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Abstract

We consider the problem of estimation in a partially observed discrete-time Galton–
Watson branching process, focusing on the first two moments of the offspring distribution.
Our study is motivated by modelling the counts of new cases at the onset of a stochastic
epidemic, allowing for the facts that only a part of the cases is detected, and that the
detection mechanism may affect the evolution of the epidemic. In this setting, the
offspring mean is closely related to the spreading potential of the disease, while the
second moment is connected to the variability of the mean estimators. Inference for
branching processes is known for its nonstandard characteristics, as compared with
classical inference. When, in addition, the true process cannot be directly observed, the
problem of inference suffers significant further perturbations. We propose nonparametric
estimators related to those used when the underlying process is fully observed, but suitably
modified to take into account the intricate dependence structure induced by the partial
observation and the interaction scheme. We show consistency, derive the limiting laws
of the estimators, and construct asymptotic confidence intervals, all valid conditionally
on the explosion set.
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1. Introduction

The last few years have witnessed several outbreaks of infectious diseases that spread out
rapidly, threatening to become pandemics. The SARS epidemic in 2002, the bird flu epidemic
in 2006, and the swine flu pandemic in 2009 are among the most serious recent examples of
such infections in humans. When an outbreak of such a disease is recognised, it is important
to decide whether measures should be taken to avoid the epidemic escalating into a pandemic.
The efficacy of these measures depends on the promptness with which they are adopted, but
they typically carry significant costs that would preferably be avoided: massive vaccination
programmes (as in the recent swine flu epidemic), quarantining (recall the SARS epidemic), or
culling in the case of animal diseases (for example, the foot and mouth outbreak in the UK).
Thus, it is useful to have methods available that can guide the authorities in the evaluation of
the spreading potential of a disease while it is still in its early stages.

In the initial stages of an epidemic, the number of cases is usually modelled to grow
exponentially fast. Within the framework of stochastic models, branching processes provide
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Asymptotics for partially observed branching processes 1167

a reasonable approximation to an epidemic process before the depletion of the susceptibles
becomes an issue (see Ball and Donnelly (1995)).

Branching processes have been studied extensively in the literature. Their use in practice
requires estimation of crucial parameters from the data, which leads to the problem of statistical
inference for branching processes (see Guttorp (1991) for example). This involves several
nonstandard issues, such as the potential ‘problem’ of extinction. In the epidemic context,
however, it is seldom realistic to assume that all cases are reported and recorded, a fact that
was raised in Kendall (1956). Instead of the true process, we typically observe a random
perturbation, for example a random subset of the cases. This motivates the study of statistical
inference for branching processes under specific types of partial observation.

Inference for partially observed epidemic processes has been addressed by several authors,
mostly in a continuous-time framework (see Becker and Hasofer (1997) for example). A clas-
sical continuous-time model for the number of cases is a linear birth-and-death process. By
observing such a process at equally spaced discrete time points, we obtain a discrete-time
Galton–Watson branching process, which in turn models the daily counts of cases. A key issue
in this context is to maintain an equilibrium between realistic yet ‘solvable’ models. In what
follows, we study statistical inference in a partially observed Galton–Watson branching process,
a model treated in Meester et al. (2002) (who considered a particular instance of the model),
Meester and Trapman (2006) (who investigated the effect on statistical inference), and Panaretos
(2007) (who gave a coupling construction and investigated the probabilistic structure).

The parameter of central interest, as it crucially influences the behaviour of a Galton–Watson
branching process (the extinction/explosion dichotomy), is the offspring mean. When the
process is fully observed, the offspring variance plays an important role in the estimation of the
mean, as it is related to the variability of the estimators. In this paper we study the estimation of
the parameters assuming the roles of the offspring mean and variance in the partially observed
branching process.

The estimation of parameters related to the moments of the offspring distribution under
partial observation was studied in Meester and Trapman (2006). The authors focused on the
consistency, and succeeded in constructing estimators of parameters related to the first three
moments of the offspring distribution that are consistent on the explosion set, even though this
is not in general possible under full observation.

In this paper we focus on the asymptotic distributions of estimators of parameters related to
the first two moments, with the aim of constructing asymptotic confidence intervals. Since the
asymptotic distributions of the estimators of Meester and Trapman (2006) are not easy to estab-
lish, we propose alternative estimators. We show that these are consistent and asymptotically
Gaussian, all conditionally on the explosion set.

