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RECURRENCE IN PERSISTENT DYNAMICAL SYSTEMS

SUNG KYU CHOI, CHIN-KU CHU AND KEON-HEE LEE

The purpose of this paper is to study the chain recurrent sets under persistent
dynamical systems, and give a necessary condition for a persistent dynamical sys-
tem to be topologically stable. Moreover we show that the various recurrent sets
depend continuously on persistent dynamical systems.

The abstract theory of dynamical systems distinguished various recurrence proper-
ties such as periodicity, Poisson stability, nonwanderingness, chain recurrence, et cetera.
The weakest property among them is the property of a point to be chain recurrent.

In [3], Hurley analysed the chain recurrent sets under topologically stable dynam-
ical systems, and Lewowicz [5] introduced the concept of persistence of a dynamical
system which is weaker than that of topological stability.

The purpose of this paper is to study the chain recurrent sets under persistent
dynamical systems, and give a necessary condition for a persistent dynamical system
to be topologically stable. Bronstein and Kopanskii [1] introduced the concepts of
weakly nonwandering set and chain recurrent set for dispersive dynamical systems (or
a dynamical system without uniqueness) and said that, in general, it remains unknown
whether or not the weakly nonwandering set is equal to the chain recurrent set. (See
Section 6 in [1]). We claim that for a dynamical system (with uniqueness) the weakly
nonwandering set is properly contained in the chain recurrent set. Moreover, Ombach
[7] showed that the various recurrence mappings (such as a, a>, Q, CR, etcetera) are
continuous at / if the system / has the P.O.T.P. (pseudo orbit tracing property) and
is expansive. Finally we prove that the various recurrence mappings are also continuous
at / if the system / is persistent.

We consider homeomorphisms (or dynamical systems) acting on a compact metric
space. Unless otherwise mentioned, we let X denote a compact metric space with
a metric d. Let H(X) denote the collection of all homeomorphisms of X to itself
topologised by the C°-metric

do(f, g) = sup{<f(/(z), g(x)) : *<=*} .
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/ G 3(X) is said to be topologically stable if for any e > 0 there exists S(e) > 0
such that if do(f, g) < 6 then there exists a continuous map h: X —* X satisfying
hg = fh and do(h, lx) < £, where l x is the identity map on X. The map h is called
the semiconjugacy from g to / . We say that / G H{X) is expansive if there exists
e(/) > 0 such that if <f(/n(z), fn(y)) < e for every n G Z, then x-y. Such numbers
e(/) are called expansive constants, f G B(X) is called a (or /3)-persistent if for any
E > 0 there exists 6(e) > 0 such that if do(f, g) < 6 and x £ X, then there is y G X

satisfying

d(fn(y), gn(x)) < e (or <£(/"(*), ff»(y)) < e),

respectively, for all n G Z.

Throughout this paper, it will be noted that a dynamical system means a discrete
dynamical system induced by a homeomorphism on X, and a persistent dynamical
system means both a and /^-persistent dynamical system.

LEMMA 1. A topologically stable dynamical system is persistent.

PROOF: It is straightforward. D

The following theorem gives a necessary condition for a persistent dynamical system
to be topologically stable.

THEOREM 2 . A persistent dynamical system is topologically stable if it is expan-

sive.

PROOF: Let / £ B(X) be persistent, and let e(/) be an expansive constant for
/ . Choose e > 0 satisfying e < e( / ) /4 . Given e > 0, there exists S > 0 such that if
do(f, g) < 6, then for any x G X, there is y G X satisfying

d(r(y),g
n(x))<e/2

for all n G Z. Define a map h: X —• X by h(x) — y, where y is an element in X

chosen by the property of persistence of / as above. Then the map h is well-defined.
In fact, let z be another element in X such that <f(/"(z), gn(x)) < e/2 for all n G Z.
Then we have d(fn(y), /"(«)) < £ for all n G Z. Since / is expansive, we get y = z.

