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DERIVATIONS WITH INVERTIBLE VALUES ON A LIE IDEAL

BY
JEFFREY BERGEN AND L. CARINI

ABSTRACT. Let R be a ring which possesses a unit element, a Lie
ideal U ¢ Z, and a derivation d such that d(U) # 0 and d(u) is 0 or
invertible, for all w € U. We prove that R must be either a division
ring D or D,, the 2 X 2 matrices over a division ring unless d is not
inner, R is not semiprime, and either 2R or 3R is 0. We also examine
for which division rings D, D, can possess such a derivation and
study when this derivation must be inner.

In a recent paper [1], Bergen, Herstein and Lanski have related the structure
of a ring R to the special behavior of one of its derivations. More precisely, they
proved that-if R is a ring with unit and d # 0 is a derivation of R such that for
every x € R, d(x) = 0 or d(x) is invertible in R, then except for a special
case which occurs when 2R = 0, R must be a division ring D or the ring D, of
2 X 2 matrices over a division ring.

Here we shall examine what happens when R is a ring with unit, U is a
non-central Lie ideal of R, and d is a derivation of R such that for every u € U,
d(u) = 0 or d(u) is invertible in R. The results we will obtain have a similar
flavor to those of [1]. In fact we shall prove the following:

THEOREM 1. Let R be a ring with 1, U ¢ Z a Lie ideal of R, and d a derivation
of R such that d(U) # 0 and d(u) = 0 or d(u) is invertible, for every u € U. Then
R is either

1. a division ring D, or

2. D,,
unless 2R or 3R is zero, d is not inner, and R is not semiprime. In this case,
R = M + d(M), where M is the unique maximal ideal of R and M = 0.

We then examine, for the case R = D,, when d is inner and for which division
rings D such a derivation exists. The result we obtain is
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THEOREM 2. Suppose R = D,, then:

1. if D is not commutative and 2R + 0, every derivation of R such that d(u) = 0
or d(u) is invertible, for all u in a non-central Lie ideal, must be inner.

2. there exists an inner derivation d such that d(U) # 0 and d(u) = 0 or d(u) is
invertible, for all u contained in a non-central Lie ideal U, if and only if D does not
contain all quadratic extensions of Z or D is a field of characteristic 2.

Fora, b € R set|a, b] = ab — ba and for subsets U, V € Rlet [U, V] be the
additive subgroup generated by all [u, v] foru € Uandv € V. We recall that a
Lie ideal U of R is an additive subgroup of R such that [U, R] c U.

In all that follows, unless otherwise stated, R will be a ring with 1, Z = Z(R)
the center R, U ¢ Z a Lie ideal of R and d a derivation of R such that
d(U) # 0 and d(u) = 0 or d(u) is invertible, for all u € U.

We begin with

LemmA 1. d([U, R]) # 0.

ProOF. Suppose d([U, R]) = Oandletu € U,r € R; then0 = d([u, ur]) =
d(ulu, r}) = d)|u, r]. Therefore, d(u) = 0 or [u, R] = 0 thus, for all u € U,
either d(u) = 0 or u € Z. It now follows that d(U) = O or U C Z, a
contradiction.

We now show that R is d-simple, that is, has no non-zero, proper ideals
invariant under d.

Lemma 2. If I # 0 is an ideal of R such that d(I) I, then [ = R.

PrROOF. Suppose d([U, 1]) # 0; then0 # d([U,1]) < d(U) N I, therefore /
contains invertible elements and so, / = R.

On the other hand, if d([U, I]) = 0 then for u € U and i € I, we have
0 = d([u, uil) = d(u, i]) = d(uw)u, i]. As in the proof of Lemma 1, either
d(U)y =0or[U, 1] =0, thus[U, I] = 0. Hence 0 = [U, IR] = I[U, R].

By Lemma 1, there exist u € Uand r € R such thatd([u,r]) # 0. If i € 1
then 0 = d(i[u, r]) = id([u, r]) + d(@)[u, r]. However, since d(i) € I, we obtain
1d([u, r]) = 0, a contradiction.

We proceed with

LEMMA 3. If I # R is an ideal of R, then I’ = 0.

