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The behaviour of a collisional plasma that is optically thin to cyclotron radiation is
considered, and the distribution functions accessible to it on the various time scales in the
system are calculated. Particular attention is paid to the limit in which the collision time
exceeds the radiation emission time, making the electron distribution function strongly
anisotropic. Unusually for plasma physics, the collision operator can nevertheless be
calculated analytically although the plasma is far from Maxwellian. The rate of radiation
emission is calculated and found to be governed by the collision frequency multiplied by
a factor that only depends logarithmically on plasma parameters.
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1. Introduction

In the presence of a strong magnetic field, charged particles execute helical gyromotion
around the magnetic field lines. The Lorentz force acts on particles in a direction
perpendicular to both the magnetic field lines and the particle motion through them,
causing the particles to accelerate, and in turn to release energy in the form of
electromagnetic waves, ‘cyclotron radiation’. Plasmas with sufficiently large particle
density, such as fusion plasmas, are optically thick to such emissions, meaning that any
energy released through this process is simply reabsorbed back into the plasma. However,
certain plasma systems are optically thin to cyclotron emission and this radiated energy
can therefore be lost to the surroundings. These optically thin plasmas are the focus of this
current work. It is the purpose of the present paper to show how these emissions lead to the
manifestation of anisotropy in the plasma distribution function, and how the distribution
evolves in these regimes.

In this work, paper (I) of the series, our contributions are: (a) to show that cyclotron
emission results in strongly anisotropic distribution functions on the radiation time scale;
(b) to calculate the evolution of the distribution function under collisional scattering
which, in the absence of any radiation terms, acts to drive the plasma towards Maxwellian
behaviour; (c) to show that this behaviour manifests itself under very general conditions;
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and (d) to present the applications and the limitations of this theory. In the companion
work, paper II, we apply this theory to the first laboratory electron–positron plasma
experiment. We begin in § 2 by briefly recapitulating the single-particle picture of an
electron emitting cyclotron radiation, before using this description to explore the relaxation
of the distribution function in a collisionless plasma. In § 3, collisions are introduced
back into the picture and used to show that an initially isotropic distribution will relax
to a distribution that is Maxwellian over the perpendicular velocity. In computing this
distribution we introduce a free function T⊥; in §§ 4 and 5, the evolution of this free
function is explored. In § 6, we show that the conclusions drawn in the previous sections
actually hold in quite general magnetic geometry; subsequently, we discuss some of the
broad classes of applications in § 7.

2. The collisionless system in brief

Whilst we endeavour to provide a physical understanding of this theory in general
magnetic geometries, let us first understand the basic premise before embarking on a more
detailed calculation. To this end, we begin with a straight, constant magnetic field and, for
the time being, neglect collisions in the plasma.

The fundamental aim of this section is thus to understand the following: (a) in the
most simple case, cyclotron emission is responsible for an exponential decay of the
perpendicular kinetic energy on the radiation time scale and (b) the inclusion of cyclotron
emission, and the absence of collisions, results in a strongly anisotropic distribution
function.

2.1. Cyclotron cooling
The emission of cyclotron radiation by particles in a plasma gives rise to a reaction
force which must be included in the kinetic equation. The theory of relativistic plasmas,
accounting for this radiation reaction by including the Abraham–Lorentz reaction force
in the kinetic equation, has been developed by Andersson, Helander & Eriksson (2001),
Hazeltine & Mahajan (2004) and subsequent authors. Here, we begin by specialising these
results to a non-relativistic plasma.

The non-relativistic Abraham–Lorentz reaction force is given by

K = e2

6πε0c3
ȧ, (2.1)

where a is the acceleration vector and e is the charge. Following the arguments of
the aforementioned authors, it can be seen that, to leading order in a small-gyroradius
expansion, the change in perpendicular energy, w⊥, of a non-relativistic point charge as it
accelerates in a magnetic field is given by Larmor’s formula

(
dw⊥
dt

)
rad

= − e2a2

6πε0c3
, w⊥ = mv2

⊥
2

, (2.2a,b)

where v is the particle velocity vector and m is the rest mass. Throughout this work, the
subscripts ⊥ and ‖ indicate directions perpendicular and parallel to the magnetic field,
respectively. The centripetal acceleration of a particle undergoing gyromotion is given by

a = eB
m

v⊥, (2.3)
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and hence it follows that (
dw⊥
dt

)
rad

= − e4B2

3πε0(mc)3
w⊥. (2.4)

Simply put, the plasma will radiate its perpendicular kinetic energy on a time scale given
by the radiation time:

τr = 3πε0(mc)3

e4B2
. (2.5)

It is perhaps easiest to understand the influence of radiative emission when the change of
energy is rewritten in terms of the perpendicular and parallel components of the velocity.
We thus obtain (

dv⊥
dt

)
rad

= − v⊥
2τr

,

(
dv‖
dt

)
rad

= 0. (2.6a,b)

Equations (2.6a,b) summarise the average effect of radiation reaction on the plasma.
Fundamentally, it is these equations which will give rise to anisotropy in the distribution
function.

It is pertinent to point out at this stage that collisions, whose effect is to isotropise the
plasma, can mediate this cooling process due to the scattering of the velocity vector, as a
result allowing the conversion of energy between perpendicular and parallel components.
We will return to this discussion in § 3, following a discourse on the simpler collisionless
case.

2.2. Collisionless kinetic equation
The kinetic equation governing the evolution of the distribution function f (r, v, t) in the
absence of collisions is given by

∂f
∂t

+ ∇ · (vf ) + ∇v ·
[

q
m

(E + v × B) f +
(

dv

dt

)
rad

f
]

= 0, (2.7)

where ∇v stands for the velocity derivative:

∇v = x̂
∂

∂vx
+ ŷ

∂

∂vy
+ ẑ

∂

∂vz
. (2.8)

Cyclotron emission is included in the kinetic equation through the inclusion of (2.6a,b) in
the usual collisionless Vlasov equation.

We will immediately specialise to the case where the magnetic field is constant, B = Bb̂,
and there is zero electric field, E = 0. Note that, in this limit, we have assumed the plasma
is homogeneous and there is no spatial dependence of the distribution function. We then
write (2.7) in cylindrical v-space coordinates (v⊥, α, v‖) to obtain

∂f
∂t

+ 1
v⊥

∂

∂v⊥
(v⊥v̇⊥ f ) + ∂

∂α
(α̇f ) = 0, (2.9)

where we have used that v̇‖ = 0. The final term in this equation can then be eliminated by
averaging over the gyroangle α.
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It is fruitful to write the resulting equation in terms of the perpendicular energy of the
particles, so as to obtain

∂f
∂t

− w⊥
τr

∂f
∂w⊥

= f
τr

. (2.10)

This equation can then be easily solved via the method of characteristics; the general
solution is given by

f (w⊥, w‖, t) = F0(w⊥ et/τr , w‖)et/τr . (2.11)

That is, the distribution function will be a function of the parallel and perpendicular kinetic
energies, the latter of which will decay exponentially quickly on the radiation time scale.