Now we show that the map h is continuous. Put h(x) = y and h(x') — y', and let
A > 0 be given. Since / is expansive, we can choose N such that if d(fn(y), fn(y')) ^
e(/) for all -N < n < N then d(y, y') < A. Suppose not. Then, for each N S* 1,
there exists ap/, fejv G -X" such that

d(fn(aN), fn(bN)) < e(/) and d{aN, bN) > A,

for all — N < n ̂  N. Consider the sequences {a^} and {6jv}. Since X is compact, we

have aN -* a and bN -> b in X. Then we get d(a, b) ̂  A and d(fn(a), /n(6)) < e(/) ,
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for all n G Z. This contracts the expansiveness of / . Since g: X —» X is continuous,
given N, there exists r) > 0 such that if d(x, x') < TJ then d(gn(x), gn{x')) < e ( / ) /2
for all — N ^ n ^ N. Consequently we have

d(fn(y), fn(y')) < d(fn(y), gn(x)) + d(gn(x), g"(x'))

+ d(gn(xl),r(yl))<e(f),

if d(x, x1) < T) and -N < n < N. Thus we obtain d(y, y') = d(h(x), h(x')) < A. By
now, we have shown that for any A > 0 there exists t} > 0 such that if d(x, x') < t]
then d(h(x), h(x')) < A, that is, h is continuous. Moreover, the surjectivity of h can
be derived from the fact that / is /3-persistent.

To show that hg — fh on X, choose x £ X. Then there exists y G X satisfying
d(fn+\y), 5n+1(*)) < e/2 for all n G Z. Thus we get h(g(x)) = f(y) = /(*(*)), by
the definition of h. Hence we have hg = fh on X. This completes the proof of the
theorem. U

We say tha t f,gG H(X) are topologically conjugate if there exists h £

satisfying hg = fh, and the homeomorphism h is called topological conjugacy between
/ and g.

In the following theorem, we see that the a (or /? )-persistence is invariant under
a topological conjugacy.

THEOREM 3 . Any dynamical system which is topologically conjugate to an a (or
0 )-persistent dynamical system is a (or /3 )-persistent, respectively.

PROOF: Suppose that an a-persistent dynamical system / is topologically con-
jugate to a dynamical system g, and let h be a topological conjugacy between /
and g. Let e > 0 be given, and choose 0 < e' < e such that if d(a, b) < e' then
d(/i~1(o), ft-1(6)) < e for a, b G X. Since / is a-persistent, given e' > 0, there
exists 6' > 0 such that if do(f, fo)<6' then for any x £ X there is y G X satisfying
d(fn{y), fo(*)) < e' for all n G Z. Given 6' > 0, choose 0 < 6 < S' such that if
d(a, b) < S then d(h(a), h(b)) < 6'. Let ^0 G H(X) be such that do{g, go) < 6, and
put /o = hgoh~x. Then we have

d(h(g(x)), %o(*))) = d(f(h(x)), fo(h(x))) < 6'

for any i £ l , and so do(f, /o) < 6'. Since / is a-persistent, given h[x), there exists
h(y) G X such that

«*(/"(%)), fo(Hx))) = d(h(gn(y)), fc(tf (*))) < e>

for all n G Z. Thus we have d(gn(y), g^(x)) < e for all n G Z. This means that g is
a-persistent.
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Similarly we can show that any dynamical system which is topologically conjugate
to a /3-persistent dynamical system is also ^-persistent. D

Let / £ E{X). A point x £ X is said to be periodic if there exists n ^ 1 satisfying
/ n (x ) — x. The set of all periodic points of / will be denoted by Per(/). A point
x £ X is called nonwandering if for any neighbourhood U of x, there exists n ^ 1
such that fn(U) D U ^ 0. We denote by il(f) the set of all nonwandering points of
/ . Let x and y be any points in X, and let t > 0 be an arbitrary number. A finite
sequence {xt}£=b m -^ *s called an e- chain from x to y provided that

xo = x, xn - y and d(/(zi)> z i + 1) < e,

for i = 0,1, ••• , n — 1. We say that x is chain equivalent to y if for any e > 0 there
exist two e-chains: from x to y, and from y to x. A point x £ X is called c/tam
recurrent if it is chain equivalent to itself. We denote by CR(f) the set of all chain
recurrent points of / . There is a natural equivalence relation defined on CR(f): x ~ y

if and only if x is chain equivalent to y. Equivalence classes under this equivalence
relation are called chain components of / .

A basic problem is to determine when a chain recurrent point is approximated by
periodic points of / , or more generally to determine if each e-chain can be approximated
by an actual orbit of / . Here we claim that this problem can be done for a-persistent
dynamical systems on topological manifolds. To show this we need a lemma given in
[6].

