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ABSTRACT. This paper is the second (Paper II) in a set of studies concerning the errors involved in the
estimate of ice thickness and ice volume. Here we present a detailed analysis of the errors involved in the
generation of ice-thickness DEMs constructed, most often, from GPR data, complemented by boundary
data and sometimes, additional synthetic data arising from estimates based on theoretical considerations
supported by independent data. We describe a complete methodology of error analysis that, starting
from the errors in the data, propagates them to the grid nodes. In turn, the interpolation error at the
grid nodes is calculated using a novel procedure that also provides an estimate of the bias introduced
by the interpolation process. Finally, both errors are combined at the grid nodes to produce a grid-
point-dependent error estimate, which is complemented by an overall error estimate providing an assess-
ment of the quality of the DEM. This methodology is illustrated with the case study of Werenskioldbreen,
a land-terminating polythermal glacier in Svalbard.
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LIST OF MAIN SYMBOLS

H Ice thickness
A Area of the glacier/ice sheet
p Fraction of A quantifying the error in area of A
ɛHDEM

Ice-thickness error of the DEM (mean value)
εHk

Ice-thickness error associated to the k-th grid node
εHintk Error of ice-thickness interpolation at the k-th grid

node
εHdatak Ice-thickness error of the data at k-th grid node,

propagated from the data points
εHdatai Ice-thickness error for the i-th data point.

Combines the effects of εHi and ɛHxyi
εHi Error in the value of ice thickness for the i-th data

point (in Paper I, this was denoted εHGPRi for the
particular case of GPR data)

ɛHxyi Error in ice thickness for the i-th data point due to
the error in horizontal positioning, ɛxyi

ɛxyi Error in horizontal positioning for the i-th data
point

R Radius of the largest circle devoid of data, i.e. the
maximum possible distance from any point within
the boundary to its nearest data point

DBF Distance-Bias Function
DEF Distance-Error Function

1. INTRODUCTION
The applications of ice-thickness DEMs are diverse. They are
commonly used for geometry and volume assessment studies
(e.g. Pettersson and others, 2011; Fischer and Kuhn, 2013;
Lapazaran and others, 2013; Martín-Español and others,

2013; Ai and others, 2014; Navarro and others, 2014) and
for ice dynamics modelling (e.g. Otero and others, 2010;
Sugiyama and others, 2015; Wilkens and others, 2015). It
is, therefore, of considerable importance that DEMs used to
underpin any of these objectives are adjoined with the
most complete possible assessments of their errors. There
have been previous studies analysing the accuracy and
some error sources of ice-thickness DEMs (e.g. Pettersson
and others, 2011; Bamber and others, 2013; Fischer and
Kuhn, 2013; Farinotti and others, 2014). However, we
believe that a systematic study of the errors of DEMs of ice
thickness is still lacking.

The aim of this study is to systematize the analysis and es-
timate of the errors involved in the construction of an ice-
thickness DEM, taking into account their different sources.
On one hand, we study the error in ice-thickness data (data
error) and how it propagates to the nodes of the regular
grid of a DEM. We consider ice-thickness data collected by
any means, for example GPR, seismic prospecting, ice dril-
ling, or even estimated on the basis of theoretical considera-
tions, perhaps supported by independent field data.
Following the rationale of the previous companion paper
(Lapazaran and others, 2016; this issue (Paper I)), the data
error is computed from those of its two components: the
error in the value of the ice thickness and the error in ice
thickness associated with the uncertainty in the datum’s pos-
ition (Fig. 1). The data error is then propagated to the grid
points. On the other hand, we calculate the error due to
the interpolation of these data to the grid points (interpolation
error). Then, the propagated data error and the interpolation
error are combined at the grid points of the DEM to produce
the gridpoint-dependent error in ice thickness. A global error
in ice thickness of the DEM is finally obtained from the errors
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at the grid nodes, as a parameter to characterize the overall
quality of the DEM.

In this paper we follow the basic terminology on errors
described in Paper I. We take into account some error
sources that are usually not considered in the literature,
such as the error due to the uncertainty in the boundary of
the ice mass. Additionally, we introduce a novel method to
estimate the interpolation error, as well as a novel technique
to transmit the data errors to the grid nodes of the DEM.