As an illustrative example, if the initial distribution is Maxwellian, then

f (w⊥, w‖, t) = n
( m

2πT

)3/2
exp

[
− 1

T
(w⊥ et/τr + w‖) + t

τr

]
, (2.12)

which corresponds to a bi-Maxwellian

f (w⊥, w‖, t) = n

(
m

2πT2/3
⊥ T1/3

‖

)3/2

exp
(

−w⊥
T⊥

− w‖
T‖

)
(2.13)

with T‖ = T = const. and
T⊥(t) = T e−t/τr . (2.14)

At this stage of our investigation, we have been able to accomplish the first fundamental
aim of this paper; namely, we now understand the following. Firstly, in the most simple
case, cyclotron emission is responsible for an exponential decay of the perpendicular
energy on the radiation time scale whilst the parallel energy is kept constant. Secondly,
the inclusion of radiative emission, and the absence of collisions, results in a strongly
anisotropic distribution function on the radiation time scale.

2.3. Validity of the collisionless approach
A caveat here is that, of course, many plasmas are in fact collisional. It is therefore
expected that eventually collisions will come into play and must be taken into account.

Following Braginskii (1965), the conventional definitions of the electron–ion and
electron–electron collision times are given by

τei = 6
√

2π3/2ε2
0m1/2

e T3/2
e

Ze4ne ln Λ
, τee = Zτei (2.15a,b)

respectively, where ln Λ is the Coulomb logarithm. We will also assume bulk neutrality
throughout this work so that ne = Zni. From the above expressions, we can see that the
collision time will decrease as the plasma cools.

We might therefore envision the following scenario. A plasma might begin in a regime
where the radiation time τr is smaller than the initial collision time τc = min(τee, τei) and
hence the collisionless theory will be applicable at first. However, the collision time itself
will decrease as the plasma cools and hence this assumption will be violated after sufficient
time has elapsed. As a result, collisional effects must be taken into consideration.

We thus imminently turn our attention to the collisional problem. However, before doing
so, let us allow ourselves a small digression to say something about the nature of cyclotron
radiation.
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2.4. Cyclotron cooling and plasma waves
Before we embark on solving the collisional kinetic equation, let us first turn our attention
to the nature of the electromagnetic waves in play. The cyclotron radiation that is being
generated has to propagate through our optically thin plasma as some electromagnetic
plasma wave (Krall & Trivelpiece 1986).

For the reasons outlined in the previous section, we declare an interest in optically thin
plasmas where the radiation time is (at least initially) much shorter than the collision time.
That is, we declare an interest in the limit

τr

τc
= mn ln Λ

πε0B2

(
c
vth

)3

= ln Λ

π

(
ωp

Ωc

)2 ( c
vth

)3

� 1, (2.16)

where have introduced the two characteristic frequencies in the plasma, namely the plasma
frequency and the cyclotron frequency:

ω2
p = ne2

mε0
, Ωc = eB

m
. (2.17a,b)

Thus, it is easy to see from this ordering that electromagnetic waves with frequencies
comparable to the cyclotron frequency are almost light waves:

ω2(∼Ω2
c ) = ω2

p + k2c2 =⇒ ω � kc. (2.18)

That is, our cyclotron radiation is simply photon emission which can immediately escape
the plasma because of the optical thinness.

We now turn our attention to the collisional problem.

3. Lowest-order collisional kinetic equation

Our aim now is to deduce the class of distribution functions to which a radiating
collisional plasma can relax. When collisions are retained, the kinetic equation satisfied
by the distribution function f in straight field lines is

∂ f
∂t

− 1
τr

∂

∂μ
(μ f ) = C( f ), μ = mv2

2B
, (3.1a,b)

where we have opted to write this equation in terms of the magnetic moment μ instead
of the perpendicular velocity. The distribution function can now be changed both via
radiation (the second term on the left-hand side) and also via collisions (the term on the
right-hand side). The Landau collision operator for Coulomb interaction (Landau 1936) is
C = Cee + Cei with

Cab( f ) = σab∇ ·
∫

ff ′U · (∇v ln f − ∇′
v ln f ′) d3v′ (3.2)

and

σee = σ = nee4 ln Λ

8πε2
0m2

e

, σei = Zσ, (3.3a,b)

if f is normalised so that ∫
f d3v = 1. (3.4)
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Here we have also introduced U , the second-rank tensor:

U(u) = u2I − uu
u3

, (3.5)

where u = v − v′ is the difference in velocity vectors between colliding particles and I is
the identity matrix.

The collision frequency is of order σ/v3
tha and we are interested in the limit στr/v

3
tha � 1,

where vtha is the thermal velocity of species a. That is, for the reasons outlined in § 2, we
are declaring an interest in optically thin plasmas where the radiation time is (at least
initially) much shorter than the collision time. The key idea here is that, in this limit, by
the time collisions enter the picture our plasma will have already radiated a large fraction
of its perpendicular energy through the cyclotron cooling process outlined earlier. In this
limit f will be strongly anisotropic, due to the cyclotron cooling process, and we write

v⊥ = εx⊥, u = v‖ − v′
‖ + ε(x⊥ − x′

⊥), ε � 1. (3.6)

Our strategy is then to expand the collision operators in terms of this small parameter.
It is important to point out here that ε, effectively a measure of v⊥/v‖, might itself be

expected to change in time, which could have ramifications later in our analysis. However,
these concerns can be mitigated by noting that the window of time in which this theory is
valid is only a few collision times. Thus we expect ε will not change appreciably and will
certainly remain ε � 1. This is explored further in § 5.3. In what follows, ε is treated as a
constant.

