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DETERMINATION OF TORSION ABELIAN GROUPS BY THEIR
AUTOMORPHISM GROUPS

P. SCHULTZ, A. SEBELDIN AND A.L. SYLLA

An Abelian torsion group is determined by its automorphism group if and only if its
locally cyclic component is determined by its automorphism group. We describe the
locally cyclic groups that are determined by their automorphism groups.

1. INTRODUCTION AND NOTATION

The Baer-Kaplansky Theorem ([2]) states that two torsion Abelian groups are iso-
morphic when their endomorphism rings are isomorphic. Leptin [3] showed that for p > 3,
two Abelian p-groups are isomorphic when their automorphism groups are isomorphic.
This result was extended by Liebert [4] to p = 3 and eventually Schultz [5] found a proof
for all p, including p = 2. The purpose of this paper is to determine the groups that are
determined by their automorphism groups in the class of all torsion Abelian groups.

We say that a group G of a class Q. is determined by its automorphism group in this
class if there does not exist a non-isomorphic group H in Q. with Aut G = Aut H. Let
fi(Aut) be the subclass of Q consisting of groups determined in tt by their automorphism
groups.

We denote by

A the class of torsion Abelian groups

C the class of torsion cyclic groups

D the class of torsion locally cyclic groups

P the set of all prime numbers

Z + the set of positive integers 1, 2 , . . .

N the set of natural numbers 0, 1 , . . .

Z(n) the additive cyclic group of order n

Zn the multiplicative cyclic group of order n

GF(p) the field of order p
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«/(p) the ring of p-adic integers

Jp the multiplicative group of p-adic units

Z{X) the centre of the group X.

If G is a torsion Abelian group, let Gp be the p-component of G and P{G) the set
{p e P : Gp # 0} of relevant primes for G. Let Pa = Pa(G), Pb = Pb(G) and Pc = PC(G)
be the sets of primes for which Gp is not bounded, bounded but not cyclic, and cyclic
respectively. Finally, let Ga = ® Gp, Gj, = 0 Gp and Gc = 0 Gp. Other notation

pePa p e n pe/>c

is conventional or taken from [2].

2. BASIC RESULTS

We begin by reviewing some well-known results and their immediate consequences.

LEMMA 2 . 1 .

1. AutG=* n Aut Gp.
P€P

2. Ifp ^ 3 e P and k ^ 1, then Aut Z(p*) = Zp_j x Zp*-i.

3. AutZ(2) = {1}, AutZ(4) ^ Z2 and AutZ(2*) S* Z2 x Z2*-2 for A; ^ 3. It

follows that if G2 = 0 then Aut G = Aut(G © Z(2)).

4. (See [3].) Jf G is a p-group and H is a q-group for primes 3 ^ p < q, then

AutG ^ Aut # if and only ifG ^ Z(pk),H?* Z(q) a n d p ^ p - l ) = q-l.

5. I /G and H € A such that AutG ^ AutH, then Pa(G) = Pa{H). In fact,

according to [2, Theorem 115.1], .Z(AutG) contains Jp as a direct factor if

and only ifGp is unbounded.

Lemma 2.1, 5. implies that Aut G determines the set Pa of primes p for which Gp is
unbounded. The next Proposition likewise shows that Aut G also determines the set Pb

of primes p for which Gp is bounded but not cyclic.

PROPOSITION 2 . 2 . Let G € A. Then p e Pb if and only if AutG contains a
non-commutative normal p-subgroup but no direct factor = Jp.

PROOF: Suppose Gp is non-zero and bounded. Then by Lemma 2.1, 5., AutG has
no direct factor = Jp. It was shown in [5, Theorem A] that AutGp, which is a direct
factor of Aut G, has a non-trivial maximal normal p-subgroup Ap. It is easy to see that
Ap is commutative if and only if Gp is cyclic.

Conversely, suppose Aut G contains a non-commutative normal p-subgroup Ap but
no direct factor = Jp. By Lemma 2.1, 5., p £ Pa. Each projection of Ap onto the direct
factor AutG, of AutG is a normal p-subgroup, so at least one is non-commutative.
But by [5] again, Aut G, contains a non-commutative normal p-subgroup if and only if
p = q. •
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PROPOSITION 2 . 3 . Let G € A. If p e Pa U Pb, then Gp is determined by
AutG.