LEMMA 4 . Let X be & compact manifold of dim > 2 with metric d, and let

e > 0 be arbitrary. Then there exists 6(e) > 0 such that if {(asi, yi), • • • , (xn, yn)} is

a finite set of points in X X X satisfying:

(i) for each i = 1, • • • , n , d(xit y.) < 6; and

(ii) ifi^j, then x, ^ Xj and yt ^ yj;

then there is h £ H(X) with do(h, lx) < £ and h(xi) — yi for t = 1, • • • , n .

THEOREM 5 . Let X be a compact manifold, and let f £ H(X) be a-persistent.

Then the set of all periodic points of f is dense in CR(f).

PROOF: If X is one-dimensional then the proof is clear. So, we may assume that
the dimension of X is larger than 1. Let e > 0 be arbitrary. Then we select £i (e) > 0
as in Lemma 4. Since / is a-persistent, there exists ^2(^1) > 0 such that if do(f, g) < 62

and x £ X, then d(fn(y), gn(x)) < £1 for some y £ X and all n £ Z. Given 62 > 0,
we choose ^1(^2) > 0 as in Lemma 4. Let x £ CR(f), and let {x0, ••• , xm} be a
^s-chain from z to x. Then the set {(f{x0), Xi), ••• , (/(s:m_i), xm)} satisfies the
hypothesis of Lemma 4. Thus there exists h £ H(X) such that

do(h, lx) < 62 and
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for t = 0, 1, • • • , m - 1. Put g = hf. Then we have do(f, g) < S2 and gm{x) = x.
Hence there is y £ X satisfying d(gn(x), fn(y)) < Si for all n € Z. Consider the
set {(x, y), (g{x), f{y)), ••• , {gm{x), fm{y))} in X x X satisfying the hypothesis of

Lemma 4. Then we have h' £ H(X) such that

do(h', lx) < e and h'(g\x)) = /*(„)

for i = 0, 1, • • • , m. In particular, we have

fm(y) = h'(gm(x)) = h'(x) = y.

This means that B(x, e) ("1 Per(/) ^ 0, and so completes the proof. U

In [3], Hurley showed that if / is a topologically stable diffeomorphism on a smooth
compact Riemannian manifold X then each chain component of / contains a dense
orbit. Moreover, he claimed that if / is topologically stable, X is connected and CR(f)
has interior then CR(f) = X. We extend these results to a-persistent homeomorphisms
on a compact manifold.

THEOREM 6 . Let X be a. compact manifold, and let f £ H{X) be a-persistent.
Then each ciiain component of f contains a dense orbit.

PROOF: If X is one-dimensional this is clear. Hence we may assume dimX ^ 2.
Let F be a chain component in CR(f), and let U and V be any nonempty open
sets in F. For any x £ U and y £ V, we choose e > 0 such that B(x, e) C U and
B{y> e) C V. Since / is a-persistent, there exists 6(e) > 0 such that if do(f, g) < 6
then d(fn(z), gn(x)) < e for some z £ X and all n £ Z. Given 6 > 0, we select S'(6)
as in Lemma 4. Since x, y £ F, we can choose a i'-chain {xo, • • • , xm} from x toy .
Then there exists h £ H(X) such that

do(h, 1X) < S and &(/(»<)) = xi+1

for t = 0, 1, • • • , m — 1. If we let g = hf, then there is z £ X satisfying
d(/n(z), gn(x)) < e for all n £ Z. In particular, we have d{x, z) < e and
d(fm(z), gm(x)) < e. Since gm{x) = y, we get fm(z) £ fm(U) n V ^ 0. " This
implies that F has a dense orbit. D

THEOREM 7 . If CR(f) is connected, then X is the chain component of any point
in X. In particular, we have CR(f) = X.

PROOF: Let e > 0 be fixed and x £ X. Let F(x, e) = {y £ CR(f) : there exist
two e-chains, from x to y and from y to x}.

First we show that F(x, e) is open and closed in CR(f). If y £ F(x, e), then
there exist two e-chains: {xi}^ from z to y, and {yj}"=1 from y to x. Since
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f{y) £ B(yi> £)> w e c a n choose 61 > 0 such that B(f(y), Si) C B(yi, e) . If we use the
continuity of / , we can select 62 > 0 satisfying

f(B(y, S2)) C B(f(y), S1) C B(yu e).