2. HORIZONTAL RESOLUTION
Although our main aim is to estimate the error in ice thick-
ness of a DEM, the horizontal resolution of the DEM provides
an indication of its quality and thus deserves some attention.
We start by noting that both the density of ice-thickness data
and the horizontal resolution at each data point contribute to
the horizontal resolution of the DEM, although the grid size
acts as a lower bound of the horizontal resolution.

As discussed in Paper I, the horizontal resolution of GPR
data along profiles depends on whether the radargrams
have been migrated or not. For non-migrated data, the hori-
zontal resolution depends on the ice thickness, while for
migrated data it does not. However, 2-D migration only cor-
rects the data along the profiling direction, so the resolution
in the direction perpendicular to the profile is unaffected by
migration. Moreover, in the case of GPR there is a high data
density along the profiles, while the zones between radar
profiles, often large, are devoid of data. Consequently, the
horizontal resolution of the ice-thickness DEM will not be
uniform. It will be limited by the spacing between radar
traces, by the spacing between radar profiles, by the depth-
dependent Fresnel radius (non-migrated profiles) or by λ/2
(migrated profiles, with λ the wavelength of the central fre-
quency of the radar), and by the grid size of the DEM.
Following Welch and others’ (1998) arguments, even if all
the field and processing techniques are properly applied,
the maximum horizontal resolution of the DEM will be of
λ/2 × λ/2.

3. DATA ERROR
Following Paper I, we consider errors in ice-thickness data,
whatever their source is (see classification below), as made
up of two components: the error in the value of ice thickness

(εHi ), and the error in thickness due to the uncertainty in hori-
zontal positioning of the datum (εHxyi ). Since εHi and εHxyi are
independent of each other, the error in thickness at a given
data point is obtained by

εHdatai ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ε2Hi

þ ε2Hxyi

q
: ð1Þ

Here, we classify ice‐thickness sources for DEM generation
into three types with differing error components as follows:

(1) ‘Direct’ ice‐thickness measurements.
(2) Ice-boundary points with known zero ice thickness (e.g.

front of land-terminating glaciers or contact of the glacier
with its sidewalls).

(3) Indirect estimates of ice thickness at zones without direct
ice-thickness measurements. We refer to these as ‘syn-
thetic’ data.

We now separately analyse both error components for
each ice-thickness-data type.

3.1. Error in the value of ice thickness
Ice-thickness measurements are the first of the three data
types used to build the DEM. The particular case of GPR
data was already discussed in Paper I. For ice-thickness mea-
surements obtained from other techniques, similar studies
will be required.

The second type of data is the ice boundary points with
zero ice thickness assigned. In this case, the error in the
value of ice thickness, εHi , should be zero and the only un-
certainty left is the error in thickness due to the error in hori-
zontal positioning, εHxyi , which we will discuss later.

The third type of ice-thickness data does not correspond to
measurements but to estimates based on some kind of theor-
etical consideration, usually supported by independent field
data. These synthetic data must also be accompanied by their
error estimates, which will depend on the particular tech-
nique used for the estimation. For instance, the ice thickness
of a non-surveyed tributary glacier, if computed by interpol-
ation using only the zero-thickness boundary points at the
contact of the tributary glacier with its sidewalls, would
clearly produce an underestimate of the ice thickness. This
can be improved by the use of techniques such as described
in Navarro and others (2014). Other suggestions of use of
such kind of data from estimates can be found in Fischer
and Kuhn (2013) or in Fretwell and others (2013). The ice-
thickness data provided by techniques based on the fulfil-
ment of mass conservation between largely spaced radar pro-
files (e.g. Morlighem and others, 2011) could also be
catalogued within this data type.

3.2. Positioning-related ice-thickness error
In Paper I we presented a method to estimate, for GPR mea-
surements, the positioning-related ice‐thickness error, εHxyi ,
from estimates of the uncertainty in position, ɛxyi. The same
procedure can be followed to estimate εHxyi from other ice‐
thickness data sources, such as seismic or gravity measure-
ments. The uncertainty in the position ɛxyi of the boundary
data deserves particular attention, and is discussed in the fol-
lowing subsection.