PROOF: Let p € Pa U Pb. It was shown in [5, Theorem A] that except for the
exceptional groups described below, Gp is determined by its maximal normal p-subgroup
Ap. Now if Gp is not cyclic and p > 2, then Ap has no commutative direct factor so Ap

is the unique normal p-subgroup of Aut G which is maximal with respect to having no
commutative direct factor. If p = 2 then A2 = (-1) x A2 and A2 is the unique normal
2-subgroup of of Aut G which is maximal with respect to having no commutative direct
factor.

It remains to consider the exceptional case ([5, Theorem B]), in which Gp = DP@BP

where Dp is divisible of rank rp and Bp is elementary of rank sp say. In that case,
AutG/Ap contains as a direct factor Aut£>p x AutS p . The first term is the general
linear group of degree rp over J(p), and the second is the general linear group of degree
sp over GF(p). Since Aut G/Ap contains no other factors of these two types if sp > 1, we
are done. D

COROLLARY 2 . 4 . Let G and H € A with Aut G = Aut H. Then Ga © Gb

= Ha® Hb.

We can now settle the case of p-groups in A (Aut).

PROPOSITION 2 . 5 . Let G be an Abelian p-group. Then G is in A(Aut) if and
only ifp — 2 and

1. G = Z(2*) with k > 2 and 2k~2 + 1 is composite; or

2. G is bounded but not cyclic; or

3. G is unbounded and G ¥ Z(2°°) © Z(2).

PROOF: (=>) If G is a p-group in A(Aut) then p = 2 by Lemma 2.1, 3.

1. Suppose G is cyclic. Since AutZ(2) = AutO and AutZ(4) ^ AutZ(3) we
have that G = Z(2*) for some k ^ 3. If 2k~2 + 1 = q is prime, then by
Lemma 2.1, 4., Aut(G) = Aut(Z(g) © Z(4)), a contradiction, so 2*~2 + 1
is composite.

2. If G is bounded but not cyclic, there is nothing to prove.

3. Suppose then that G is unbounded. If G = Z(2°°) © Z(2), then an easy
computation shows that Aut G = Aut(Z(2°°) © Z(3)), so 3. holds.

(<=) Conversely, let G be a 2-group and suppose H is a torsion Abelian group with
Aut G = Aut H. We consider the three conditions in turn.

1. G = Z(2fc) with k ^ 2 and 2*"2 + 1 composite. Then k ^ 5, so AutG
= Z2 x Z2*-2. In particular, AutG is commutative so by [2, Theorem 115.1], H is
cyclic.

If there exists p ^ 2 such that Hp ^ 0, and Hp = Z(pm) with m > 1 then by Lemma
2.1, 1., AutH has a direct factor which is a p-group, a contradiction. Hence Hp =
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for every p € P(H) \ {2}. Hence Aut H = Aut H2 x K, where K - \[ Zp_!. Thus
p€P(tf)\{2}

each Zp_! is a 2-group, so P(H) = {2}, {2,p}, {2,p,q} or {p, q} for distinct primes p
and q ̂  2.

If P(tf) = {2} then by [5],f lS G.
In the remaining cases, i/p or //? = Z(2*~2 + 1), contradicting Condition 1.
2. G is bounded but not cyclic with 2*G = 0,2*~1G ^ 0.

(a) If k — 1 then G is a vector space of dimension n ^ 2 and Aut(G)
= GL(n, 2). It is well-known that this implies H = G.

(b) If fc = 2, then G = 0 Z(2) © 0 Z(4) where a + /? > 1 and P ± 0. In this
a p

case, Z(Autif) S Z(AutG) S Z2, so by [2, Theorem 115.1], if H ± H2

then Hz = 0Z(3 ) . Since Auti? is not commutative, 7 > 1 and hence

Aut H contains an element of order 3, a contradiction. Thus H = H2 and
H^Z(2), so by [5], H^G.