PrOOFE. Since d([U, I*]) € d(U) n I and I # R, it follows that
d([U, 12]) = 0. Using the identical argument as in the proof of Lemma 2,
PlU,R] = 0and 0 = d(i[u, r]) = d(i)[u, r] + id([u, r]),fori € I’,u € U, and
r € R. However, if i € I’ then d(i) € I’, hence I’d([U, R]) = 0 and, by
Lemma 1, I’ = 0.

We continue with
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LEMMA 4. If 2R # 0 and 3R +# O then R is simple.

Proor. If R is not simple, let M be the sum of all proper ideals of R. By
Lemma 3, every proper ideal of R has cube zero, hence M is nil and so, M> = 0.
Obviously M is the unique maximal ideal of R and, by Lemma 2, d(M) ¢ M.

Since M + d(M) is an ideal of R properly containing M, M + d(M) = R.
Consequently there exist a, b € M such that 1 = a + d(b). Now, 0 = d3(b3) =
d(b*b) = d>(BP)b + 3d*(bP)d(b) + 3d(b*)d’(b) + b*d>(b), hence 3d*(b*)d(b) €
M. Since d*(b*) = d*(b)b + 2d(b)*> + bd’(b), we obtain 6d(b)’ € M. If
2R # 0 and 3R # O then, by Lemma 2, 2R = 3R = R, hence 6R = R. How-
ever, d(b) = 1 — a is invertible therefore 6 € M and so, M = R, a contradic-
tion. As a result, R is simple.

Combining Lemmas 2, 3, and 4 we immediately obtain

LEMMA 5. If either d is inner, R is semiprime, or both 2R and 3R are nonzero
then R is simple. In addition, if R is not simple then R = M + d(M) where M is
the unique maximal ideal of R and M° = 0.

At this point, the proof of Theorem 1 reduces to showing that when R
is simple either R = D or D,. By Theorem 1.5 of [3], if R is simple then either
U D [R, R] or R is of characteristic 2 and of dimension at most 4 over its center.
In the latter case, there is nothing left to prove. However, in the first case it is
relatively easy to see that d([R, R] ) # 0 and [R, R] ¢ Z. Therefore, throughout
Lemmas 6, 7, 8, 9 we will assume that R is simple, U = [R, R], and R is not of
characteristic 2 with dimension =4 over its center.

LEMMA 6. If 0 # a € R is such that d(a) = 0, then a is invertible.

ProOF. Suppose that [a, d(R) ] # 0; then let x € R such that [a, d(x)] # 0.
Since d(a) = 0, we obtain d( [a, x]) = [a, d(x) ] and d( [a, ax]) = d(d|a, x]) =
dla, d(x) ]. Moreover d( [a, x]), d([a, ax]) € d([R, R]), therefore [a, d(x) ] is
invertible, hence dla, d(x)] is non-zero and so, dla, d(x)] is also invertible,
finally resulting in a invertible.

Now suppose that [a, d(R)] = 0; then, by Theorem 1 of [5], a* = 0,
&t € Z, char R = 2, and d is an inner derivation induced by a central
multiple of a. Furthermore, by Theorem 2 of [4], if [d(R), d(R)] = 0O then
R has dimension =4, over its center. Therefore, without loss of generality,
we may assume that d*> = 0, d(r) = [a, r] for all r € R, and there exist
s, t € R such that [d(s), d(¢!)] # 0. Consider d([s, d(¢)]) = [d(s), d(?)]
and d([s, ad(®)]) = [d(s), ad(t)] = ald(s), d(¢)]. Since [d(s), d(?)],
ald(s), d(t)] € d([R, R]) we conclude, as in the previous paragraph, that a
is invertible.

We continue with
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LemMAa 7. If L # O is a right ideal of R, then R = L + d(L).

PrOOF. Since R is simple either R is a field or [L, L] # 0. If R is not a field,
let 0 # x € [L, L]; by the previous lemma, we get that either x or d(x) must be
invertible. This implies that L + d(L) is a right ideal which contains invertible
elements, hence L + d(L) = R.

Since R is simple with 1, it is primitive. Therefore R has a faithful, irreducible
right module V and R acts densely on V, viewing V as a vector space over the
division ring D where D is the commuting ring of R on V.