Fig. 1. Schematics of the splitting into error components followed in
this study (see associated list of symbols). The numbering in the
rectangles refers to the sections of this paper where each error
component is discussed.
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In the case of using synthetic ice-thickness data, uncer-
tainty in position,ɛxyi, will depend on the theoretical assump-
tions made to generate them. For instance, if the estimates
depend on the distance to the nearest measurements or to
the ice-mass boundary, they will also be affected by the un-
certainty in position inherent to these nearest measurements
or ice-mass boundary.

Once the uncertainty in position ɛxyi is known, we esti-
mate the positioning-related ice-thickness error as the
maximum discrepancy found (absolute value) between the
value at the data point and the neighbouring values within
a circle of radius ɛxyi, using a DEM of ice thickness. The
smoothing effect introduced by the DEM is compensated
by the use of the maximum value.

3.2.1. Boundary-positioning error
The ice-mass boundary can include zero and non-zero ice-
thickness data. We consider that the zero thickness assigned
to boundaries separating ice and ground is free from error in
the value of ice thickness, εHi , provided that we take into
account, separately, the positioning-related ice-thickness
error, εHxyi . However, at boundary points with non-zero
ice-thickness, such as calving fronts, ice divides or artificial
sections introduced in the ice to limit the modelling to a par-
ticular area, we take into account both the error in the value
of ice thickness and the positioning-related ice-thickness
error.

In the case of having detailed information on the uncer-
tainty in a certain boundary delineation (e.g. Bernard and
others, 2014), the estimate of εHxyi can be applied at the
boundary on a point-by-point basis, using the individual
ɛxyi for each boundary point. However, for ice boundaries
in which a rough statistical estimate of the error in area is
available, we propose to uniformly distribute the uncertainty
in area, assigning a common uncertainty to all the boundary
points, as shown in Figure 2. It is customary to characterize
the uncertainty in boundary position in such cases as a frac-
tion of area, p, of the total area, A (so pA represents the un-
certainty in area, and p/100 represents the percentage of
error in area) (e.g. Bolch and others, 2010; Gjermundsen
and others, 2011; Nuth and others, 2013; Paul and others,
2013; Pfeffer and others, 2014).

To estimate the corresponding horizontal uncertainty (ɛxy
in Fig. 2) we use the Straight Skeleton routine of the

Computational Geometry Algorithms Library (CGAL)
version 4.6, http://www.cgal.org/, distributed under the
GPL/LGPL open source license. We obtain the horizontal un-
certainty εxyi to be applied to every boundary point by letting
the width of the blue-coloured internal band grow until its
area reaches the total error in area, pA.

4. ICE-THICKNESS INTERPOLATION ERROR
The construction of ice-thickness DEMs involves the inter-
polation of ice-thickness data to a regular grid. This operation
introduces an interpolation error, which will depend on the
quantity and distribution of the field data available. The inter-
polation error at each grid point k will be characterized as
εHintk . In this study we assume that any extrapolation is
avoided. We also assume that the interpolation method
used is of weighted-average type (e.g. kriging, splines or
inverse distance weighting), because these weights will be
used to propagate the errors from the data points to the grid
points. In cases using other types of interpolation, such as
the approach based on completing the sparse GPR data
using mass conservation (e.g. Farinotti and others, 2009a,
b, 2014; Morlighem and others, 2011, 2013) or other techni-
ques (e.g. Binder and others, 2009; Herzfeld and others,
2011), some parts of our error study should be adapted
accordingly.