In the next section, we formally state the model, including all assumptions, motivate the new
estimators, and state their properties. We then formally derive these properties in Sections 3
and 4. In Section 5 we study the performance of the estimators in a simulation study, and,
finally, we conclude with a discussion of the results in Section 6.

2. The setting

The basic idea behind the discrete-time branching process epidemic model is as follows. At
time k, there areZk infectious individuals. Between times k and k+1, the ith individual infects
ξi,k individuals. The number of infectious individuals at time k + 1 is Zk+1 = ∑Zk

i=1 ξi,k. The
spreading potential is the same for all individuals, and is formalised by a common distribution on
the ξi,k (offspring distribution); each individual acts independently of the others. Note that this
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1168 A. KVITKOVIČOVÁ AND V. M. PANARETOS

interpretation implies that ‘a generation’in the branching process framework is not equivalent to
‘a generation’in the context of the epidemic. Indeed, one concrete individual can be represented
as an offspring of himself or herself in several generations of the branching process.

In the model studied in Meester et al. (2002), Meester and Trapman (2006), and Panaretos
(2007), this basic idea is extended to accommodate the possibility of partial observation. At
time k, there are Zk infectious individuals able to spread the disease. Out of these individuals,
Yk ≤ Zk are detected between times k and k+1. Once an infectious individual is detected, he/she
cannot spread the disease further. However, an infectious individual detected between times k
and k+1 can transmit the disease between time k and the time of detection. Thus, the offspring
distribution ϒ of a detected individual may be different from the offspring distribution � of
an undetected individual. Each individual acts independently of the others (both with respect
to spreading the disease and being detected), and the detection probability is the same for all
individuals. The process Yk is observed, while the process Zk is not.

Meester et al. (2002) focused on infections for which it is reasonable to assume that an
individual can neither recover nor die from the disease before detection, thus making detection
the only means of leaving the infectious state. Meester and Trapman (2006) made the same
assumption, but they did not use it to derive their results. Panaretos (2007) did not make this
assumption and it is not made here either.

2.1. Notation and assumptions

The model described above can be formally specified as follows. Let� andϒ be distributions
of nonnegative integer-valued random variables with finite fourth moments such thatFϒ ≥ F�.
Assume that � is not a degenerate distribution concentrated at 0. Let ξ and {ξi,k}i≥1, k≥0 be
independent random variables with distribution �, and let ζ and {ζi,k}i≥1, k≥0 be independent
random variables with distributionϒ . Furthermore, let {Bi,k}i≥1, k≥0 be independent Bernoulli
random variables with success probability (1 − θ), where 0 < θ < 1. Assume that all these
variables are mutually independent. We consider a random process {(Zk, Yk)�; k ≥ 0} such
that

Z0 = 1,

Yk =
Zk∑
i=1

Bi,k for every k ≥ 0,

Zk+1 =
Zk∑
i=1

ξi,k(1 − Bi,k)+
Zk∑
i=1

ζi,kBi,k for every k ≥ 0.

As discussed in Panaretos (2007), this model has several appealing properties. For example,
the process {(Zk, Yk)�; k ≥ 0} is a Markov chain with time-homogeneous transition probabil-
ities. Moreover, its first coordinate, the process {Zk; k ≥ 0}, is marginally a Galton–Watson
branching process with offspring distribution �—the mixture of the distributions � and ϒ in
proportions θ and 1 − θ , respectively.

We consider only the case where there is a positive probability that the process will explode.
That is, we assume that m = E[Zk+1 | Zk = 1] > 1. Together with establishing asymptotic
results conditionally on the explosion set A = {Zn → ∞; n → ∞}, this approach is rather
common in the theory of statistical inference for branching processes.
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2.2. Simple estimators for fully observed branching processes

If we observe a trajectory of the process {Zk; k ≥ 0} up to timen, we can choose from various
estimators of the offspring mean m (see Guttorp (1991, Chapter 2) for example). A simple
estimator

m̄n = Zn

Zn−1
1{Zn−1 > 0} + 1{Zn−1 = 0}

is based only on the last two observations. Alternatively, the estimator

m̂n =
∑n
k=1 Zk∑n−1
k=0 Zk

uses all observations available up to time n. Both estimators are strongly consistent on the
explosion set (that is, they converge tom almost surely (a.s.) onA; see Theorem 2.1 of Guttorp
(1991)). Furthermore, they are asymptotically Gaussian conditionally on A. More precisely,√

