecker delta. Therefore, using Theorem 4.2, the generalized
quantum double B̃+ ��τ B̃− is a coquasitriangular Hopf algebra with the
coquasitriangular structure σ : (B̃+ ��τ B̃−) ⊗ (B̃+ ��τ B̃−) → k given by

σ c �� cc �� yixj �� c xk �� yl

c �� c 1 0 0 0
c �� ys 0 αsi δsj 0
xm �� c 0 −δmj βmj 0
xn �� yr 0 0 0 αrlβnk − δrkδln
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