We now prove the technical, but very useful

LEMMA 8. Let V be a faithful, irreducible, right R-module. If 0 # v € V and
0 # a € R are such that va = 0, then vd(a) # 0.

ProoF. By Lemma 7 we get aR + d(aR) = R. Therefore, V = vR =
v(aR + ad(R) + d(a)R) = vd(a)R, thus vd(a) # 0.

We now narrow in on the structure of R.
LEMMA 9. R = D or R = D,.

Proor. It suffices to show that dimp V' = 1 or 2. Suppose dim;, V = 3;
then there exist linearly independent v,, v,, v; € V and an r € R such that
vir = 0, vor = 0, and vyr = v5. Let T = {r € Rlyyr = vyr = 0}; since
r # 0 € T, T is a non-zero right ideal of R, hence, by Lemma 7, R =
T + d(T).

Now, let x, y € R such that vix = v}, v,x = vp, vy = 0, and v,y = v,. In
addition, since R = T + d(T), let a, b € T such that x = a + d(b). As a result,
v = vix = vi(a + d(b)) = vid(b) and v, = vyx = vy(a + d(b)) = v,d(b).
Hence v,d(by) = v (bd(y) + d(b)y) = v,d(b)y = v,y = 0 which, by Lemma &,
implies by = 0. However, in this case 0 = v,d(by) = v5(bd(y) + d(b)y) =
vod(b)y = v,y = v,, a contradiction, thereby proving the lemma.

By combining Lemmas 5 and 9 we obtain our first main result, which we
mentioned at the outset of this paper.

THEOREM 1. Let R be a ring with 1, U ¢ Z a Lie ideal of R, and d a derivation
of R such that d(U) # 0 and d(u) = 0 or d(u) is invertible, for every u € U. Then
R is either

1. a division ring D, or

2. D,
unless 2R or 3R is zero, d is not inner, and R is not semiprime. In this case, R =
M + d(M), where M is the unique maximal ideal of R and M = 0.
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In [1] it is shown that the only example of a ring R # D or D, with a
derivation d # 0 such that d(x) = 0 or is invertible, for all x € R, is D[x]/(xz)
where char D = 2, d(D) = 0, and d(x) = 1 + ax, for some a in the center of D.
Therefore, with the hypothesis of Theorem 1, when 2R = 0 there exists an
example where R #+ D or D,. However, when 3R = 0 we have neither been able
to either prove that R = D or D, nor been able to produce a counterexample.
On the other hand, it does follow from Theorem 1 that if R # D or D,, with
3R = 0, then R and d are rather special.

We now try to characterize those division rings D for which R = D, has a
derivation d # 0 all of whose values are zero or invertible on a non-central Lie
ideal. In addition, we shall examine when such a d must be inner. To do this, we
will refer to several calculations which were done in Lemma 8 of [1] and will be
omitted here for brevity.

LemMma 10. If R = D,, where 2R # 0 and D is non-commutative, then d is
inner.

Proor. If d is a derivation of D,, then 4 has the form:

d(a b)_(f(a)—b,B—ae f(b) + aa + by — ae )
c e/ \f(c)+ Ba—eB —yc f(e) + ey — ye + Bb + ca

for all a, b, c, e € D; where a, 8,y € D and fis a derivation of D. Furthermore,
it is shown in Lemma 7 of [1] that d is inner on D, if and only if fis inner on D.
Therefore it will be enough to show that f'is inner.

Let
(6 o) e )

since D is non-commutative, T is a non-central subset of D invariant under all
automorphisms of D. By a result of Brauer-Cartan-Hua [2], the subdivision ring
T of D generated by T is all of D. As noted in the discussion before Lemma 5,
we may assume that U D [R, R].

Suppose a = 0; if a € T then

46 o - ")

0/  \Ba O
is zero or invertible. Therefore f(a) = 0, hence 0 = f(T) = f(T) = f(D),
implying that f is inner. As a result, we may now assume that a # 0. It now

follows from the calculations in Lemma 8 of [1], that there is a 7 € D such that
f(a) = Ta — ar, for all a € D satisfying

T={a€D

(e

(" 0 ) € [R, R].

a_lf(a) o laa
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However, if ¢ € T then aga e T . therefore

(a‘ 'j’(a) a_qaa)

:(Hg_laa g)+(a“(j)‘<a) g)*(ﬂa;m a“ag)
e D e o6 ol e 016 ol
€ [R, R].