We begin with the electron–electron collision operator. To lowest order in ε we obtain

Cee( f ) � σ

v⊥

∂

∂v⊥
v⊥ · ∇vf

∫
f ′

u
d3v′. (3.7)

Great care must be taken when dealing with the integral in (3.7) which is divergent when
v‖ = v′

‖. We may evaluate

∫
f ′

u
d3v =

∫
f ′ d3v√

(v‖ − v′
‖)2 + ε2(x − x′)2

= 2
∫ ∞

−∞
f ′(v‖, v′

⊥)| ln ε|2πv′
⊥ dv′

⊥ ≡ g(v‖)

(3.8)
since, by partial integration, for any suitably well-behaved f we have

∫ ∞

0

f (x)√
x2 + ε2

dx =
[

f (x) ln(x +
√

x2 + ε2)
]∞

0
−
∫ ∞

0

df
dx

ln(x +
√

x2 + ε2) dx, (3.9)

where ∫ ∞

0

df
dx

ln(x +
√

x2 + ε2) dx (3.10)

remains finite as ε → 0. Thus, it follows that

Cee( f ) � σg(v‖)
v⊥

∂

∂v⊥
v⊥

∂f
∂v⊥

. (3.11)
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The electron–electron collision term is larger than the electron–ion collision term,

Cei( f ) = Zσ
∂

∂v
·
∫

v2I − vv

v3
ff ′ (∇v ln f − ∇′

v ln f ′) d3 v′ (3.12)

= Zσ∇v ·
(

v2I − vv

v3
· ∇vf

)
(3.13)

= Z
σ

v⊥

∂

∂v⊥

(
v⊥ · ∇vf

v‖

)
, (3.14)

provided Z = O(1). This can be clearly seen by noting that

Cei

Cee
∼ Zε. (3.15)

The lowest-order kinetic equation thus becomes

− 1
v⊥

∂

∂v⊥

(
v2

⊥
2

f
)

= τrσg(v‖)
v⊥

∂

∂v⊥
v⊥

∂f
∂v⊥

, (3.16)

which can be integrated to give

f (v‖, v⊥, t) = C(v‖, t) exp
(

− mv2
⊥

2T⊥(v‖, t)

)
, T⊥ = 2στrmg(v‖, t). (3.17a,b)

The integration constant C is determined by the requirement that

N(v‖, t) =
∫ ∞

0
f 2πv⊥ dv⊥ = 2πT⊥

m
C = 4πστrg(v‖)C (3.18)

should equal g(v‖)/2| ln ε|, which gives C = 1/(8πστr| ln ε|) and thus

f (v‖, v⊥, t) = 1
8πστr| ln ε| exp

(
− mv2

⊥
2T⊥(v‖, t)

)
. (3.19)

It is interesting to note that the distribution of particles over perpendicular velocities
is Maxwellian, but not for the usual reason. Normally, this happens because of a
balance between two terms in the collision operator, describing friction (drag) and energy
diffusion, respectively. The former term slows particles down and the latter increases their
average energy. The two terms balance exactly for a Maxwellian distribution. In (3.19),
radiative energy loss has replaced the collisional friction, and the result is a Maxwellian in
v⊥ with a different (lower) perpendicular temperature than in the purely collisional case.

We note that the distribution function only depends on v‖ through the function T⊥(v‖, t).
We can determine this function by taking a moment of the kinetic equation.

4. Evolution of the perpendicular density

The moment N defined in (3.18) can be seen to satisfy

∂N
∂t

=
∫ ∞

0
C( f )2πv⊥ dv⊥. (4.1)

In solving this equation, we obtain the temperature T⊥ through (3.18) and can thus
ascertain the distribution function f through use of (3.19). Let us first remark on the
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8 D. Kennedy and P. Helander

nature of (4.1). In deriving (4.1), we have integrated the kinetic equation (3.1a,b) over
perpendicular velocities. In doing so, we have eliminated the radiation term and instead
isolated the slow evolution of the distribution over parallel velocities. We can think of the
evolution of an initial isotropic distribution function, in the collisional regime, as being
partitioned into two disparate stages:

(i) Firstly, the distribution function will quickly radiate most of its perpendicular energy
and relax to a form which is Maxwellian over perpendicular velocity as per (3.19).

(ii) Secondly, on a longer time scale, the distribution over parallel velocities will evolve
according to (4.1).

It is this slow behaviour (ii) that we are now interested in probing. We will soon see
that the precise nature of this evolution depends on the specific ordering satisfied by the
plasma parameters.

In order to ascertain the time evolution of N, we thus require the following moments of
the collision operators:

Iee ≡
∫

Cee( f ) d2v⊥, Iei ≡
∫

Cei( f ) d2v⊥. (4.2a,b)

It can be shown that the leading-order contributions to these two terms are given by

Iee = −σ | ln ε|∂
2N2

∂v2
‖

, Iei = Zσ
∂

∂v‖

(
N

v‖|v‖|
)

. (4.3a,b)

The details of the calculation are relegated to appendix A. It then follows that (4.1)
becomes

∂N
∂t

= −σ | ln ε|∂
2N2

∂v2
‖

+ 2Zσ
∂

∂v‖

(
N

v‖|v‖|
)

(4.4)

or, more compactly, we can write

∂N
∂τ

= ∂N
∂v‖

(
N

v‖|v‖| − α
∂N2

∂v‖

)
, τ = 3

4
√

πv3
th

t
τei

, α = | ln ε| 1
2Z

. (4.5a–c)

Once again, we have been able to successfully reduce our integro-differential evolution
equation (4.1) into an equation involving only differential operators (4.5a–c). The two
terms on the right-hand side of (4.5a–c) have very different character. The first one
describes friction on the electrons from collisions with the ions, which causes the former
to slow down in the parallel direction. As usual for Coulomb collisions, the collision
frequency decreases with increasing speed, which here causes the singularity at v‖ = 0.
The second term describes electron–electron collisions, whose effect is to scatter the
velocity in a peculiar way, causing ‘anti-diffusion’ in v‖. This phenomenon can be
understood as follows. Most electron–electron collisions occur between particles with
similar velocities v‖ � v′

‖, and the local (in parallel velocity space) collision frequency
is thus proportional to N, making this term quadratic in N (particles with given v‖ mostly
collide with each other). The effect of such collisions is to convert parallel kinetic energy
to perpendicular energy, and thus to increase T⊥, which according to (3.18) leads to an
increase in N. A local accumulation of particles somewhere in parallel velocity space will
thus tend to grow at the expense of neighbouring regions, making the distribution function
undergo ‘anti-diffusion’ in v‖.
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Despite its relatively simple form, (4.5a–c) is a nonlinear parabolic partial differential
equation. It seems impossible to make analytical progress in full generality here, but
nevertheless some insight into the system can be gleaned by appealing to various limiting
forms.

5. Limiting forms of the perpendicular density

We note that, from (4.3a,b), it is easy to see that the moments of the collision operator
(which gives rise to the different terms in (4.5a–c)) are ordered:

Iei

Iee
∼ Z

| ln ε| . (5.1)

This is to be compared and contrasted to the ordering of the collision operators themselves:

Cei

Cee
∼ Zε. (5.2)

Based on these different orderings, we can turn to solving equation (4.5a–c) in two distinct
limits:

(A) : | ln ε| � Z � 1
ε
, (5.3)

(B) : Z � | ln ε| � 1
ε
. (5.4)

In both of these limits, we are justified in dropping the electron–ion collision operator at
lowest order as discussed in § 3. This approximation gives rise to the rapid evolution of the
distribution function towards (3.19) at lowest order.