Let U = B(y, e) D B(f(xm-i), e). Then U is an open neighbourhood of y contained
in F(x, e). In fact, for any z G U, the sequence {xo, X\, • • • , xm_i, z) is an e-chain
from x to z, and the sequence {z, j/i, •• • , yn} is an e-chain from z to x. Thus
we have U C F(x, e). This shows that .F(x, e) is open in CR{f). To show that
F(x, e) is closed in CR(f), we choose a sequence {x{} in F(x, e) which converges to
x° E X. Then there exists n £ N such that d(x\ x°) < e/2 for all i ^ n. Since
zn G F(x, e) C C7/?(/), we can choose an e/2-chain {a;J, x?, • • • , xj} from xn to
x™. Consider the sequence {x", x", • • • , x±_ly x0}. Then it is an e-chain from xn to
x°. Similarly we can construct an e-chain from x° to 1". This means that -F(x, e) is
closed in CR(f).

Next we show that X is the chain component of x. Since CR(f) is connected,
we have CR(f) = F(x, e). Let F(x) be the chain component of x. Since .F(x) =
P| F(X, e), the proof is completed by showing that CR(f) — X. So, we suppose that

e>0

CR(f) ^ X. Then there exists y G X with y <£ CR(f). Let uf(y) = {Z € X :
fn'(y) ~* z f°r some rii —* —00}, and let z £ Wf(y). Then we have

* G «,(y) C fi(/) C CR(f).

Since CR(f) = F(x, e), we can choose two e-chains: {x,-}*_0 from x to z, and
{zi}f_0 from z to x. Using the continuity of / , we can select m < 0 such that

)> /m+1(l/)) < e- T n e n t h e sequence

is an e-chain from x to y. Similarly we can construct an e-chain from y to x. Thus
we have y G F(x, e). This contradicts the fact that y £ CR(f), and so completes the
proof. D

Bronstein and Kopanskii introduced the notions of weakly nonwandering set and
chain recurrent set for a dispersive dynamical system (or a dynamical system without
uniqueness) on a compact metric space, and said that, in general, it remains unknown
whether or not the weakly nonwandering set is equal to the chain recurrent set (see
Section 6 in [l]). Clearly, a dynamical system (with uniqueness) on a compact metric
space is also a dispersive dynamical system.

Similarly we introduce the concept of weakly nonwandering set of a dynamical
system on a compact metric space.
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A point x G X is called weakly nonwandering (or weakly periodic) for / £ H(X) if
for any e > 0 there exists g £ B{X) such that do(f, g) < e and x is nonwandering (or
periodic) for g, respectively. The set of all weakly nonwandering (or weakly periodic)
points for / will be denoted by !)„(/) (or .?«,(/)), respectively. It is easy to show that
nw(f) is closed and Sl(f) C !!„(/) .

In the following example, we show that for a dynamical system / (with uniqueness),
the set ftti,(r) is not equal to CR(f).

EXAMPLE 8: Let X be a subset of R2 given by X = S1UL, where S1 = {(x, y) G
R2 : x2 + y2 = 1} and L = {(x, y) £ R2 : - 1 < x < 1 and y = 0}. Then we define
a homeomorphism f\ on S1 satisfying: (—1, 0) and (1,0) are fixed points of f\ , and
for any (x, y) € S1 — {(—1, 0), (1, 0)} the first coordinate of /i(x, y) is larger than
x. Also we define a homeomorphism /j on L satisfying: for any (x, y) £ L the first
coordinate of /^(x, y) is less than x. Then we can define a homeomorphism / on the
compact metric space X such that / \§i= / i and / \L= fa. For the homeomorphism
/ , we have CR{f) = X and Slw(f) = { ( -1 , 0), (1, 0)}.

THEOREM 9 . For any f G H(X), the set Uw(f) is contained in CR(f), and the
converse holds if X is a compact manifold.

