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RECURRENCE IN PERSISTENT DYNAMICAL SYSTEMS

Sunc Kyv CHol, CHIN-KU CHU AND KEON-HEE LEE

The purpose of this paper is to study the chain recurrent sets under persistent
dynamical systems, and give a necessary condition for a persistent dynamical sys-
tem to be topologically stable. Moreover we show that the various recurrent sets
depend continuously on persistent dynamical systems.

The abstract theory of dynamical systems distinguished various recurrence proper-
ties such as periodicity, Poisson stability, nonwanderingness, chain recurrence, et cetera.
The weakest property among them is the property of a point to be chain recurrent.

In [3], Hurley analysed the chain recurrent sets under topologically stable dynam-
ical systems, and Lewowicz [5] introduced the concept of persistence of a dynamical
system which is weaker than that of topological stability.

The purpose of this paper is to study the chain recurrent sets under persistent
dynamical systems, and give a necessary condition for a persistent dynamical system
to be topologically stable. Bronstein and Kopanskii [1] introduced the concepts of
weakly nonwandering set and chain recurrent set for dispersive dynamical systems {or
a dynamical system without uniqueness) and said that, in general, it remains unknown
whether or not the weakly nonwandering set is equal to the chain recurrent set. (See
Section 6 in [1]). We claim that for a dynamical system (with uniqueness) the weakly
nonwandering set is properly contained in the chain recurrent set. Moreover, Ombach
[7] showed that the various recurrence mappings (such as a, w, 2, CR, etcetera) are
continuous at f if the system f has the P.O.T.P. (pseudo orbit tracing property) and
is expansive. Finally we prove that the various recurrence mappings are also continuous
at f if the system f is persistent.

We consider homeomorphisms (or dynamical systems) acting on a compact metric
space. Unless otherwise mentioned, we let X denote a compact metric space with
a metric d. Let H(X) denote the collection of all homeomorphisms of X to itself
topologised by the C°-metric

do(f, g) = sup{d(f(z), 9(z)) : z € X}.
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f € H(X) is said to be topologically stable if for any ¢ > 0 there exists §(¢) > 0
such that if do(f, g) < § then there exists a continuous map h: X — X satisfying
hg = fh and dy(h, 1x) < €, where 1x is the identity map on X. The map k is called
the semiconjugacy from g to f. We say that f € H(X) is ezpansive if there exists
e(f) > 0 such that if d(f™(z), f*(y)) < e for every n € Z, then z = y. Such numbers
e(f) are called ezpansive constants. f € H(X) is called a (or 8)-persistent if for any
€ > 0 there exists §(¢) > 0 such that if do(f, g) < &§ and z € X, then thereis y € X
satisfying
d(f*(v), 97(2)) < € (or d(f™(2), g"(¥)) < e),

respectively, for all n € Z.

Throughout this paper, it will be noted that a dynamical system means a discrete
dynamical system induced by a homeomorphism on X, and a persistent dynamical
system means both a and B-persistent dynamical system.

LEMMA 1. A topologically stable dynamical system is persistent.
PROOF: It is straightforward. 0

The following theorem gives a necessary condition for a persistent dynamical system
to be topologically stable.

THEOREM 2. A persistent dynamical system is topologically stable if it is expan-

sive.

ProorF: Let f € H(X) be persistent, and let e(f) be an expansive constant for
f. Choose € > 0 satisfying € < e(f)/4. Given € > 0, there exists § > 0 such that if
do(f, g) < &, then for any =z € X, thereis y € X satisfying

d(f™(y), 9™(z)) < e/2

for all n € Z. Define a map h: X — X by h(z) = y, where y is an element in X
chosen by the property of persistence of f as above. Then the map h is well-defined.
In fact, let z be another element in X such that d(f™(z), g"(z)) <e/2 forall n € Z.
Then we have d(f"*(y), f*(z)) < ¢ for all n € Z. Since f is expansive, we get y = z.