5.1. Limit (A): neglecting the contribution from electron–electron collisions
In limit (A), we are justified in neglecting the contribution of Iee whilst retaining that of
Iei, noting that this is still consistent with the derivation of (3.19) providing the required
ordering is satisfied. In this instance, (4.5a–c) becomes

∂N
∂τ

= ∂

∂v‖

(
N
v2

‖

)
. (5.5)

The equation has been reduced to a quasilinear partial differential equation and so is
amenable to solution by the method of characteristics. We thus obtain the general solution

N(v‖, τ ) = v2
‖F

(
v3

‖
3

+ τ

)
. (5.6)

So, if we start from a Maxwellian distribution initially

N(v‖, 0) =
(

m
2πT‖

)1/2

exp

(
−mv2

‖
2T‖

)
, (5.7)

then

N(v‖, τ ) =
(

m
2πT‖

)1/2 v2
‖

(v3
‖ + 3τ)2/3

exp
(

− m
2T‖

(v3
‖ + 3τ)2/3

)
. (5.8)
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10 D. Kennedy and P. Helander

From this equation, we can also obtain an expression for the perpendicular temperature:

T⊥(v‖, τ ) = 4στrm| ln ε|
(

m
2πT‖

)1/2 v2
‖

(v3
‖ + 3τ)2/3

exp
(

− m
2T‖

(v3
‖ + 3τ)2/3

)
. (5.9)

It is important to recall that this solution was for v‖ > 0, which means that, despite
appearances, both T⊥ and N are continuous. For v‖ < 0 we obtain the same solution as
above with v‖ → −v‖.

5.1.1. Rate of energy loss
A quantity of direct experimental interest is the amount of power radiated by the plasma.

This can be calculated by looking at the rate of change of energy loss:

P = −dW
dt

, (5.10)

where we have defined the total thermal energy stored in the plasma (per unit volume):

W =
∫

1
2 mnv2f d3v. (5.11)

The energy stored can be seen to satisfy the equation

dW
dt

= −W⊥
τr

, W⊥ =
∫

1
2 mnv2

⊥f d3v. (5.12a,b)

Thus, it suffices to calculate W⊥ in order to find the power radiated by the plasma. This is
given by evaluating

W⊥ =
∫

1
2

mnv2
⊥f d3v

=
∫

mn
8στr| ln ε|v

3
⊥ exp

(
− mv2

⊥
2T⊥(v‖, t)

)
dv‖ dv⊥

=
∫

nT⊥(v‖, t)2

4στrm| ln ε| dv‖, (5.13)

where we have used (3.19) to carry out the v⊥ integral. We arrive at

W⊥( y)
W⊥(0)

= 2√
π

∫ ∞

0

x4

(x3 + y)4/3
exp(−(x3 + y)2/3) dx, (5.14)

where we have normalised v‖ and τ to the electron thermal velocity by writing

v‖ = vthx, 3τ = v3
thy, vth =

√
2T‖
m

. (5.15a–c)

The integral (5.14) cannot be expressed in terms of standard mathematical functions.
Instead, we must turn to numerically evaluating this function. Firstly, however, we can
determine the behaviour of (5.14) in the long-time and short-time limits.
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FIGURE 1. The ratio of perpendicular energy at normalised time y = (9
√

π/4)t/τei to the initial
perpendicular energy, a quantity that is proportional to the rate of energy loss in the plasma. The
blue curve is the calculated rate of energy loss from (5.14). The red curve is the asymptotic
solution for y 
 1 given by (5.16). The purple curve is the asymptotic solution for y � 1 given
by (5.17). This figure is for the perpendicular energy loss in limit (A).

In the limit y 
 1 we obtain (see appendix 1)

W⊥( y)
W⊥(0)

�
(

2
3π

)8/9

Γ

(
5
3

)(
t
τei

)−7/9

exp

(
−
(

9
√

π

4
t
τei

)2/3
)

. (5.16)

In the limit y � 1 we obtain (see appendix 2)

W⊥(t)
W⊥(0)

� 1 − Γ (5/3)Γ (2/3)

Γ (7/3)

(
128
3π

)1/6 ( t
τei

)1/3

. (5.17)

In figure 1 we show the full numerical solution of (5.14) as well as the analytic solution
for the long-term and short-term behaviour, given by (5.16) and (5.17), respectively.
Some caution must be taken in interpreting this figure, and one must remember that the
solution of (5.14) is only valid on time scales longer than the radiation time. Note that the
quantity plotted on the vertical axis, W⊥( y)/W⊥(0), is directly proportional to the emitted
power as can be seen from (5.12a,b). The abscissa is simply a scaled time coordinate:
y = (9

√
π/4)t/τei.

Although at a first glance it may seem as though the energy loss rate would be faster
than exponential, this is of course not the case when the solution is restricted to the region
where the orderings are valid.
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5.2. Limit (B): neglecting the contribution from electron–ion collisions
In limit (B), when niZ2/ne � | ln ε|, we are justified in neglecting the contribution from
Iei and obtain a relatively simple equation:

∂N
∂τ

= −α
∂2N2

∂v2
‖

. (5.18)

This is a nonlinear parabolic partial differential equation which essentially describes
backwards diffusion in v‖ space. Indeed, this is simply the backwards heat equation in
a medium where the diffusion coefficient varies linearly with temperature. As such, this
problem is ill-posed.

A simple solution exists (given suitable initial data) but the general solution will not
depend continuously on the auxiliary data as it describes a reverse diffusion process
meaning that arbitrarily small perturbations in the initial conditions will be amplified and
can lead to even infinitesimal-time singularities. This means that it is possible to prepare
arbitrarily small perturbations to the initial conditions (likely in any given Sobolev norm),
which are sufficiently wiggly in higher derivatives to ensure the solution blows up before
any given time t > 0.

In order to find this singular solution, we consider the problem

∂N
∂τ

− β
∂

∂v‖

(
N

∂N
∂v‖

)
= 0, β = −2α (5.19a,b)

with ∫ ∞

−∞
N(v‖, τ ) dv‖ = 1. (5.20)

Equation (5.19a,b) admits a similarity solution. To see this, we introduce a dilation
transformation:

z = δav‖, s = δbτ, v(s, z) = δcN(δ−az, δ−bs). (5.21a–c)

Our problem then becomes

δb−a ∂v

∂s
− βδ2a ∂2

∂z2

(
1
2
δ−2cv2

)
= 0. (5.22)

From this, we see that (5.19a,b) is invariant under the dilation transformation provided
b − c = 2(a − c), i.e. c = 2a − b.