Different approaches have been followed in the literature
to infer the interpolation error. In the case of kriging interpol-
ation, it is well known that the kriging variance underesti-
mates the interpolation error (e.g. Journel, 1986; Cressie,
1993, p. 127; Chainey and Stuart, 1998; den Hertog and
others, 2006; Rotschky and others, 2007), although it has
been used in glaciology to evaluate the accuracy of the inter-
polated values (e.g. Bamber and others, 2001). Some authors
evaluate the uncertainties by comparing the DEMs resulting
from different subsets of GPR data (e.g. Fischer, 2009), or
bootstrapping methods (e.g. den Hertog and others, 2006;
Bamber and others, 2013). Another commonly used tech-
nique to assess the statistical interpolation is the cross valid-
ation (Cressie, 1993). Following the cross-validation concept
some authors have removed one datum at a time (leave-one-
out cross validation, e.g. Pettersson and others, 2003, 2011;
Koppes and others, 2009; Lindbäck and others, 2014).
However, when dealing with GPR data, with profiles that
are usually irregularly distributed, cross-validation risks in-
correctly inferring the interpolation error in areas where mea-
surements are dense, leading to a systematic underestimation
of the interpolation error. Trying to solve this problem,
Fretwell and others (2013) split the data into two subsets,
using one subset to cross validate the other and vice versa.
More recently, Farinotti and others (2014) solved this under-
estimation problem using a cross-validation-based method
that removes sets of GPR profiles from the whole dataset
and evaluates the error expressed as a function of the dis-
tance to the nearest GPR point.

We propose a novel method to evaluate the interpolation
error, suitable for any type of data, including sparse and
uneven data distributions typical of for example GPR or
seismic profiling, or bathymetric studies. Our method
assesses the interpolation error at any point by measuring
the random-variable interpolation-error at the data points
(difference between predicted and measured values) using
a cross-validation technique that only considers neighbour-
ing data located beyond a given radius (blanking radius)

Fig. 2. The external polygon represents an ice boundary with area A.
The uncertainty in area is assumed to be characterized by means of a
fraction p of its total area. The width of the blue-coloured internal
band, ɛxy, is chosen so that the area of the band equals pA. This
width is used as εxyi for the boundary points.
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from this data point (Fig. 3a). This technique consists of four
stages, split into seven steps in the algorithm described
below. In the first stage, we measure the interpolation error
at every data point for a set of blanking radii with increasing
size. In the second stage we compute, for each blanking
radius, a possible interpolation bias (mean error) and the
standard deviation (characterizing the random error) of the
corresponding random-variable interpolation-error (Fig. 3b).
In the third stage we fit, by least squares, corresponding func-
tions both to the bias and to the standard deviations of the
measured interpolation errors. These functions, named
Distance-Bias Function (DBF) and Distance-Error Function
(DEF) (Figs 3c, d) relate, at any given point, the bias and
the interpolation random error (standard deviation) with the
distance to the nearest data point (details in algorithm steps
below). Finally, in the fourth stage we apply these functions
to each grid point k, taking into account its distance to the
nearest data point. We do it by first correcting the thickness
value with the assessed bias using the DBF, and then assign-
ing the error to the resulting value using the DEF, thus obtain-
ing εHintk .

Starting from a dataset made up of ice-thickness measure-
ments, boundary points (zero- and non-zero-thickness
points), and any other possible synthetic data, the steps of
the algorithm proceed as follows:

(1) Calculate R, the radius of the largest zone devoid of data
in the dataset. R represents the maximum possible dis-
tance from any point within the boundary to its nearest
data point. Then take a sequence of radii of increasing
size, R1, R2, R3… starting with a tiny one and then stepping
up to R (e.g. 11 radii, R/100, R/10, 2R/10, 3R/10… R).

(2) Centre a blanking circle with radius R1 at a data point
(Fig. 3a). Using the data located outside the circle, inter-
polate the value at the centre of the blanking circle, and

calculate the difference between the interpolated and the
data values, thus obtaining the error of this interpolation.
This is repeated for each data point, obtaining the distri-
bution of the predicted error when the distance to the
nearest datum is R1. The boundary data points should
be excluded from this process, to avoid extrapolation.

(3) The procedure is repeated using the various radii R1, R2,
R3… obtaining the distributions of the prediction error for
the different distances to the nearest data points (Fig. 3b).

(4) For each Ri, calculate the mean errors (biases) and their
standard deviations (random errors) (dots in Figs 3c, d).

(5) Generate a DBF by least-squares fitting of the pairs of Ri

versus bias, to a polynomial curve (Fig. 3c). At any
given point, the DBF relates the bias of the interpolation
method to the distance to the nearest data point.

