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Abstract. In this review, we describe the physical processes driving the dy-
namical evolution of binary stars, namely the circularization of the orbit and the
synchronization of their spin and orbital rotation. We also discuss the possible
role of the elliptic instability which turns out to be an unavoidable ingredient of
the evolution of binary stars.

1. Introduction

The evolution of rotation is usually associated with an evolution of angular
momentum; changing the angular momentum of any body requires torques and
stars do not escape from this law of physics. In binary stars there is a permanent
source of torques: the tides. Hence, understanding the evolution of rotation of
stars in a binary system demands the understanding of the action of tides. This
compulsory exercise was started more than thirty years ago by Jean-Paul Zahn
during his "These d'etat", Les marees dans une etoiles double serree (Zahn
1966). All the concepts needed to understand tides and their actions in the
dynamical evolution of binaries are presented in this work.

1.1. Why Should We Consider the Rotation in Binary Stars?

Surely, as in isolated stars, rotation is an important ingredient of evolution
through the induced mixing processes: turbulence in stably stratified radiative
zones, circulations... All these processes will influence the abundances of ele-
ments in the atmospheres or the internal profile of angular velocity, for instance.

However, in binary stars new phenomena appear: tides. They make the
orbit evolving, force some mixing processes (through eigenmode resonances for
instance) or may even generate instabilities leading, to some turbulence (see
below).

These new phenomena need also to be understood if one wishes to decipher
the observations of binary stars. In this respect binary stars offer more observ-
abIes than single stars like the parametres of the orbit, masses of the stars, their
radii, etc. If the system has not exchanged mass during evolution and if other
parameters like luminosity, surface gravity, abundances can also be determined
unambiguously, binary stars offer new constrains on the stars which may be
useful for our understanding of stellar evolution. Also, a statistical view of or-
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bital parameters may constrain the dissipative processes at work in these stars
(Mathieu et al. 1992).

1.2. Synchronisation and Circularization : How it Works.

Let us consider an isolated system made of two stars of mass M1, M2, of moment
of inertia 11, 12 and of spin angular velocity 01, O2 • The semi-major axis of
the orbit is a and the eccentricity e. For simplicity we shall assume that the
angular momentum vectors are all aligned. Hence, the total (projected) angular
momentum of the system, which is conserved during evolution, reads:

L = MMIMl.t. a2norb~ + Itn i + hn2
1+ 2

On the other hand, the total energy of the system, namely,

E - GM1M2 1I 0 2 1I 0 2
- - 2a + 2 1 1 + 2 2 2

decreases because of dissipative processes.
To appreciate the natural evolution of such a system, let us consider the

even more simplified system where the angular momentum and the energy of
the spin of the stars are negligible compared to their orbital equivalent. Using
Kepler third law to eliminate the mean angular velocity of the orbital motion
Oorb, the previous equations lead to

L 1/2 r;---;)12 d GM1M 2
system rv a V 1 - e- an Esystem rv - 2a

During evolution the system loses energy through dissipative mechanisms, thus
a decreases which implies that e also decreases to insure a constant angular
momentum. Thus, with time the orbit slowly circularizes.

Once the orbit is circular or nearly circular, the system may continue to
evolve if the orbital angular velocity and spin angular velocity are not identi-
cal: this is the synchronization process after which the system has reached its
minimum mechanical energy state: all the stars rotate at the same rate, i.e.
Ospin = Oorb like the moon on its terrestrial orbit.

1.3. Tides

In the foregoing section we presented a global view of the evolution of the system,
however the way the orbit or the spin change is controlled by the torques applied
to the stars. As we said at the beginning, a permanent source of torques is given
by the tides which therefore need to be studied. But what is a tide?

The tide is the fluid flow generated by the tidal potential, i.c, the azimuth
dependent part of the gravitational potential inside a star. In short, if you sit
on a star, it is the forced flow generated by the celestial bodies orbiting around
you. If you sit on Earth you feel the tides of the moon and the sun essentially.