PROOF: Let x G n t o ( / ) , and let e > 0 be arbitrary. Then we have g G H(X)
such that do(f,g) < e/4 and x G fi(<7). Choose 8 < e/4 such that if d(x, y) < 6
then «f(/(x), g(x)) < e/4 and d(g(x), g(y)) < e/4. Since x £ fi(s), there exists n > 1
satisfying gn(B(x, 6)) l~l J5(x, £) ^ 0. If n = 1 then the sequence {x, x} is an e-chain
for / . In fact, if we choose y £ B(x, S) with g(y) G B{x, S), then we get

«*(/(«), x) < d(/(x), 5(x)) + d(g(x), g(y))

+ d(9(y), x) < e.

If n > 1 then there exists y G B{x, 8) with gn{y) G B(x, 5). Then the sequence
{x, g(y), • • • , gn~1(y), *} is an e-chain from x to x. This shows that x G CR(f).

The converse can be derived in the proof of Theorem 6. D

For any / G B(X) and any x G X, we let af(x) = {y G X : fni(x) ->
y for some nj —» oo} and w/(x) = {y G X : fn'{x) —» y for some n,- —* —oo}. Then the
sets a(f) = U ctj(x) and w(/) = IJ w/(x) are called the negative and positive limit

x£X x€X

seta for / , respectively. Let us consider the metric space K(X) = {A C X : A is closed}
with the Hausdorff metric p

p(A, B) = max{supd(a, B), sup d(A, b)}.
£A bB

Let a, w, 0 , n«,, CR denote mappings E(X) -»• ^(J t ) sending / to a ( / ) , w(
. " » ( / ) , Cfl(/), respectively.
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In [7], Ombach proved that the mappings defined as above are continuous at / if
/ has the P.O.T.P. and is expansive. It is well-known that a dynamical system which
is both expansive and possesses the P.O.T.P. is topologically stable. By Lemma 1, a
topologically stable dynamical system is persistent. Finally, we show that the mappings
defined as above are also continuous at / if / is persistent. To show this we need the
concept of upper and lower semi-continuity.

Let Y be a topological space. A mapping F: Y —» K(X) is upper (or lower)
aemi-coniinuoua at y G Y, if for any e > 0 there exists a neighbourhood U of y such
that for any z 6 U we have

F(z) C Be(F(y)) (or F(y) C B.{F{z))),

respectively, where Be(A) = {y G X : d{x, y) < e, for some x G A}.

LEMMA 10. A mapping F :Y ~* F(X) is continuous at y £Y if and only if F
is upper and lower semi-continuous at y.

THEOREM 1 1 . Let X be a compact manifold, and let f G H{X) be persistent.

Then the mappings a, u>, SI, Slw, CR are continuous at f.

PROOF: Let e > 0 be arbitrary. Since / is persistent, we can choose Si > 0 such
that if do(f, g) < h and x G X, then d(fn(x), gn(y)) < e/3 for some y e X and all
n £ Z . Let g £ H(X) be such that do(f, g) < 6\ . Then for any x € X, there exists
y e X satisfying d(fn(x), gn(y)) < e/3 for all n G Z. This means that

«"/(*) C Bt/2(wa(y)) C B.,2(ui{g)), and

«/(*) C B./a(a,(y)) C tf./

Thus we have
C B.(u(gf) and ~ojfj C B.

Since the mapping CR: B~(X) —> K(X) is upper semi-continuous at / , by Corollary
3(a) in [2], we can choose S2 > 0 such that if do(f, g) < S2 then CR(g) C Be(CR{f)).

Let 6 = min(£i, 62), and let g G H(X) be such that do{f, g) < S. Since CR(f) =

Per(/) by Theorem 5, we have

CR(f) = Pe7(7) C^(f)CBe(^)) C Be(CR(g)).

This implies that all considered mappings are lower semi-continuous at / . On the other

hand, we have

C CR(g) C Be(CR(f)) - Be
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This means that all considered mappings are upper semi-continuous at / . By Lemma
10, we complete the proof. D

REMARKS 12: We know that K(X) is again a compact metric space. Let

K(K(X)) denote the space of all closed non-empty subsets of K(X) with the Hausdorff

metric p. Then for each / G H(X) and x G X, the set O(f, x) = {fn(x) .net}

may be interpreted as a point of K(X) and the set O(f) = {O(f, x) : x £ X} can be

interpreted as a point of K(K(X)). If we let O denote a mapping from H(X) into

K(K(X)), sending / 6 B(X) to O(f), then we can easily see that the mapping 0 is

continuous whenever / is persistent.
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