(6) Generate a DEF by least-squares fitting of the pairs of Ri

versus random error, to a polynomial curve (Fig. 3d). At
any given point, the DEF relates the interpolation
random error to the distance to the nearest data point.

(7) Apply the DBF and the DEF to every nodal value of the
interpolated grid. For each grid point, measure the dis-
tance to the nearest data point, add the bias (positive or
negative) obtained using the DBF for this distance, and
assign the interpolation error given by the DEF for this
distance, εHintk (the subscript k is used to indicate grid
nodes).

Although this method is based in the cross-validation
concept, it solves the problem of error underestimation in
dense data of the leave-one-out cross validation. The ad-
vantage of our method from previous strategies is that it
does not depend on decisions about how to split the
dataset, or which profiles must be left out and cross-vali-
dated. On the contrary, our method systematically estimates
the interpolation errors at every data point for all the

Fig. 3. Steps of the process of estimating and applying the DBF and the DEF to Werenskioldbreen. (a) Sequence of blanking circles around a
data point, with increasing radii …R4… R9, R10, R11, of which R4 is the blanking circle currently applied; the blue curves represent ice
boundaries and the black dots represent points where ice-thickness data are available. (b) Distributions of the interpolation error for each
blanking radius; both the negative bias (mean values, in red) and the random error of the distributions grow with the blanking radius. (c)
DBF obtained by least-squares fitting of the mean values of the distributions of interpolation error. (d) DEF obtained by least-squares fitting
of the standard deviations of the distributions of interpolation error.
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different distances to the nearest data point. Thus, our
method makes optimal use of the information contained
in the dataset, in a more consistent, robust and systematic
way than previous methods.

5. PROPAGATIONOF THE ERROR IN THE DATA TO
THE GRID NODES
Ice-thickness DEMs are constructed by interpolating uneven-
ly distributed ice-thickness measurements to a regular grid.
Therefore, to assess the quality of the DEM the errors in ice
thickness at the data points must be propagated to the grid
nodes, and then combined with the interpolation errors at
the grid nodes.

Assuming that a weighted-average interpolation method is
used to build the ice-thickness DEM, the interpolated value
of the ice thickness at a grid cell, Hk, is calculated as a
weighted combination of the thicknesses at some (say n)
neighbouring data points Hi, i.e. Hk ¼

Pn
i¼1 wiHi

� �
k, withPn

i¼1 wi ¼ 1. We propose calculating the error propagation
from the data points to the grid nodes using the same
weighted combination, but now applied to the errors
instead of the ice thicknesses:

εHdatak ¼
Xn
i¼1

wi εHdatai

 !
k

: ð2Þ

This implies an assumption of linear dependence between
the error at the grid point and the errors at the neighbouring
data points. Due to the unit summation of the weights, the
error in the data propagated by Eqn (2) to a grid node is a
weighted mean of the errors in the data involved. This is a
reasonable approximation, conservative in most cases, as
explained below.

Negative ice thicknesses are physically meaningless, so
the interpolation scheme must preserve the positive values
of the interpolated ice thickness. This can be achieved by
using non-negative interpolation weights, such as positive
kriging (e.g. Szidarovszky and others, 1987; Deutsch,
1996; Yamamoto, 2000).

Similarly to what we do in Eqn (2), Herzfeld (2004) pro-
posed the use of the interpolation weights for the error propa-
gation from the data points to the grid nodes in the case of
kriging interpolation, but she used the root of the squared
summation of the n weighted neighbouring values εHdatak ¼Pn

i¼1 w
2
i ε

2
Hdatai

� �1=2
k

(as if these errors were independent),

or, in a simplified version, using the RMS value of the neigh-

bouring errors εHdatak ¼
Pn

i¼1 w
2
i
Pn

i¼1 ε
2
Hdatai

=n
� �� �1=2

k
.