Now let us assume that the tidal forcing is mild enough so that the fluid
flow obeys linear equations; formally, we may write the system like

av -p at + £(v) = FT(f}f(t)
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where we assume that the tidal force FT(f}f(t) can be separated into its spatial
and temporal dependence. Written in this way we immediately see that if the
inertia of the fluid can be neglected (i.e. the term p EJ:;), then the velocity field
can be computed with the same temporal dependence as the exciting force. The
response is instantaneous. Moreover, if Coriolis acceleration and viscosity are
negligible, the only response of the fluid is through a pressure perturbation, i.e.
it is purely hydrostatic. This extremely simple, but not unrealistic, case is called
the equilibrium tide.

On Earth, this tide is enough to understand the basic properties of terres-
trial tides: i.e, that there are two tides a day, that their amplitude is r-;» 50 em
or that they are stronger at full or new moon; the hydrostatic perturbation
describes the famous tidal bulge which is often representing tides in elemen-
tary courses. Such a description is appropriate if you sit on the mediterranean
beaches or on those of the Pacific ocean; however, if you sit on the Atlantic
shore, like here in Cancun, you will easily notice that the tide is much larger
than the expected 50 em. In the Mont Saint-Michel bay it easily reaches 10
meters!

The difference comes from what we neglected: the inertia of the fluid and
the ensuing resonance phenomenon. For the tidal wave, whose wavelength is
a few thousand kilometers, the Atlantic ocean is a mere puddle five kilome-
ters deep. Surface gravity waves may thus be studied using the shallow water
approximation and their speed is given by

Vw ave = y'gh ~ 220 tu]«

where 9 is the gravity and h the depth. With a mean width of 5000 km, the
Atlantic is crossed twice in 12.6 hours; but the tidal forcing is back after 12.4
hours. Obviously, we are close to a resonance and in this case the equilibrium
tide is insufficient to describe the tidal response of the fluid. In this case the
tide will be qualified as dynamical.

Quite clearly, the equilibrium tide is much easier to handle than the dy-
namical one; this is why it was first studied (Zahn 1966); the dynamical tide
received first serious considerations by Zahn (1970) and a proper treatment by
Zahn (1975).

1.4. Torques and Tidal Evolution

In order to compute the dynamical evolution of the system, namely the param-
eters of the orbit and the spin of the stars it is necessary to evaluate both the
torques and the dissipation inside the stars.

The torque suffered by a star results from an unsymmetrical distribution of
mass with respect to the tidal potential; mathematically,

j (_ -) j 8ipT ITz = - r x pV'ipT dV = - -8P dV
(V) z (V) c.p

where p' is the density perturbation generated by the tidal potential ipT; c.p is the
angular azimuthal variable. We see from this expression that torques can only
exist if the excitation ipT and the response p' are out of phase (or antiphase). The
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phase lag between these two quantities comes from the dissipative mechanisms
at work in the stars and is usually a small but important quantity.

From the expressions of the energy and angular momentum of the orbit, we
can derive:

dIna
dt

de
2

-1 ( 2· ~ . )di = IEorbI (1 - e )Eorb - Oy 1 - e2 Lorb

where Eorb and Lorb are respectively the power dissipated in the stars and the
torques exerted on the orbit (the parallelism of angular momentum vectors is
still assumed).

The foregoing discussion therefore shows that, provided the stars do not
change, all the evolution of the system is controlled by the dissipation of energy
by the tidal flow.

In the case stellar evolution is important, for instance before or after the
main sequence, changes in the inertia momenta will change the spin of the stars
and the applied torques.

2. Dissipation Mechanisms

2.1. Viscosity

The first and most obvious physical mechanism to dissipate mechanical energy
is viscosity. However, the viscosity of stellar plasma is far too weak to be effi-
cient and only turbulent viscosity of convection zones can significantly affect the
evolution of the system.

But the effectiveness of turbulent viscosity is hampered by the fact that
tidal flows are periodic in time: in any region of a convective zone where the
lifetime of eddies is longer than the period of the tidal flows, the turbulent eddy
viscosity is reduced. The question is, of course, how much it is reduced compared
to its usual approximation

o 1
vT = 3" vturbfturb

where vturb and fturb are respectively the velocity of turbulent eddies and their
mean free path.