We therefore pose the self-similar ansatz

N(v‖, τ ) = τ (2a−b)/cy(ξ), ξ = v‖
τ a/b

. (5.23a,b)

The condition (5.20) then gives∫ ∞

−∞
N(v‖, τ ) dv‖ = 1 =⇒ τ 3(a/b)−1

∫ ∞

−∞
y(ξ) dξ = 1. (5.24)

This condition must hold for all τ > 0 and hence we have 3a = b. So we can write

N(v‖, τ ) = τ−1/3y(ξ), ξ = v‖
τ 1/3

. (5.25a,b)

It is of course no coincidence to have arrived at this particular self-similar ansatz. We
could have also posited this solution simply by noting that the quantity ξ = v3

‖/τ is
dimensionless, which we could have deduced from (5.6).

https://doi.org/10.1017/S0022377820001622 Published online by Cambridge University Press

https://doi.org/10.1017/S0022377820001622


Cyclotron cooling in electron–ion plasmas 13

The derivatives then transform as

∂N
∂τ

= −1
3
τ−4/3( y + ξy′), (5.26)

∂2

∂v2
‖

(
1
2

N2

)
= 1

2
τ−2/3(2yy′′ + 2y′2)τ−2/3, (5.27)

where the prime notation now denotes differentiation with respect to ξ .
Equation (5.19a,b) becomes

βyy′′ + βy′2 + 1
3 y + 1

3ξy′ = 0, (5.28)

or equivalently
3β( yy′)′ + (ξy)′ = 0. (5.29)

Direct integration gives
3βyy′ + ξy = k0. (5.30)

The integration constant k0 is chosen such that the flux of particles N(dN/dv‖) is
continuous at the edge of the support where N goes to zero. In our case, this is the same
constant that one gets from imposing zero flux at the symmetry point because the flux has
to vanish either when N = 0 (at the edge) or when dN/dv‖ = 0 (at a symmetry point).

This equation can then be integrated once again:

y(ξ) = − 1
6β

ξ 2 + k1. (5.31)

In order to satisfy the requirement that N → 0 as |v‖| → ∞, we write the solution as

N(v‖, τ ) =
⎧⎨
⎩

τ−1/3

6β

(
A2 −

( v‖
τ 1/3

)2
)

|v‖| < Aτ 1/3

0 |v‖| > Aτ 1/3,

(5.32)

where A = 3
√

9β/2 so as to satisfy (5.20).
We can thus obtain a weak, in the sense that the first derivative is discontinuous, solution

of (4.5a–c) in the limit where electron–ion collisions are neglected. It is imperative to
mention that this solution holds only when τ < 0. In essence, what we have done in this
section is to solve an ill-posed backwards diffusion equation (5.18) by solving instead
a well-posed forward diffusion equation (5.19a,b) and running the solution backwards
in time. The rationale in adopting this approach is to motivate the correct boundary
conditions to apply to the equation.

As this problem is ill-posed, our self-similar solution requires very specific initial
conditions. An arbitrarily small perturbation (in any given Sobolev norm) can cause the
solution to fail and develop an infinitesimal-time singularity. Of course the self-similar
solution is still of value, and the formation of singularities is somewhat fictitious since
our assumption that ∇‖ � ∇⊥ will certainly break down before any singularity arises.
The solution obtained is of the correct general form (i.e. it attains a maximum for v‖ = 0,
and satisfies N → 0 as |v‖| → 0) as to possibly be approached from more general initial
conditions. Such solutions are not uncommon in plasma physics and the generation of
sharp structures by resistive or ambipolar diffusion has also been investigated (Low 1973).
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It is also fitting to remark here that including higher powers of the expansion parameter ε
in our expansion of the collision operator (i.e. in the calculation of Iee) would usually bring
higher-order derivatives of N into (5.18) which would regularise the partial differential
equation. This is a possible avenue of further exploration with the caveat that the
underlying equations would then likely be rendered too difficult to solve with analytical
techniques.

As before, one can calculate the perpendicular temperature:

T⊥(v‖, τ ) =
⎧⎨
⎩2στrm| ln ε|τ

−1/3

3β

(
A2 −

( v‖
τ 1/3

)2
)

|v‖| < Aτ 1/3

0 |v‖| > Aτ 1/3.

(5.33)

5.2.1. Rate of energy loss
Following the previous subsection, one can calculate the rate at which energy is radiated

from the plasma by first calculating W⊥ and then appealing to equation (5.12a,b). This is
given by

W⊥ =
∫

nT⊥(v‖, t)2

4στrm| ln ε| dv‖ = 4mnστr| ln ε|
(

3
4τA3

)2 ∫ ∞

−∞
(A2τ 2/3 − v2

‖)
2 dv‖, (5.34)

which can be evaluated exactly to give

W⊥ = 8 mnστr| ln ε|
(

3
4τA3

)2 ∫ Aτ 1/3

0
(A2τ 2/3 − v2

‖) dv‖ = 12
5

mnστr| ln ε|
Aτ 1/3

. (5.35)

This leads to an energy loss rate of

− dW
dt

= 12
5

(
1

2Z

)1/3 mnσ 2/3| ln ε|
At1/3

, (5.36)

which can be written in terms of the Braginskii electron–electron collision time τee as

− dW
dt

= −6
5
π1/3neT‖e| ln ε|2/3

(
1

tτ 2
ee

)1/3

. (5.37)

At first glance, this equation might appear somewhat peculiar. We must first of course
recall that our solution was valid only when time is run backwards, and hence the term
t appearing on the right-hand side is negative; as a result, the total energy does indeed
decrease as expected.

5.3. Validity of the collisional approach; a self-accelerating process
We have found the solution to (4.5a–c) in two different limits based on the plasma
parameters, thus elucidating the plasma distribution function in the collisional regime
(3.19). Throughout this work, a number of orderings have been invoked and we thus turn
our attention to the validity of our solution; specifically, when it is valid to treat ε as
constant. Thus far we have focused on the evolution of the plasma on time scales t with

0 < τr < t ∼ τc. (5.38)

In this regime, we treat ε as constant seeing as though any variation is very small.
However, as per our earlier remarks in § 2.3, we must take care to recall that τc is
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not constant and will itself decrease as the plasma cools via cyclotron emission. Our
entire process (radiative cooling and collisional scattering) is therefore self-accelerating.
Collisional scattering converts parallel kinetic energy to perpendicular kinetic energy. This
perpendicular energy is then radiated, lowering the temperature of the plasma and in turn
increasing the collisional scattering rate. As a result, the plasma will only remain in this
regime for a few collision times, before entering a regime where

τc < τr < t. (5.39)

In this final regime, any remaining parallel kinetic energy will be converted to
perpendicular kinetic energy and then radiated. The total energy of the plasma will thus
decay exponentially quickly on the radiation time scale.

In essence, we can partition the evolution of the plasma energy into three distinct
regimes:

(i) Initially, 0 < τr < t < τc. In this regime the behaviour is collisionless as described
in § 2. The perpendicular energy decays exponentially quickly on the radiation time
scale.