Now we show that the map h is continuous. Put A(z) = y and h(z') = 3', and let
A > 0 be given. Since f is expansive, we can choose N such that if d(f"(y), f*(y')) <
e(f) for all —N < n < N then d(y, ¥') < A. Suppose not. Then, for each N > 1,
there exists an, by € X such that

d(f*(an), f*(bn)) < e(f) and d(an, bn) 2 A,

for all —N < n < N. Consider the sequences {an} and {by}. Since X is compact, we
have ay — a and by — b in X. Then we get d(a, b) > X and d(f"(a), f*(b)) < e(f).
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for all n € Z. This contracts the expansiveness of f. Since g: X — X is continuous,
given N, there exists 7 > 0 such that if d(z, 2') <  then d(g™(z), g™(z')) < e(f)/2
for all —N < n € N. Consequently we have

d(f"(w), f*(¥")) < d(f"(y), 9"(2)) + d(g™(2), 97(2"))
+d(g™(="), F*(¥")) < e(f),

if d(z, ') <n and —N < n < N. Thus we obtain d(y, ¥') = d(h(z), h(z')) < X. By
now, we have shown that for any A > 0 there exists > 0 such that if d(z,z') <
then d(h(z), h(z')) < A, that is, h is continuous. Moreover, the surjectivity of h can
be derived from the fact that f is B-persistent.

To show that hg = fh on X, choose 2 € X. Then there exists y € X satisfying
d(f**'(y), g"*!(z)) < &/2 for all n € Z. Thus we get k(g(z)) = f(y) = f(h(=)), by
the definition of h. Hence we have hg = fh on X. This completes the proof of the
theorem. 0

We say that f, g € H(X) are topologically conjugate if there exists h € H(X)
satisfying hg = fh, and the homeomorphism h is called topological conjugacy between
f and g.

In the following theorem, we see that the a (or 8)-persistence is invariant under
a topological conjugacy.

THEOREM 3. Any dynamical system which is topologically conjugate to an a (or
B )-persistent dynamical system is a (or 8 )-persistent, respectively.

PROOF: Suppose that an a-persistent dynamical system f is topologically con-
jugate to a dynamical system ¢, and let h be a topological conjugacy between f
and g. Let € > 0 be given, and choose 0 < &' < € such that if d(a, b) < €' then
d(h~*(a), h"*(b)) < € for a,b € X. Since f is a-persistent, given &' > 0, there
exists ' > 0 such that if do(f, fo) < §' then for any z € X there is y € X satisfying
d(f(y), fi(z)) < € forall n € Z. Given & > 0, choose 0 < § < & such that if
d(a, b) < & then d(h(a), h(}d)) < §'. Let go € H(X) be such that do(g, go) < &, and
put fo = hgoh™!. Then we have

d(h(g()); h(g0(2))) = d(f(h(2)), fo(h(2))) < &'

for any =z € X, and so do(f, fo) < &'. Since f is a-persistent, given h(z), there exists
h(y) € X such that

d(f*(h(y)), fo'(h(2))) = d(h(g™(¥)); h(95(2))) < €'

for all n € Z. Thus we have d(g™(y), 95(z)) < € for all n € Z. This means that g is
a-persistent. ’
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Similarly we can show that any dynamical system which is topologically conjugate
to a f-persistent dynamical system is also 3-persistent.

Let f € H(X). A point z € X is said to be periodic if there exists n > 1 satisfying
f*(z) = z. The set of all periodic points of f will be denoted by Per(f). A point
z € X is called nonwandering if for any neighbourhood U of z, there exists n > 1
such that f*(U)NU # 0. We denote by Q(f) the set of all nonwandering points of
f. Let z and y be any points in X, and let ¢ > 0 be an arbitrary number. A finite
sequence {z;}?  in X is called an e-chain from z to y provided that

zo =z, z, = y and d(f(z:), zi+1) <e,

for i=10,1,--- ,n — 1. We say that z is chain equivalent to y if for any ¢ > 0 there
exist two e-chains: from z to y, and from y to z. A point z € X is called chain
recurrent if it is chain equivalent to itself. We denote by CR(f) the set of all chain
recurrent points of f. There is a natural equivalence relation defined on CR(f): z ~y
if and only if z is chain equivalent to y. Equivalence classes under this equivalence
relation are called chain components of f.

A basic problem is to determine when a chain recurrent point is approximated by
periodic points of f, or more generally to determine if each ¢-chain can be approximated
by an actual orbit of f. Here we claim that this problem can be done for a-persistent
dynamical systems on topological manifolds. To show this we need a lemma given in
[6].