Presently, two prescriptions coexist: the first by Zahn (1966) says that

o . (1 vturbPtide)
VT = vTmln , 2f

turb

which means that when the period of tides is shorter than the turnover time of
the eddies, the mean-free path of the eddies should be reduced to the distance
covered by an eddy during half a period.

The second prescription is originally due to Goldreich & Keeley (1977) but
adapted by Golman & Mazeh (1991); it says that
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o . (1 (vturbPtide) 2)VT = vTmln, o27r.c.turb

This prescription means that the turbulent viscosity should be such that

VT (vtide)
2

=< e >
ttide

namely that the dissipation by tidal currents fits the dissipation by the turbulent
cascade < e > (recall that in the Kolmogorov cascade < c >I".J Vf

3 / f).
These two prescriptions yield different exponent in the dependence of the

evolution time scale with the period of the system; in principle, they can be
discriminated by observations. However, this exercise turns out to be difficult;
moreover, using binaries in stellar clusters, Mathieu et al. (1992) found that no
reduction of viscosity was necessary to explain observations! Obviously, more
work is needed to clarify this question.

Another viscous damping process was also put forward by Tassoul (1987),
namely the dissipation in Ekman boundary layers. However, we have shown that
because of the stress-free surfaces of the stars, such layers are rather regions with
lower dissipation than the rest of the star (see Rieutord 1992, Rieutord & Zahn
1997).

2.2. Radiative Damping

Another way to dissipate energy of tidal flows is through radiative damping.
This mechanism will affect essentially radiative zones; indeed, from the tidal
excitation, one needs to generate temperature fluctuations which are dissipated
by radiative diffusion.

The most natural way to generate these temperature fluctuations comes
from the excitation of gravity modes since, mechanically, they are associated
with the buoyancy force. It is therefore quite clear that the dissipation and the
ensuing torques will be most important when the forcing frequency is near that
of an eigenmode of the star. From this remark, it is also clear that only the
dynamical tide will be relevant in this process.

On general grounds we may observe that the tidal forcing is low-frequency
and that low-frequency gravity modes are high order modes which can then be
described by an asymptotic theory. This was the way chosen by Zahn (1975)
and later by Goldreich & Nicholson (1989).

This mechanism is essentially relevant for early-type stars which own an
outer radiative zone. As shown by the previous authors the tidal excitation is
most intense near the core-envelope boundary but since gravity waves are only
partially reflected at the star surface, they deposit their angular momentum
there and these layers are synchronized first. This argument was developed by
Golreich & Nicholson (1989) to explain the higher synchonization rate observed
in early-type stars compared to the theoretical predictions of Zahn (1977).

These studies are based on an asymptotic approach and ignore the role
of the Coriolis force. This force is, however, unavoidable since the stars are
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always rotating and in most cases the tidal forcing is also in the band of the so-
called 'inertial modes' whose restoring force is precisely the Coriolis force. In fact
inertial modes always combine with gravity modes as they are also low-frequency
modes; both together, they occupy the band [0,max(20s , Nmax ) ], where N is the
Brunt-Vaisala frequency.

Recently, much progress was achieved in the direction of including the whole
spectrum of low-frequency modes in the tidal response of an early-type star.
Indeed, Witte & Savonije (1999a,b,2001) computed numerically the response
of a 10 Mev main sequence star and the ensuing evolution of the system with
various inital eccentricities. Their results show many interesting features:

• The efficiency of resonance crossing at decreasing the eccentricity when it
is initially small (a few percent).

• A new phenomenon, which they called "resonance locking" and by which
two resonant modes, one tending to spin-up the star and the other try-
ing to spin it down, yield equilibrating torques which maintain the two
stellar modes close to resonance and therefore force a strong evolution of
eccentricity (see figure 3 in Witte & Savonije 1999b).