(c) If fc = 3, then Z(Aut H) = Z2 x Z2. Thus if H ^ H2 then # S 0 Z(3) ©
*(3)

0 Z(2) © 0 Z(4) where 5(3) + 5(2) + 5(4) > 2, 5(3) > 0 and <5(4) > 0. If
«(2) 4(4)

5(3) > 1, then Aut H has elements of order 3, a contradiction, so 6(3) — 1.
Hence 5(2) + 5(4) > 1. Since A; = 3, G ^ 0 Z(2) © 0 Z(4) © 0 Z(8),

a(2) Q(4) Q(8)

where a(8) ^ 1. It follows that for any choice of a(i), i = 2, 4,8 and
5^), j — 2, 4, we have Aut# ^ AutG, a contradiction. Thus H — H2, so
by [5], H^G.

(d) If fc ̂  4, then Z(Aut i/) = Z2 x Z2*-2 and hence H has a direct summand
Hp where r(Hp) > 1 and p > 3. Hence i/ is a bounded 2-group such that
Aut G ^ Aut tf, so by [5], H ̂  G.

3. G is not bounded, and G 7̂  Z(2°°) © Z(2). Then Aut G ̂  Z(Aut G) = Z2 x J2

or AutG = J2. Hence H is an unbounded 2-group such that AutG = AutH, so by [5],
H^G. D
REMARK 2.6. It is well-known that if 2k + 1 is prime, then A; is a power of 2 and
Fi = 22' -I- 1 is a so-called Fermat prime. Only five Fermat primes are known, Fo
= 3, Fx = 5, F2 = 17, F3 = 257 and FA = 65537.

3. LOCALLY CYCLIC GROUPS

Let G and H be Abelian torsion groups with AutG = AutH. By Corollary 2.4,
we know that G = H if and only if GC=HC, so we now assume that G e D, the class
of direct sums of cyclic groups of distinct prime power orders, known as locally cyclic
groups because D is the class of groups for which every finite subset is contained in a
cyclic summand.
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From now on, G = 0 Gp with Gp = Z(p"») for some np € Z+. It follows that
P€P(G)

Aut G = n Aut Gp where Aut Gp is described in Lemma 2.1. In particular, Aut G is a

direct product of cyclic groups. Furthermore, for any reduced H € A, Aut if is Abelian
if and only if H <E D.

We need some more notation. Let §N, the set of supernatural numbers, be the set
of all formal products

n = n p n p wnere npe N-
P6P

A prime p is relevant for G € D or for n e §N if np > 0. Thus G € D is completely
determined by a supernatural number n, and we denote G by Z(n). The correspondence
Z(n) <-> n from D to S7V is a bijection. If n € SN, let P(n) denote the set of primes
relevant for n.

Let Z(n) e D, and let M(n) be the multiset consisting of the orders of all the prime
power direct summands of AutZ(n). We begin with the simplest case in which n is a
prime power. A finite multiset M of prime powers is called allowable if M = M(pk) for
some prime power pk.

The following Lemma is a mild extension of Leptin's Theorem, since it includes the
case p = 2.

LEMMA 3 . 1 . Let M be a non-empty finite multiset of prime powers and let m
be the product of the terms in M. Then M = M(pk) for some prime power if and only
if either

(a) M = {2,21} for some I € Z + , or

(b) pe is the largest term in M for some I € Z + and M consists of the prime
power factors ofm — pe(p — 1), or

(c) m + 1 = q is prime and M consists of the prime power factors ofm.

There are two distinct prime powers pk and q for which M = M(pk) = M(q) if and
only if M satisfies both (b) and (c).

P R O O F : Suppose M = M(jpk). If p = 2 and k > 2, then AutZ(pfc) = Z2 x Z2t-2

and we have case (a).

If pk = 4, or if p > 2 and k > 1, then AutZ(pfc) = Zp*-i x Zp_x and we have case
(b).

Finally, if p > 2 and k = 1, then AutZ(p*) = Zp_i and we have case (c).

Conversely, if M satisfies (a), then M = M(2t+2). If M satisfies (b), then M

= M{pt+l). If M satisfies (c), then M = M(q).

It follows that if M satisfies both (b) and (c) then M = M(pk) - M{q) with pk ^ q.