LEMMA 4. Let X be a compact manifold of dim > 2 with metric d, and let
€ > 0 be arbitrary. Then there exists §(¢) > 0 such that if {(z1, 1), -** s (Zn, Yn)} is
a finite set of points in X x X satisfying:

(1) foreachi=1,---,mn, d(=i, y;) < §; and
(i) ifs#j, then z; # z; and y; # y;;
then there is h € H(X) with do(h, 1x)<e and h(z;) =y; fori=1,---,n.

THEOREM 5. Let X be a compact manifold, and let f € H(X) be a-persistent.

Then the set of all periodic points of f is dense in CR(f).

PRrOOF: If X is one-dimensional then the proof is clear. So, we may assume that
the dimension of X is larger than 1. Let € > 0 be arbitrary. Then we select §;(¢) > 0
asin Lemma4. Since f is a-persistent, there exists 6§;(8;) > 0 such that if do(f, g) < &
and z € X, then d(f"(y), g"(z)) < 6, for some y € X and all n € Z. Given §; > 0,
we choose 83(82) > 0 as in Lemma 4. Let z € CR(f), and let {zo, -, 2zm} bea
83-chain from z to z. Then the set {(f(z0), z1), ---, (f(£m-1), zm)} satisfies the
hypothesis of Lemma 4. Thus there exists h € H(X) such that

do(h, 1x) < b2 and h(f(z:)) = zit1,
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for i=0,1,---,m—1. Put ¢ = hf. Then we have dy(f, g) < §; and g™(z) = =.
Hence there is y € X satisfying d(g™(z), f*(y)) < & for all n € Z. Consider the

set {(z, ), (9(=), F(¥)), ---, (g™(=), f™(¥))} in X x X satisfying the hypothesis of
Lemma 4. Then we have h' € H(X) such that

do(h', 1x) < € and A'(¢°(2)) = f'(y)
for i=0,1, .-, m. In particular, we have
() = k(g™(2)) = h'(z) = y.

This means that B(z, ¢)N Per(f) # 0, and so completes the proof. 0

In [3], Hurley showed that if f is a topologically stable diffeomorphism on a smooth
compact Riemannian manifold X then each chain component of f contains a dense
orbit. Moreover, he claimed that if f is topologically stable, X is connected and CR(f)
has interior then CR(f) = X . We extend these results to a-persistent homeomorphisms
on a compact manifold.

THEOREM 6. Let X be a compact manifold, and let f € H(X) be a-persistent.
Then each chain component of f contains a dense orbit.

Proor: If X is one-dimensional this is clear. Hence we may assume dim X > 2.
Let F be a chain component in CR(f), and let U and V be any nonempty open
sets in F. For any z € U and y € V, we choose € > 0 such that B(z,¢) C U and
B(y,€) C V. Since f is a-persistent, there exists §(¢) > 0 such that if do(f, g) < &
then d(f™(z), g™(z)) < € for some z € X and all n € Z. Given § > 0, we select §'(§)
as in Lemma 4. Since z, y € F, we can choose a §'-chain {z¢, -+, zm} from z to y.
Then there exists h € H(X) such that

do(h, lx) < § and h(f(z,)) =Zi41

for 1 = 0,1,---,m—1. If we let g = hf, then there is z € X satisfying
d(f*(2),g™(z)) < € for all n € Z. In particular, we have d(z,z) < ¢ and
d(f™(z), g™(z)) < €. Since g™(z) = y, we get f™(z) € fM(U)NV # 0. This
implies that F' has a dense orbit.

THEOREM 7. If CR(f) is connected, then X is the chain component of any point
in X . In particular, we have CR(f) = X .

PROOF: Let € > 0 be fixed and z € X. Let F(z, ¢) = {y € CR(f): there exist
two e-chains, from z to y and from y to z}.

First we show that F(z, €) is open and closed in CR(f). If y € F(z,¢€), then
there exist two e-chains: {z;}]X; from z to y, and {y;}}., from y to z. Since
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f(y) € B(y1, €), we can choose §; > 0 such that B(f(y), 61) C B(w1, €). If we use the
continuity of f, we can select §2 > 0 satisfying

f(B(y, 62)) C B(f(y), 61) C B(w, €).