(ii) After some time, τr < t ∼ τc and collisional scattering becomes important. This
regime is what we have studied in §§ 3–5. This is a self-accelerating process and
the plasma will only remain in this regime for a few collision times.

(iii) Eventually, τc < τr < t. In this regime, the distribution function is isotropic
(Maxwellian), and any remaining parallel kinetic energy will be converted to
perpendicular kinetic energy via collisional scattering and then radiated.

We have now accomplished our second aim; namely, we have been able to calculate the
evolution of the distribution function under collisional scattering. Unusually for plasma
physics, this was possible even though the distribution function is far from Maxwellian.
Thus far, we have made the restrictive assumption of straight-field-line geometry. We will
now ask ourselves whether we can relax this assumption.

6. General magnetic geometry

Lurking within this theory was an assumption of straight-field-line geometry which
considerably simplified the derivations involved. It is clear that this assumption will
generally not hold in any plasma of physical interest, so let us address this point.

We begin in general magnetic geometry, although we will later find it necessary to
discuss trapped and circulating particles. The kinetic equation becomes

∂f
∂t

+ v‖
∂f
∂l

− ∂

∂μ

(
μ

τr
f
)

− μ

m
∇‖B

∂f
∂v‖

= Cee + Cei, (6.1)

where l parametrises the length of a magnetic field line and we retain the assumption that
the parallel electric field is negligible. Here we can exploit the existence of two time scales
by expanding in the small parameter

ε1 ≡ τb

τr
� 1, (6.2)

where τb ∼ L/v denotes the bounce time, i.e. the typical time it takes to travel the
macroscopic distance L along the field. Thus, writing f = f0 + f1 + · · · , one obtains at
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leading order

v‖
∂f0

∂l
− μ

m
∇‖B

∂f0

∂v‖
= 0. (6.3)

One can solve this equation by making the change of variables (l, μ, v‖) → (l, μ, w),
where we have introduced the total particle energy

w = mv2
‖

2
+ μB, (6.4)

so that the kinetic equation becomes at leading order

v‖

(
∂f0

∂l
+ μ∇‖B

∂f0

∂w

)
− μ

m
∇‖B

(
mv‖

∂f0

∂w

)
= v‖

(
∂f0

∂l

)
w

= 0, (6.5)

which has the solution for the lowest-order distribution function

f0 = f0(μ, w). (6.6)

At the next order, the kinetic equation becomes

∂f0

∂t
− 1

τr

∂

∂μ
(μf ) − μ

B
τr

∂f
∂w

+ v‖

(
∂f1

∂l

)
w

= Cee( f0) + Cei( f0). (6.7)

6.1. The bounce-averaged kinetic equation
In order to remove the dependence on f1, we define the bounce average of a function
Q(μ, w, l) by

Q̄(μ, w) =
∫

Q(μ, w, l)
dl
v‖

/∫
dl
v‖

, (6.8)

with

v‖ =
√

2
m

(w − μB). (6.9)

The integral in (6.8) is taken between consecutive bounce points, defined by v‖ = 0, for
trapped particles. For circulating particles, the integral is taken once around a field line
if the field line is closed. If the field line is not closed, but instead traces out a magnetic
surface, as in a stellarator or tokamak, then the bounce average for circulating particles is
given by

Q̄(μ, w) = lim
L→∞

∫ L

−L
Q(μ, w, l)

dl
v‖

/∫ L

−L

dl
v‖

. (6.10)

Taking the bounce average of (6.7) then yields

∂f0

∂t
− 1

τr

∂

∂μ
(μf0) − μ

(
B
τr

)
∂f0

∂w
= Cee( f0) + Cei( f0). (6.11)

Now, here we must be careful when bounce-averaging as τr ∝ B−2. Let us write

τr = τ0

(
B
B0

)−2

, (6.12)
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where B0 and τ0 appearing on the right-hand side of this equation are constants. We thus
arrive at the bounce-averaged kinetic equation

∂f0

∂t
− 1

τ0

B2

B2
0

∂

∂μ
(μf0) − μ

τ0

B3

B2
0

∂f0

∂w
= Cee( f0) + Cei( f0). (6.13)

Since B2 and B3 are, in general, complicated functions of μ/w, one cannot hope to solve
this equation in full generality. However, we can deduce the distribution function on a
significantly long time scale τ which is larger than the radiation time and comparable to
the collision time τr � τ � τc. In this instance, the perpendicular energy will have been
radiated away to leading order and we have

λB � 1, (6.14)

where we have introduced λ = μ/w. Trapped particles will thus be absent from the
population. In this regime, one can neglect the third term in (6.13) and thus obtain

∂f0

∂t
− 1

τ0

B2

B2
0

∂

∂μ
(μf0) = Cee( f0) + Cei( f0). (6.15)

Moreover, we can also evaluate

B2

B2
0

= 1
B2

0

∮
B2(l)√
1 − λB dl

/∮
dl√

1 − λB = 1
B2

0

∮
B2 dl

/∮
dl ≡ 1, (6.16)

where the last equivalence follows from the choice to simply define B2
0 to be the average

of B2 over a field line.
Hence, we arrive at

∂f0

∂t
− 1

τ0

∂

∂μ
(μf0) = Cee( f0) + Cei( f0). (6.17)

6.2. The bounce-averaged collision operator
We have already shown that at leading order, the contribution from electron–ion collisions
is formally smaller than that from electron–electron collisions provided niZ2/ne = O(1).
Let us thus restrict our attention to the electron–electron collision operator.

We know that at leading order

Cee( f0) � σg(v‖)
v⊥

∂

∂v⊥
v⊥

∂f0

∂v⊥
. (6.18)

We must be cautious as v⊥ varies along the orbit and should not be used as a coordinate
in the bounce-averaged equation. When the collision operator is instead written using the
magnetic moment μ as a coordinate, we obtain

Cee( f0) � 2σm
g(v‖)

B
∂

∂μ

(
μ

∂f0

∂μ

)
(6.19)

and thus
∂f0

∂t
− 1

τ0

∂

∂μ
(μf0) = 2σm

g(v‖)
B

∂

∂μ

(
μ

∂f0

∂μ

)
. (6.20)

It is of course no accident that this equation looks remarkably similar to the equation
obtained in the straight-field-line limit. One can make the analogy exact and state that the
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leading-order dynamics of both systems are governed by the differential equation provided
we associate the B2 appearing in Larmor’s formula, and the function g(v‖) arising from
the electron–electron collision operator, with their averages over a magnetic field line.

That is, on time scales τ with

τb � τr � τ � τc (6.21)

the distribution function will become strongly anisotropic in general magnetic geometry.

7. Applicability of this theory

The theory developed in the preceding sections applies to any optically thin plasma
where the collision time exceeds the radiation emission time, which is always true if the
density is sufficiently small. Two broad classes of applications can be envisaged.