Conversely, if M — M(pk) = M(ql) with p* ^ ql, then M does not satisfy (a) so M

satisfies both (b) and (c). Q
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Examples of a multiset M satisfying both (b) and (c) of Lemma 3.1 include M(9)
= {2, 3} = M{1) given already by Leptin's Theorem, and M(4) = {2} = M(3).

We now consider the next simplest case, in which n is finite. Let G = Z(n), n

= n Pn" e z+-
p€P(n)

The multiset M(n) has a partition {Mp : p € P(n)} where Mp is an allowable
multiset consisting of the orders of the prime power summands of Aut Z(pn"). Thus each
part of the partition determines one or two primes p such that Mp = M(pk) for some
k. Distinct partitions determine distinct n, but a given partition may determine several
different n.

The following properties characterise the multisets M(n):

PROPOSITION 3 . 2 . Let M be a multiset of prime powers. Then

(a) M = M(n) for some positive integer n if and only if M has a partition

Q — {Mp : p € P(n)} into allowable multisets Mp such that Mp = M(pn").

(b) Let Q be a partition of M into allowable multisets. If two parts of Q are

identical, then one satisfies (b) and the other (c) of Lemma 3.1 and no

other part ofQ is identical to them.

(c) Let V(M) be the set of partitions of M into allowable multisets. For

each partition Q e V{M), let Qi be the set of parts of Q satisfying only

one of (a), (b) or (c) of Lemma 3.1, and let Q2 be the multiset of parts

satisfying both (b) and (c) such that both Mp and Mq are parts ofQ. Let

Q3 — Q\ (Qi U Q2) be the remaining parts ofQ. If some {2, 2e} occurs in

Qi or if {2} occurs in Q2, letN(Q) = |Q4|. otherwise, let N(Q) = |Q4 + 1|.
Then I{n € Z+ : M = M(n)}I =

P R O O F : We have seen that n determines a multiset M = M(n) and a partition Q
of M into allowable parts satisfying (a) and (b). Part (c) counts the number of partitions
Q having a part which determines two prime powers, only one of which appears in Q, or
for which no part determines a positive power of 2.

Conversely, suppose M is a multiset having a partition Q into allowable parts sat-
isfying (a) and (b). Then the parts determine distinct prime powers whose product is n

such that M = M(n).

Finally, if M = M(n) for k distinct n, then A; is the power of 2 determined in (c). D

COROLLARY 3 . 3 . Letn= \[ f1" and let M = M(n). For allp€ P(n) let
peP(n)

mp be the product of the terms in the finite set Mp and let p* be t ie largest element of

Mp. Then Z(n) 6 A(Aut) if and only ifM has a unique partition Q — {Mp : p 6 P(n)}

into allowable multisets Mp and:

(a) 4 I n; and
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(b) Whenever both mp = pk(p - 1) and mp + l - q is prime, then q 6 P(n)
and Mp and Mq both occur in Q.

PROOF: (•$=) Since M has only one partition into allowable parts and the condi-
tions of Proposition 3.2, (c) are satisfied with N(Q) = 0, n is unique.

(=>) Conversely, if Z(n) is determined by its automorphism group then M has
only one partition Q into allowable parts and in Proposition 3.2, (c), N(Q) = 0. Hence
n has a non-zero 2-component not equal to 2, so conditions (a) and (b) of the Corollary
hold. D

As an illustration of Corollary 3.3, here is an example of a cyclic group determined
by its automorphism group:

EXAMPLE 3.4.

AutZ(252) ^ AutZ(4) x AutZ(7) x AutZ(9) ^ Z2 x Z2 x Z2 x Z3 x Z3,

so M(252) = {2, 2, 2, 3, 3}.

There is only one partition of M(252) satisfying Proposition 3.2, namely {{2}, {2,3},
{2,3}}. Since the prime indices of the parts must be distinct, the only possibilities are
M2 = {2}, n2 = 4, M3 = {2,3}, n3 = 9 and M7 = {2,3}, n7 = 7. Thus Z(252) is
determined by its automorphism group in A.