The calculations of Witte & Savonije show that radiative damping is efficient
at reducing the eccentricity of the orbit in a fraction of the lifetime of the star:
in their examples, the 10 Mev star has a lifetime of 20 Myr; an initial eccentricity
of 0.02 is erased in 1 Myr, but an initial eccentricity of 0.25 or 0.7 reduces to 0.1
in 3 Myrs; a further evolution apparently operates on a much longer time scale.

Obviously, if the model of Witte & Savonije could be used as a true system,
it would mean that orbits with e = 0.1 may be as evolved as e = 0 ones and
differ only by initial conditions.

2.3. A New Possibility: the Elliptic Instability

Likely, all the mechanisms by which energy can be dissipated have not been
examined. We shall now present a new one caused by the elliptic instability and
which is potentially a rather strong source of dissipation.

The elliptic instability has been studied mainly in simple geometries and
even in these cases it is a difficult problem. For a recent review we refer the
reader to the work of Kerswell (2002). Presently, the work closest to astrophys-
ical applications is that of Seyed-Mahmoud et al. (2000) who investigated this
instability in an ellipsoidal configuration for the core of the Earth.

The basic result we need from fluid mechanics is the growth rate, of this
instability, namely

where e is the ellipticity of streamlines and 0 the rotation rate of the vortex.
Schematically, this instability may be seen as a parametric instability: the

solid body rotating fluid feels a perturbation (the ellipticity of the stream lines)
with a frequency 20. Such a periodic forcing can destabilize modes at half its
frequency namely 0; this is precisely the frequency of the so-called spin-over
modes (or Poincare modes). Such modes are solid-body rotation around an axis
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in the equatorial plane. When the instability develops and the amplitude gets
sufficiently large, the vortex start to precess and is usually completely destroyed
as observed in experiments (Malkus 1989). Hence, this instability may be very
important as it is able to dissipate the total kinetic energy of the vortex. But
let us consider the astrophysical case.

For the sake of simplicity we consider a main sequence star in a binary
system with a circular orbit. The tidal perturbation is provided by a point-
mass object. The system is not synchronized and therefore f2 spin i= f2orb . In a
reference frame rotating with the tidal potential, the main sequence star is like
a strained vortex rotating with the angular velocity f2spin - f20rb and enduring
an elongation e of the tidal potential.

In such a case the instability develop on a time scale (c(f2 spin - f2orb ) )-1.

The energy available for dissipation is

where IEIZ is the inertia momentum of the zone developing the elliptic insta-
bility. In this first attempt, we shall consider a late type stars and restrict,
conservatively, the action of this instability to the convection zone so that it
does not interfere with the stratification. We note that the spin-over modes
which are destabilized are rigid rotations and are thus not affected by the large
turbulent viscosity of the fluid.

Hence, the power dissipated is approximately ~Icz(f2spin - f2orb ) 3

With these two quantities, one can estimate the time scale over which syn-
chronization occurs: this is typically the growth of the elliptical instability. To
have orders of magnitude, let us take two solar type stars orbiting their center
of mass in 10 days and let their spin be twice faster (I.e. f2spin = 2f2orb ) . The
time scale is then 64 years, thus very short.

As far as circularization is concerned, we need to restrict ourselves to weakly
eccentric orbits (e~ 0.1 say). Using the stars to dissipate energy while the angu-
lar momentum of the orbit is assumed constant, the reduction of the eccentricity
also occurs on a short time scale, namely a thousand of years.

The numbers thus derived are rather robust as they depend on geometric
quantities of the system. In view of the observations, which show that they are
systems with a 10 days period which are not circularized nor synchronous, we
may wonder why the elliptic instability is not so efficient in binary stars. The
answer is likely in the much more complex setup yielded by stars compared to
their equivalent in the laboratory. In stars, there are stratification, magnetic
fields, time variable ellipticity (on eccentric orbits), rotation etc... All these
effects have been explored but most of the time using systems which are not
quite similar to a star. Nevertheless, we shall list them and speculate about
their effects in a stellar situation.