Let U = B(y, €) N B(f(Zm-1), €). Then U is an open neighbourhood of y contained
in F(2, €). In fact, for any z € U, the sequence {z¢, z1, -* , Zm—1, 2z} is an e-chain
from z to z, and the sequence {z, y1, -+, yn} is an e-chain from z to . Thus
we have U C F(z,¢). This shows that F(z, ¢) is open in CR(f). To show that
F(z, €) is closed in CR(f), we choose a sequence {z;} in F(z, ¢) which converges to
z° € X. Then there exists n € N such that d(z*, z°) < ¢/2 for all i > n. Since
z"™ € F(z,€¢) C CR(f), we can choose an €/2-chain {z}, 2T, ---, z}} from z" to
. Consider the sequence {z§, «}, ---, z7_,, z°}. Then it is an e-chain from z™ to
z°. Similarly we can construct an e-chain from z° to z™. This means that F(z, €) is
closed in CR(f).

Next we show that X is the chain component of z. Since CR(f) is connected,
we have CR(f) = F(z,€). Let F(z) be the chain component of z. Since F(z) =

N F(z, €), the proof is completed by showing that CR(f) = X. So, we suppose that
e>0

CR(f) # X. Then there exists y € X with y ¢ CR(f). Let wy(y) = {Z € X :
f™(y) — z for some n; » —oo}, and let z € w¢(y). Then we have

z € wy(y) CQ(f) C CR(f).

Since CR(f) = F(z,¢€), we can choose two e-chains: {z;}%, from z to z, and
{z:}f_, from z to z. Using the continuity of f, we can select m < 0 such that
d(f(z), f™*'(y)) <e. Then the sequence

{30) L1y " 5y Tky f"'“(y)» ttty f_l(y)v y}

is an e-chain from z to y. Similarly we can construct an e-chain from y to z. Thus
we have y € F(z, €). This contradicts the fact that y ¢ CR(f), and so completes the
proof. g

Bronstein and Kopanskii introduced the notions of weakly nonwandering set and
chain recurrent set for a dispersive dynamical system (or a dynamical system without
uniqueness) on a compact metric space, and said that, in general, it remains unknown
whether or not the weakly nonwandering set is equal to the chain recurrent set (see
Section 6 in [1]). Clearly, a dynamical system (with uniqueness) on a compact metric
space is also a dispersive dynamical system.

Similarly we introduce the concept of weakly nonwandering set of a dynamical
system on a compact metric space.
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A point z € X is called weakly nonwandering (or weakly periodic) for f € H(X) if
for any € > 0 there exists ¢ € H(X) such that do(f, 9) < ¢ and z is nonwandering (or
periodic) for g, respectively. The set of all weakly nonwandering (or weakly periodic)
points for f will be denoted by Q. (f) (or P,(f)), respectively. It is easy to show that
Qw(f) is closed and Q(f) C Quw(f).

In the following example, we show that for a dynamical system f (with uniqueness),
the set Qy(r) is not equal to CR(f).

EXAMPLE 8: Let X be a subset of R? given by X = S'UL, where S* = {(=, y) €
R?:z?2+y? =1} and L = {(z,y) € R® : =1 < z < 1 and y = 0}. Then we define
a homeomorphism f, on S? satisfying: (—1, 0) and (1, 0) are fixed points of f;, and
for any (z,y) € S — {(-1, 0), (1, 0)} the first coordinate of f(z, y) is larger than
z. Also we define a homeomorphism f; on L satisfying: for any (z, y) € L the first
coordinate of fo(z, y) is less than z. Then we can define a homeomorphism f on the
compact metric space X such that f |s1= fi and f |,= f». For the homeomorphism

f, we have CR(f) = X and Q.(f) = {(-1, 0), (1, 0)}.
THEOREM 9. Forany f € H(X), the set Q,(f) is contained in CR(f), and the
converse holds if X is a compact manifold.