However, this expression provides error propagation that
does not average the surrounding data errors. If positive
kriging is used, and taking into account the unit summation
of the ordinary kriging weights, Herzfeld’s assumption
implies a decrease in the squared values of the weights, so
this gives error estimates at the grid nodes much lower than
those at surrounding data points, especially when n is
large. For instance, let us suppose that a dataset consists of
four data points, all with the same value H and the same
error E, located at the corners of a square. If we interpolate
at the centre of the square, we would expect to get H as
the interpolated value and E as its error propagated to the
central point. However, assigning a weight of 0.25 to each

data point, the interpolated value is indeed H, but the pro-
pagated error obtained using the nonlinear method by
Herzfeld is 0.5 E ð½4ð0:252E2Þ�1=2Þ. If, instead, we use Eqn
(2), then the error propagated to the central point is E. On
the other hand, if not all the weights were positive, larger
absolute values of the weights could be involved, still pre-
serving the unit summation. This could imply very large
errors at the grid nodes, even several times larger than
those at the surrounding data points. For instance, using a
similar dataset with four points as before, if the interpol-
ation weights were for example 5, −6, 10, −8, the propa-
gated error using again the non-linear method would be
15 E ðð52E2 þ 62E2 þ 102E2 þ 82E2Þ1=2Þ, while, using Eqn
(2), the error propagated to the central point is again E.

Because of the above reasons, we are in favour of the
linear approach involved in Eqn (2). No matter whether the
interpolation weights used are positive or not, Eqn (2) pro-
vides, due to the unitary weight summation, an error at
each grid point that averages those at the surrounding data
points. We thus obtain a reasonable approximation, conser-
vative in the case of using positive weights.

6. ICE-THICKNESS ERROR OF THE DEM
Propagation of the errors in the data to the grid nodes pro-
duces resultant errors, εHdatak , at the grid nodes. In turn, the
interpolation errors at the grid nodes, εHintk , can be estimated
using the DEF. Assuming that in practice these errors can be
considered independent, they can be combined as the root of
their squared summation, obtaining the total ice-thickness
error associated with each grid node,

εHk ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ε2Hdatak

þ ε2Hintk

q
: ð3Þ

The propagation of data errors to the grid nodes increases the
spatial correlation of the associated errors, smoothing their
variability. Consequently, the distribution of errors at the
grid nodes will in general be narrower than the error distribu-
tion that would be obtained if the data were hypothetically
located at the grid points.

Applying Eqn (3) to the grid nodes we obtain an error map
of the DEM. However, sometimes it can be useful to charac-
terize the overall quality of the ice-thickness DEM, using a
single parameter, for example to estimate the ice-volume
error (Martín-Español and others, 2016; this issue (Paper
III)), to evaluate the overall quality of DEMs, or to compare
their accuracy. In these cases, we can use the RMS value
of the errors at the grid nodes,

εHDEM ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
N

XN
k¼1

ε2Hk

vuut ; ð4Þ

and this parameter will be less sensitive to the above-men-
tioned smoothing. Note, on the other hand, that the quality
of an ice-thickness DEM cannot be calculated directly as
the RMS of the errors in the data, because the data distribu-
tion, in particular in the case of GPR data, is uneven.

7. CASE STUDY: WERENSKIOLDBREEN
Following the above-discussed techniques, we here present a
complete study of the errors for the DEM of ice thickness of
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Werenskioldbreen, a land-terminating polythermal glacier in
Svalbard (Fig. 4).

The maximum distance between glacier points is ∼7 km,
while the maximum distance between any grid point and
its nearest data point is ∼525 m, with a mean value of
∼100 m. Thus, the coverage of the glacier surface by the
GPR profiles is relatively dense, yet large areas remain
devoid of data, as is usual with GPR profiling. This includes
both large areas between distant GPR profiles and small
non-surveyed tributary glaciers (in fact, small lateral glacier
cirques supplying ice to the main glacier trunk). The details
of the GPR survey, the data processing and the analysis of
the associated errors can be found in Paper I. The ice thick-
ness of the entire boundary is set to zero, except for the ice
divide with Tuvbreen (a tributary of Hansbreen), to the
south-east. By setting the boundary ice thickness to zero
however, interpolation of ice thickness in the non‐GPR‐sur-
veyed tributaries is biased towards unrealistically low
values. To counter this issue, we therefore added to the
ice‐thickness dataset some additional ice-thickness data
points obtained using a slightly modified version of the tribu-
tary thickness function for Svalbard glaciers described by

Navarro and others (2014). In our implementation of their
method, we obtained regressions both for the normalized
amplitudes and the normalized errors. Since, in the case of
Werenskioldbreen GPR profiles, there are no measurements
of ice thickness at the zones of confluence of the tributaries
with the main trunk of the glacier, we increased quadratically
the estimated errors by half of the estimated ice thickness.
The entire ice-thickness dataset resulting from this addition
of data is shown in Figure 4.