• Rotation of the frame associated with the orbital motion influences the
elliptic instability through the Coriolis force. Craik (1989) has shown, but
using an unbounded strained flow, that rotation is either stabilizing or
destabilizing. It is stabilizing if, for instance, in an inertial frame, the star
does not rotate.

https://doi.org/10.1017/S0074180900195932 Published online by Cambridge University Press

https://doi.org/10.1017/S0074180900195932


Evolution of rotation in binaries: physical processes 401

• Stratification: Similarly to rotation, stratification does not act in a
unique sense; using the context of an elliptical cylinder Kerswell (1993)
has shown that stratification is stabilizing for polar regions of a star but
destabilizing for equatorial regions.

• Magnetic fields were found invariably stabilizing (see Kerswell 1994).

• Time-periodic ellipticity is likely destabilizing through parametric in-
stabilities. However, the only studied cases are those of an unbounded
strained fluid (Kerswell 2002).

• Nonlinear effects are the most difficult to appreciate. Experiments have
shown that the nonlinear development is violent (Aldridge et al. 1997)
and rapidly leads to a turbulent state (Malkus 1989). In fact, it seems
that the saturated state exists only in a very narrow range of parameters
and beyond this range secondary instabilities due to triadic interactions of
inertial modes lead to small scale motions and a turbulent state (Mason
& Kerswell 1999).

Globally, the way the instability saturates may be thought as a change of
the spin axis of the fluid so as to reduce the ellipticity of the streamlines.
In stars such an effect is possible if the spin axis of stars is inclined in
the plane normal to the orbital plane and passing through the centres
of mass. This shows that the apparently inocuous hypothesis of angular
momentum vectors alignment may be crucial to the instability. It may
also be an observational signature. Indeed, we noticed that the turbulent
viscosity of convection zone could hardly inhibit the resonance of spin-over
modes; however, it can easily suppress secondaries instabilities which, in
laboratory experiments lead to a turbulent state. It may well be that the
saturated state is difficult to obtain in the laboratory but much more easily
in stars.

The foregoing discussion shows that many points of the elliptic instability
in the stellar context remain in the shadows; but because of its great potential
dissipative power, this instability deserves more study.

3. Concluding Remarks

Born together, stars of a binary system share the same age and the same initial
metallicity. In most favourable cases, their mass, radii, rotation rates can be
determined. These are of course very interesting pieces for the puzzle of stellar
evolution but there is a price to pay for these additional informations: the two
stars interact during their whole lifetime. In its simplest form this interaction is
of gravitational origin and generates tides. As we have shown, tides generate var-
ious fluid flows giving rise to transport processes which may be observationnally
constrained if a comparison with analogous isolated stars is possible.

The foregoing presentation which sketched out all the known mechanisms
by which energy is dissipated also shows that the situation is not simple. Various
processes can dissipate energy and we suggest that among them the elliptic in-
stability plays a non negligible part. Quite surprisingly, this instability has been
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overlooked until now. Despite its strength, shown by laboratory experiments,
observations do not show, yet, an evidence of this instability. In the list of the
mechanisms which may inhibit this instability, we noticed the misalignement of
rotation axis. As such a misalignement may also result from a saturated state
of this instability and can be an observational signature, it deserves some study.

To conclude this contribution let us point out some directions of research:

• On the theoretical side more work is obviously needed on the effects of the
elliptic instability.

• On models, the integration of stellar evolution combined with dynamical
(tidal) evolution following up the works of Claret & Cunha (1997) and
Witte & Savonije (1999b) will be useful to understand, for instance, the
statistical properties of eccentricities as a function of periods and ages, or
the relative importance of pre-main sequence, main sequence, post-main
sequence phases.

• On the observational side, much data are needed. First, the elements
describing the dynamics are very much desired: these are the elements
of the orbit (a,e,i,n,w), the masses M 1, M2 , the spins 01,02 and their
variations with time. For instance, the motion of the apsidal line w is a
quantity constraining the mass distribution of the stars and therefore their
internal rotation. It is clear that such data will require a lot of efforts
but they will help us much in our understanding of stellar evolution. A
pulsar like J0045-7319, which travels around an early-type star on a highly
eccentric orbit, offers a good step in this direction (Lai et al. 1995).
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