7.1. Cyclotron sources in the laboratory
Non-neutral plasmas, specifically plasmas consisting of charged particles with a single
sign of charge can be confined in Penning–Malmberg traps (Dubin & O’Neil 1999;
Danielson et al. 2015). Such a trap consists of a vacuum region inside an electrode structure
consisting of a stack of hollow, metal cylinders. A uniform axial magnetic field is then
applied to inhibit particle motion in the radial direction. Voltages must also be imposed on
the end electrodes to prevent particle loss in the magnetic field direction.

It is frequently useful to compress plasmas radially; for instance, to increase the plasma
density. This is usually accomplished by applying a torque on the plasma using rotating
electric fields, the so-called ‘rotating wall technique’ (Anderegg, Hollmann & Driscoll
1998). Very long confinement times (of the order of hour or days) can be achieved
using these techniques, making their use highly desirable. Particle cooling is often
necessary to maintain good confinement by mitigating the heating caused by the torque
using the rotating wall method. In the case of electrons or positrons, if the magnetic
field is sufficiently strong, the particles will cool by cyclotron radiation (O’Neil 1985).
An example of where cyclotron cooling is employed successfully to this end is in the
production of anti-hydrogen, where this process is used cool pure electron plasma to
sub-eV temperatures (Amoretti et al. 2002).

Another major application of the theory developed in this work will be for the first
laboratory experiment, currently under development, to create and confine the first
terrestrial electron–positron plasmas in the laboratory. This is done by first accumulating
positrons from a powerful source and then injecting these into a pure electron plasma
confined by the dipolar magnetic field of a current-carrying circular coil, so that a
stationary, quasi-neutral electron–positron plasma is formed (Sunn Pedersen et al. 2012).
This system will satisfy the necessary conditions of being optically thin and with a
radiation time which should be initially shorter than the collision time. However, there is
an additional complication in that the plasma will be so strongly magnetised that Coulomb
collisions are no longer effectively described by the Landau operator. The theory of
scattering in strongly magnetised anisotropic pair plasmas is developed in the companion
paper (II).

7.2. Synchrotron sources in astrophysics
This work was built on the fact that a charged particle moving in a magnetic field radiates
energy. At non-relativistic energies, the focus of this paper, this process is called cyclotron
cooling. At relativistic velocities it is known as synchrotron radiation.

Synchrotron sources are ubiquitous and the emission of relativistic and ultra-relativistic
electrons gyrating in a magnetic field is a process that dominates much of
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high-energy astrophysics. Indeed, it is known that synchrotron radiation is responsible for
the non-thermal optical and X-ray emission observed in the Crab Nebula (Rees & Gunn
1974) and that pulsars are strong synchrotron sources (Sturrock 1971).

Of course, the physics of these systems should also be treated carefully using a model
taking relativistic effects into account in the modelling of the radiation term and the
collision terms. This is an area of active research and a potential axis along which this
current work could be further developed. There also likely exist analogous systems in
astrophysics where the electrons are subrelativistic but nevertheless are still strongly
radiating and weakly collisional in the sense discussed here. Such a system would of course
still be required to satisfy

τr

τc
=
(

ωp

Ωc

)2 ( c
vth

)3

� 1. (7.1)

The easiest way to satisfy this is of course to allow relativistic plasmas, but we might
also envision some exotic astrophysical plasma which is sufficiently nebulous (very low
density) but also sufficiently strongly magnetised (very strong magnetic fields) as to allow
this condition to be met in a non-relativistic plasma. In such systems, the theory in this
paper will be directly relevant.

However, these is another caveat here which must be carefully considered. We have
presented here a mechanism through which plasmas can become strongly anisotropic
in velocity space. In actuality, there is a plethora of instabilities which could act on
astrophysical plasmas and restore isotropy on time scales shorter than the collision time.
It seems to be that the question of (in)stability could depend sensitively on plasma
parameters and that considerations of isotropy-restoring instabilities do not necessarily
preclude the types of systems studied in this work.

8. Conclusions

In this paper, we have developed a theory for collisional scattering in strongly
anisotropic plasmas. Such plasmas arise due to the emission of radiation when charged
particles move in magnetic fields, which leads to rapid depletion of the perpendicular
kinetic energy. We have derived equations which describe the evolution of the electron
distribution function in such plasmas. Unusually for plasma physics, the collision
operator could be calculated analytically, albeit only to logarithmic accuracy, although
the distribution function is far from Maxwellian.

It was found that in such strongly anisotropic populations, the evolution of the
lowest-order distribution function is dominated by electron–electron collisions unless
niZ2/ne 
 1. Such collisions lead to a distribution that is Maxwellian in v⊥ for any value
of v‖.

The distribution over v‖ can be ascertained from an equation governing the density (in
v‖ space) N, the integral of the distribution function over perpendicular velocities. We
found that that this quantity satisfies an ill-posed, nonlinear, parabolic partial differential
equation, reminiscent of the backwards diffusion equation.

This equation can be solved in two limits: firstly, in the case where the contribution
from electron–ion collisions can be neglected, in which case a similarity solution is found;
and secondly, in the case where the contribution from electron–electron collisions can be
neglected and the equation can be solved by integration along the characteristic curves. In
this latter limit, the equation is well-posed. In both cases, the remaining energy is radiated
on the time scale of the ordinary collision frequency divided by | ln ε|.
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Several candidates for areas of application of this theory were presented. These
included both astrophysical applications and experimental applications. The latter of these
applications will be developed in a companion paper (II).
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Appendix A. Moments of the collision operator

Let us now evaluate the contributions to (4.1) arising from the moments of the collision
operator.

A.1. Calcuation of Iee

The contribution to (4.1) arising from electron–electron collisions is given by∫ ∞

0
Cee( f ) d2v⊥

= σ
∂

∂v‖

∫ ∞

0
d2v⊥

∫
ff ′ u

2b − u‖u
u3

· (∇v ln f − ∇′
v ln f ′) d3v′

= σ
∂

∂v‖

∫ ∞

0
d2v⊥

∫
ff ′
[

u2
⊥

u3

(
∂ ln f
∂v‖

− ∂ ln f ′

∂v′
‖

)
− u‖u⊥

u3
· (∇v ln f − ∇′

v ln f ′)] d3v′

= σ
∂

∂v‖

∫ ∞

0
f d2v⊥

∫
f ′

u3

[
u2

⊥

(
∂ ln f
∂v‖

− ∂ ln f ′

∂v′
‖

)
+ u‖u⊥ ·

(
mv⊥
T⊥

− mv′
⊥

T ′
⊥

)]
d3v′,

(A 1)

where T ′
⊥ = T⊥(v′

‖).
In order to carry out the integrals over v⊥ and v′

⊥ we note that

u2
⊥ = v2

⊥ + v′2
⊥ − 2v⊥v′

⊥ cos θ, (A 2)

u⊥ · v⊥ = v2
⊥ − v⊥v′

⊥ cos θ, (A 3)

u⊥ · v′
⊥ = −v′2

⊥ + v⊥v′
⊥ cos θ, (A 4)

where θ is the angle between v⊥ and v′
⊥. We note further that upon integration, any terms

involving cos θ will vanish. Hence, we may write∫ ∞

0
Cee( f ) d2v⊥ = σ

∂

∂v‖

∫ ∞

0
d2v⊥

∫
1
u3

[
(v2

⊥ + v′2
⊥)