We interpolated the ice thickness of the glacier using or-
dinary kriging to a 50 m × 50 m grid, and found no 2-D geo-
metric anisotropy (e.g. Wackernagel, 2003). The resulting
ice-thickness DEM is shown in Figure 5a, and has a mean
value of 107.65 m, with standard deviation of 73.37 m and
maximum gridded value of 276.71 m. We calculated the
distance-bias and distance-error functions as explained
earlier. The results are shown in Figures 3c, d. The point-
dependent interpolation bias applied to each of the grid
points yields a DEM of bias, shown in Figure 5b (mean value
of 4.41 m, standard deviation of 6.00 m and maximum value
of 42.55 m). The final, bias-corrected ice-thickness DEM of
Werenskioldbreen, obtained as a point-by-point summation
of the interpolated ice thickness and the interpolation bias, is
shown in Figure 5c. It has a mean value of 112.31 m, with
standard deviation of 74.15 m and maximum gridded value
of 277.00 ± 7.24 m (error estimated as described later).

Let us now analyse the errors in the ice-thickness DEM.
The errors in the value of the ice-thickness data, εHi , are
shown in Figure 6a. As discussed in Paper I, those corre-
sponding to the GPR data were between 3.32 m (vertical
resolution of the 25 MHz radar) and 6.61 m. To the zero-
thickness boundary points we assigned a zero error in the
value of ice thickness (so all of their error in thickness will
correspond to the error due to boundary uncertainty). The
errors for the synthetic ice-thickness data points added at
some tributaries using our modified version of the tributary
thickness function of Navarro and others (2014), however,
were much larger, up to 71.20 m, due to the above-men-
tioned lack of GPR data at the zones of confluence of the
tributaries with the main trunk of the glacier.

Figure 6b shows the positioning-related ice-thickness
error for each data point, εHxyi . For the GPR measurement
points, we estimated εHxyi as described in Paper I. To
obtain the uncertainty in position at each boundary point,
we adopted an 8% error in area (i.e. p= 0.08) after Nuth
and others (2013), which for Werenskioldbreen translates
as an εxyi of 48 m. The errors in ice thickness due to

Fig. 4. Location of Werenskioldbreen in Svalbard and the dataset
used to construct the ice-thickness DEM of Werenskioldbreen. The
whole dataset of ice thickness is represented using colour scale
and the ice divide with Tuvbreen is shown as a thin black curve in
the south-east. The dataset is made of three different types of data:
ice-thickness data obtained by means of GPR profiling, zero-ice-
thickness boundary points and synthetic data estimated at some
non-surveyed tributary glaciers (marked with orange arrows).

Fig. 5. DEM of ice thickness of Werenskioldbreen. The colour scale is common for the three panels. (a) DEM of ice thickness obtained by
direct interpolation of the data. (b) DEM of interpolation bias obtained applying the DBF to the grid points. Since the bias is negative
(Fig. 3c), it is shown with reversed sign, to use a common scale. (c) Final DEM of ice thickness of Werenskioldbreen, obtained as point-
by-point summation of the DEMs in (a) and (b).
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uncertainty in position of the boundary have a mean value of
6.13 m, with standard deviation of 5.75 m and a maximum
value of 39.03 m. Such errors at the boundary are much
larger than those of GPR data, because the uncertainty in
horizontal positioning and the gradient of ice thickness are
both large at the glacier boundaries of Werenskioldbreen.
Finally, we assigned to the synthetic ice-thickness values cal-
culated at some tributaries, the same uncertainty in horizon-
tal positioning as that of the boundary points (ɛxy= 48 m),
because the positions of the estimated ice‐thickness points
in these tributaries were tied to the glacier boundaries. This
implied positioning-related ice-thickness errors at the syn-
thetic points in the tributaries reaching 35.32 m (mean
value, 10.55 m; standard deviation, 6.02 m).