PROOF: Let z € Qu(f), and let € > 0 be arbitrary. Then we have g € H(X)
such that do(f, g) < €/4 and z € Q(g). Choose § < /4 such that if d(z,y) < §
then d(f(z), g(=)) < €/4 and d(g(z), 9(y)) < £/4. Since z € Q(g), there exists n > 1
satisfying g™(B(z, §)) N B(z, §) # 0. If n =1 then the sequence {z, z} is an e-chain
for f. In fact, if we choose y € B(z, §) with g(y) € B(z, §), then we get

d(f(z), z) < d(f(z), g(=)) + d(g(=), 9(v))

+d(g(y), z) <e.
If n > 1 then there exists y € B(z, §) with g*(y) € B(z, §). Then the sequence
{=z, 9(y), -, 9" (y), z} is an e-chain from z to z. This shows that z € CR(f).
The converse can be derived in the proof of Theorem 6. 0
For any f € H(X) and any z € X, we let ay(z) = {y € X : fri(z) —
y for some n; — oo} and wy(z) = {y € X : f*(2) — y for some n; » —o0}. Then the
sets a(f) = Ux as(z) and w(f) = UX wy(z) are called the negative and positive limit
z€ z€

setsfor f, respectively. Let us consider the metric space K(X) = {4 C X : A is closed}
with the Hausdorff metric p

p(A, B) = max{supd(a, B), supd(4, b)}.
a€A beB

Let a, w, 2, Q,, CR denote mappings H(X) — K(X) sending f to a(f), w(f),
Q(f), Qu(f), CR(f), respectively.
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In (7], Ombach proved that the mappings defined as above are continuous at f if
f has the P.O.T.P. and is expansive. It is well-known that a dynamical system which
is both expansive and possesses the P.Q.T.P. is topologically stable. By Lemma 1, a
topologically stable dynamical system is persistent. Finally, we show that the mappings
defined as above are also continuous at f if f is persistent. To show this we need the
concept of upper and lower semi-continuity.

Let Y be a topological space. A mapping F: Y — K(X) is upper (or lower)
semi-continuous at y € Y, if for any € > 0 there exists a neighbourhood U of y such
that for any z € U we have

F(z) C B(F(y)) (or F(y) C Be(F(2))),

respectively, where B.(A) = {y € X : d(z, y) < ¢, for some z € A}.
LEMMA 10. A mapping F :Y — F(X) is continuous at y € Y if and only if F

is upper and lower semi-continuous at y.

THEOREM 11. Let X be a compact manifold, and let f € H(X) be persistent.
Then the mappings a, w, §}, 2, CR are continuous at f.

PROOF: Let € > 0 be arbitrary. Since f is persistent, we can choose §; > 0 such
that if do(f, g) < 61 and z € X, then d(f"*(z), g"(y)) < €/3 for some y € X and all
n € Z. Let g € H(X) be such that do(f, g) < §;. Then for any z € X, there exists
y € X satisfying d(f"(z), ¢"(y)) < ¢/3 for all n € Z. This means that

ws(2) C Bea(wy(y)) C Beya ((9)), and

ay(2) C Beja(eg(y)) C Besa(als))-

Thus we have

U(f_)CB,(J(?)) andE(T)cB,(E@).

Since the mapping CR: H(X) — K(X) is upper semi-continuous at f, by Corollary
3(a) in [2], we can choose 6; > 0 such that if do(f, g) < §; then CR(g) C B.(CR(f)).
Let § = min(é;, 62), and let g € H(X) be such that do(f, g) < §. Since CR(f) =
Per(f) by Theorem 5, we have

CR(f) = Pex(F) C a(F) ¢ B. (w(9)) € B.(CR(a))

This implies that all considered mappings are lower semi-continuous at f. On the other
hand, we have

a(g) Uw(s) C CR(s) C B.(CR(f)) = B.(Pex(7)).
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This means that all considered mappings are upper semi-continuous at f. By Lemma
10, we complete the proof.

REMARKS 12: We know that K(X) is again a compact metric space. Let
K(K(X)) denote the space of all closed non-empty subsets of K(X) with the Hausdorff
metric p. Then for each f € H(X) and z € X, the set O(f, z) = {f*(z):n €}
may be interpreted as a point of K(X) and the set O(f) = {O(f, z):z € X} can be
interpreted as a point of K(K(X)). If we let O denote a mapping from H(X) into
K(K(X)), sending f € H(X) to O(f), then we can easily see that the mapping O is
continuous whenever f is persistent.
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