(
f ′ ∂f

∂v‖
− f

∂f ′

∂v′
‖

)

+ u‖ff ′
(

mv2
⊥

T⊥
+ mv′2

⊥
T ′

⊥

)]
d3v′. (A 5)

The leading-order contribution to this integral comes from the final term in (A 5) and so
we have ∫ ∞

0
Cee( f ) d2 v⊥ � σ

∂

∂v‖

∫
d2v⊥

∫
u‖
u3

ff ′
(

mv2
⊥

T⊥
+ mv′2

⊥
T ′

⊥

)
d3v′. (A 6)
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We perform the v′
‖-integral first and are thus led to consider

∫ ∞

−∞

u‖
u3

f ′ dv′
‖ =

∫ ∞

−∞

mN(v′
‖)

2πT⊥(v′
‖)

exp

(
mv′2

⊥
2T⊥(v′

‖)

)
v‖ − v′

‖(
(v‖ − v′

‖)2 + |v⊥ − v′
⊥|2)3/2 dv′

‖,

(A 7)
which is an integral of the form

∫ ∞

−∞

x
(x2 + ε2)3/2

f (x) dx =
∫ ∞

−∞

df
dx

1√
x2 + ε2

dx = 2
df
dx

∣∣∣∣
x=0

(| ln ε| + O(1)), (A 8)

and thus becomes

∫ ∞

−∞

u‖
u3

f ′ dv′
‖ = − 2

∂f ′

∂v′
‖

∣∣∣∣∣
v′

‖=v‖

(| ln ε| + O(1)). (A 9)

Hence, we arrive at

Iee ≡
∫ ∞

0
Cee( f ) d2v⊥ = −2σ | ln ε| ∂

∂v‖

∫
f d2v⊥

∫
∂f ′

∂v′
‖

∣∣∣∣∣
v′

‖=v‖

d2v′
⊥

= −2σ | ln ε| ∂

∂v‖

(
N

∂N
∂v‖

)

= −σ | ln ε|∂
2N2

∂v2
‖

. (A 10)

A.2. Calculation of Iei

The contribution arising from electron–ion collisions gives

Iei ≡
∫

Cei( f ) d2v⊥ = Zσ
∂

∂v‖

∫
b ·
(

v2I − vv

v3
· ∇vf

)
d2v⊥

= Zσ
∂

∂v‖

∫ (
v2

⊥
v3

∂f
∂v‖

− v‖
v3

v⊥ · ∇vf
)

d2v⊥

� Zσ
∂

∂v‖

∫
2f

v‖|v‖| d2v⊥

= Zσ
∂

∂v‖

(
N

v‖|v‖|
)

. (A 11)

We remark here that, although the electron–ion collision operator was ordered much
smaller than the electron–electron collision operator, it is not necessary for Iei to be ordered
much smaller than Iee.

Appendix B. Asymptotic forms of N

In this appendix, we calculate the long-time ( y 
 1) and short-time ( y � 1)
asymptotic behaviour of (5.14).
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B.1. Long-time limit
For y 
 1, most of the contribution to this integral comes from x3 � y, so that

W⊥( y)
W⊥(0)

= 2√
π

∫ ∞

0

(
x

y1/3

)4

exp

[
−y2/3

(
x3

y
+ 1

)2/3
]

dx

� 2√
π

∫ ∞

0

(
x

y1/3

)4

exp
[
−y2/3

(
1 + 2x3

3y

)]
dx. (B 1)

We now make the substitution s = 2x3/3y1/3 to obtain

W⊥( y)
W⊥(0)

� 2√
π

∫ ∞

0

1
y4/3

(
3y1/3

2

)4/3

s4/3 exp(−y2/3 − s)
ds

3s2/3
. (B 2)

Thus, recalling the definition of the Gamma function,

Γ (z) =
∫ ∞

0
xz−1 exp(−x) dx, (B 3)

we arrive at

W⊥( y)
W⊥(0)

� 1√
π

(
3
2

)2/3

Γ

(
5
3

)
y−7/9 exp(−y2/3), y 
 1. (B 4)

B.2. Short-time limit
In the short-time limit, y � 1, we have

d
dy

(
W⊥( y)
W⊥(0)

)
= − 2√

π

∫ ∞

0
x4 exp(−(x3 + y)2/3)

(
4

3(x3 + y)7/3
+ 2

3(x3 + y)5/3

)
dx

� − 8
3
√

π

∫ ∞

0

x4

(x3 + y)7/3
exp(−(x3 + y)) dx, (B 5)

where most of the contribution comes from the region x ∼ y1/3 where the integrand is of
order

x4

(x3 + y)7/3
exp(−(x3 + y)) ∼ y4/3

y7/3
= 1

y
, (B 6)

and we thus expect the integral to be of order y−2/3. Indeed,

d
dy

(
W⊥( y)
W⊥(0)

)
� − 8

3
√

π

∫ ∞

0

x4

(x3 + y)7/3
dx = − 8

9
√

π

∫ ∞

0

u2/3

(u + y)7/3
du, (B 7)

where we have made the substitution u = x3. Upon making a further substitution p = u/y,
we obtain

d
dy

(
W⊥( y)
W⊥(0)

)
� − 8

9
√

πy2/3

∫ ∞

0

p2/3

(1 + p)7/3
dp, (B 8)

where we recognise ∫ ∞

0

pα

(1 + p)β
dp = Γ (α + 1)Γ (β − α − 1)

Γ (β)
. (B 9)
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Thus, we may conclude that

d
dy

(
W⊥( y)
W⊥(0)

)
� − 8

9
√

πy2/3

Γ (5/3)Γ (2/3)

Γ (7/3)
, (B 10)

which leads to

W⊥( y)
W⊥(0)

� 1 − 8
3
√

π

Γ (5/3)Γ (2/3)

Γ (7/3)
y1/3, y � 1. (B 11)

This equation can be rewritten in terms of the time t and the Braginskii electron–ion
collision time τei as

W⊥(t)
W⊥(0)

� 1 − Γ (5/3)Γ (2/3)

Γ (7/3)

(
128
3π

)1/6 ( t
τei

)1/3

. (B 12)
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