We have already seen how a given partition of M may give rise to distinct n. Here
is an example of a multiset M having different partitions into allowable parts:

EXAMPLE 3.5. Let n = 4 x 3 x 67. Then M = M(n) = {2, 2, 2, 3, 11}. M has
partitions {{2}, {2}, {2, 3, 11}} corresponding to the original n and M = {{2}, {2, 3},
{2, 11}} corresponding to both n = 4 x 7 x 23 and n = 4 x 9 x 23.

There are no other possibilities for n.

The problem of finding explicitly all m G Z + such that Aut Z(n) = Aut Z(m) for any
given n is difficult, but we have an algorithmic solution based on the following Lemma.

LEMMA 3 . 6 . For any 2 ^ n € Z+, |AutZ(n)| < n ^ |AutZ(n)|2, with equality
on the right if and only ifn — 4.

PROOF: By Lemma 2.1, 1., it suffices to consider the case n = pk for any prime
p. If p* = 4 we have 4 = |AutZ(4)|2 and if p = 2 and k ^ 3 then |AutZ(2*)| = 2*"1

< 2* < 22*-2.

Suppose that p ^ 3. Then

|AutZ(p*)| = pk~l(p - 1) < pk < p2k~2p < p2k~2(p - I)2 = | A u t Z ( / ) | 2 . Q

The suggested algorithm is: given the multiset M(n), let ./V be the product of its
elements. Compute M(m) for all m with TV < m ^ iV2 and compare it with M(n).
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REMARK 3.7. The problem of finding all n G Z + such that Z(n) is determined by its au-
tomorphism group is related to an unresolved number theoretic conjecture of Carmichael
[1], that there is no positive integer n for which |AutZ(n)| = |AutZ(m)| implies n = m.
Our results throw no light on Carmichael's conjecture, since we lack criteria for a unique
partition of M(n), which seems to involve some delicate problems of Number Theory.

Now we deal with the general case of n € SN. Let G = Z(n). Then G determines
a multiset M(n) which has a partition into finite allowable parts, but now there may be
infinitely many parts. Once again, each allowable part of such a partition determines one
or two prime powers as in Lemma 3.1, but the problem of sorting out different partitions
of a multiset is no easier than in the finite case.

The conditions for Z(n) to be determined by its automorphism group are the same
as those in Corollary 3.3, as is the proof:

THEOREM 3 . 8 . Let n = f ] Pn" *nd let M = Af (n). For all p G P(n) let mp
P€P(n)

be the product of the terms in the finite set Mp and let pk be the largest element of Mp.
Then Z(n) G A(Aut) if and only if M has a unique partition Q = {Mp : p G P(n)} into
allowable parts Mp and:

(a) n2 ^ 2; and

(b) Whenever both mp — pk(p — 1) and mp + 1 = q is prime, then q € P(n)

and Mp and Mq both occur in Q.

However, as in the finite case, the difficulty lies in the condition that M has a unique
partition. Here is a putative example of an infinite group in D which is determined by
its automorphism group.

EXAMPLE 3.9. Suppose there are infinitely many Fermat primes Ft and let n = 8 fj Fj.
Then M{n) consists of two copies of 2, and countably many distinct powers of 2 greater
than 2. Hence the only partition of M(n) into allowable parts is {{2, 2}, {F{ — 1} :
Fi is a Fermat prime} so Z(n) G D(Aut).

Since the conjecture that there are infinitely many Fermat primes is not considered
likely, here is another example based on a more reasonable conjecture.

CONJECTURE 3.10. There is an infinite sequence { p j of primes such that px = 3, p2

= 5 and for all i ^ 3, Pi = 2lqt + 1, where ft is a prime such that & ^ 2km + 1 for any
k < i and any product m of primes pj with j < i.

EXAMPLE 3.11. Let n = \6p\P2 .. • where {pi} is a sequence of primes satisfying Con-
jecture 3.10. Let M be the multiset of Z(n). Then M(n) has a unique partition into
allowable parts, each of which determines a unique cyclic summand of prime order, namely

M(n) = {{2, 4}, {2}, {4}, {2\ 9 J : i > 3}.

Theorem 3.8 implies that Z(n) G A(Aut).
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