Thus f(a) = [, a] for all a € T, hence f(a) = [, al forala € T = D, thereby
proving that f is inner on D.

At this point, we should note that the assumption 2R # 0 in Lemma 10
cannot be dropped, as an example is given in [1] of a division ring D of
characteristic 2 such that R = D, has a derivation d % 0 all of whose values on
R are 0 or invertible, yet d is not inner. We have not, however, been able to
determine whether the assumption in Lemma 10, that D be non-commutative,
1S necessary.

We will now characterize those D such that R = D, possesses an inner
derivation d such that d(U) # 0 and d(u) = 0 or is invertible, for all # in a Lie
ideal U ¢ Z. The condition “D does not contain all quadratic extensions of
Z” will come up. By this we mean that there exist y, § in the center of D such
that the polynomial 2 + yt + & has no root in D. Note that the following
lemma places no restriction on either the characteristic or the non-
commutativity of D.

LEMMA 11. R = D, has an inner derivation d such that d(U) # 0 and d(u) is 0
or invertible, for all u in a Lie ideal U ¢ Z, if and only if D does not contain all
quadratic extensions of Z or D is a field of characteristic 2.

ProoF. It is shown in Lemma 9 of [1] that if D does not contain all quadratic
extensions of Z, then there exists an inner derivation d # 0 such that d(x) = 0
or is invertible for all x € R. In addition, if D is a field of characteristic

2, then
a b
U= [(b a)

is a non-central Lie ideal of R and it is easy to see that the inner derivation d
induced by (8 é) has the properties that d(U) # 0 and d(U) € Z(R).
Conversely, suppose that D is not a field of characteristic 2 and thatd # 0O is
inner such that d(U) # 0 and d(u) = 0 or is invertible, for all # in a Lie ideal
U ¢ Z. Therefore, by Lemma 6 and the discussion preceeding it, we may
assume that U = [R, R] and that every element in the kernel of 4 is 0 or

a,beD}
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invertible. Using essentially the same argument as in Lemma 9 of [1], we may
also assume that 4 is induced by an element of the form (2 };).

We claim that « and B lie in the center of D. Clearly when D is commutative
there is nothing to prove. If D is non-commutative, let 7 be as in Lemma
10; then T, the subdivision ring of D generated by T, is all of D. Suppose
a € T; then

fa 0) - ( 0 0 )
0 a/ \aa —aa Ba — aB
is a non-invertible element of d([R, R]), hence is zero. Therefore aa = aa
and Ba = ap for all a € T, hence also for all a € T = D, thereby proving
the claim. Furthermore, since d(g }3) = 0, (2 /lg) must be invertible thus

a # 0.
Suppose B8 = 0; if x € D then

d(x 1) _ (O 1)(x 1) _ (x l)(O 1) _ (O O)
a x) \a Of\a x a x\a 0/ \0 0f
Since (, )lc) 1s not zero, it must be invertible, hence its determinant * —a#0.
As a result the quadratic polynomial 2 — a has coefficients in Z, but no roots

in D, thus D does not contain all quadratic extensions of Z. Finally, suppose
B # 0 and for x € D, consider

5= C -0 )

_ (1 ~ax '/jxl) € d([R, R]).

B ax
Since (l';_"x Bx) is not zero, it also is invertible, hence its determinant
—(ax — 1)2 + ,82x = —a?x* + Qa + ,82)x — 1 # 0. Therefore the
polynomial

1 1
- —=Qa+ A+
o [s4

has no roots in D, thereby concluding the proof.
We now conclude this paper by combining Lemmas 10 and 11 to obtain

THEOREM 2. Suppose R = D,; then:

1. if D is not commutative and 2R + 0, every derivation d such that d(u) = 0 is
invertible, for all u in a non-central Lie ideal, must be inner.

2. there exists an inner derivation d such that d(U) # 0 and d(u) = 0 or d(u) is
invertible, for all u contained in a non-central Lie ideal U, if and only if D does not
contain all quadratic extensions of Z or D is a field of characteristic 2.
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