Figure 6c shows the error in ice thickness of the data,
εHdatai , obtained using Eqn (1), as combination of the errors
in value, εHi (Fig. 6a) and those due to uncertainty in position,
εHxyi (Fig. 6b).

We then propagated the errors in the data points to the
grid points by means of Eqn (2), using the same weights of
the kriging interpolation. Figure 7a shows the resulting
DEM of propagated errors (mean value, 7.20 m; standard de-
viation, 7.24 m; maximum value, 69.02 m). The interpol-
ation errors, characterized by the DEF (Fig. 3d), were then
applied to the grid points, producing the DEM of interpol-
ation error shown in Figure 7b (mean value, 9.93 m; standard
deviation, 7.82 m; maximum value, 47.42 m). Following Eqn
(3), the resulting root of the squared summation of both pre-
vious DEMs, calculated point by point, is shown in Figure 7c
(mean value, 13.41 m; standard deviation, 9.17 m;

maximum value, 69.11 m). It represents the final DEM of
ice-thickness errors associated with the ice-thickness DEM
of Werenskioldbreen shown in Figure 5c. Finally, we esti-
mated the overall error of the DEM of ice thickness of
Werenskioldbreen using Eqn (4), getting ɛH DEM= 16.24 m.

8. CONCLUSIONS
We have developed a systematic methodology to estimate
the error of a DEM of ice thickness. It splits the error into
various independent components, which facilitates the esti-
mate of the errors arising from different sources. The aim
was to provide, together with the ice-thickness DEM, an indi-
vidual error estimate at each of the grid nodes (getting a DEM
of error in ice thickness), as well as an overall error estimate
characterizing the quality of the ice-thickness DEM as a
whole.

Starting from the error in the data (discussed, for GPR data,
in Paper I), this error is propagated to the grid nodes of the
DEM. In turn, the interpolation error at the grid nodes is
also calculated. Both errors are then combined to get the
error in ice thickness at each grid node. An error characteriz-
ing the overall quality of the DEM is finally computed.

The methodology described includes some novel techni-
ques of error estimate:

(1) The method used to propagate the error in the data points
to the grid points, based on a weighted linear approach
that uses the same weights involved in the interpolation
process of weighted-average type.

Fig. 6. Ice-thickness errors of the dataset. The colour scale is common for the three panels and for the next Figures. (a) Error in the value of ice
thickness, εHi (boundary dots not shown, because of their zero error). (b) Error in ice-thickness due to the uncertainty in horizontal positioning,
εHxyi . (c) Error in ice thickness of the data, εHdatai , obtained as combination, using Eqn (1), of the errors shown in (a) and (b).

Fig. 7. (a) DEM of errors propagated from the data points to the grid points using Eqn (2). (b) DEM of interpolation errors at the grid points,
obtained applying the DEF to every grid point. (c) Final DEM of error in ice thickness, associated with the DEM of ice thickness shown in
Figure 5c.
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(2) The method adopted to estimate the interpolation error at
each grid node, which also allows detecting of and cor-
recting for the bias introduced by the interpolation
process. This is achieved by means of the DEF and
DBF. The main advantage of this method compared
with previous approaches is that it is systematic, more
consistent and robust. It methodically estimates, at
every data point, the interpolation errors for the various
distances to the nearest data point associated with the dif-
ferent blanking radii, thus making optimal use of the in-
formation contained in the dataset.

(3) Themethod applied to estimate the positioning-related ice-
thickness error. This was discussed, for the case of GPR
data, in Paper I, but we extended it here to include the
cases of boundary ice-thickness data and synthetic data.

This methodology of error estimate was applied to the
case study of Werenskioldbreen, a land-terminating poly-
thermal glacier in Svalbard. The interpolation error was
shown to be a main source of error, though, in the particular
case of Werenskioldbreen, the largest errors corresponded to
the additional synthetic data estimated at the non-surveyed
tributary glaciers.
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