Zn−1(m̄n −m)
d−→ N(0, σ 2) as n → ∞ conditionally on A,√√√√n−1∑

k=0

Zk(m̂n −m)
d−→ N(0, σ 2) as n → ∞ conditionally on A,

where
σ 2 = var[Zk+1 | Zk = 1]

(see the proof of Theorem 2.3 of Guttorp (1991)).
If, in addition, one wishes to construct asymptotic confidence intervals for m, an estimator

for σ 2 is needed. Various estimators have been proposed in the literature (see Chapter 3 of
Guttorp (1991) for example). Perhaps the simplest one is

σ̂ 2
n = 1

n

n∑
k=1

Zk−1(m̄k − m̂n)
2.

The estimator is weakly consistent on A (that is, σ̂ 2
n converges to σ 2 in probability restricted

to A) and asymptotically Gaussian conditionally on A. More precisely,

√
n(σ̂ 2

n − σ 2)
d−→ N(0, 2σ 4) as n → ∞ conditionally on A

(see Theorem 3.1 of Guttorp (1991) for both consistency and asymptotic distribution).

2.3. Simple estimators for partially observed branching processes

If instead of the trajectory of the process {Zk; k ≥ 0}, we observe only the trajectory of the
process {Yk; k ≥ 0} up to time n, it is not a priori clear how to estimate the offspring mean.
Meester and Trapman (2006) proposed the estimators

m̄Y,n = Yn

Yn−1 + 1
and m̂Y,n =

∑n
k=1 Yk∑n−1
k=0 Yk

.

Both m̄Y,n and m̂Y,n are strongly consistent on A (see Theorem 3.1 of Meester and Trap-
man (2006)), and (m̂Y,n −m) converges to 0 in probabity restricted to A at a rate of order
(
∑n−1
k=0 Yk)

1/2 (see Theorem 3.2 of Meester and Trapman (2006)).
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As an alternative to σ 2, Meester and Trapman (2006) considered the parameter

γ 2 = θm+ (1 − θ)σ 2 + (2 − θ)m2 − 2(1 − θ)mE ζ.

Since we will show later that this is in fact the asymptotic variance of a mean estimator, we
prefer to denote the parameter by γ 2, even though it was introduced as γ in Meester and
Trapman (2006). To see that γ 2 is indeed nonnegative, we initially note that the first summand
in the definition of γ 2 is positive and the second summand is nonnegative; next, a simple
calculation using the fact that m = θ E ξ + (1 − θ)E ζ yields (2 − θ)m2 − 2(1 − θ)mE ζ =
θm((1 − θ)E ξ + θ E ζ + E ξ − E ζ ). Since we assume that E ξ ≥ E ζ , this expression is
positive. It follows that γ 2 is positive.

To estimate γ 2, Meester and Trapman (2006) proposed the estimator

γ̂ 2
Y,n = 1

n

n∑
k=1

(Yk−1 + 1)(m̄Y,k − m̂Y,n)
2.

The estimator is weakly consistent on A (see Theorem 3.1 of Meester and Trapman (2006)),
and (γ̂ 2

Y,n − γ 2) converges to 0 in probability restricted toAwith a rate of order at least n−1/2+δ
for every δ > 0 (see Theorem 3.3 of Meester and Trapman (2006)).

The estimators of Meester and Trapman (2006) are analogous to the estimators used when
the branching process is fully observed. Some of the properties of their analogues in the full-
observation regime are also retained: consistency and (a bound on) the rate of convergence.
However, whereas the estimators in the full-observation regime are asymptotically Gaussian,
asymptotic distributions of the estimators in the partial-observation regime are not easy to
establish. This is because the dependency structure of the process {Yk; k ≥ 0} is more complex
than that of the process {Zk; k ≥ 0}.

When studying properties of the estimator γ̂ 2
Y,n, Meester and Trapman (2006) resolved the

difficulties arising from the complex dependency structure by using a ‘skipping’ idea (explained
below). This idea can in fact be further exploited to obtain partial-observation estimators that
retain the asymptotic properties of their full-observation analogues, including the asymptotic
distribution. To this end, we will exploit the link between the dependency structure of the
process {Zk; k ≥ 0} and the estimators m̂n and σ̂ 2

n established in Duby and Rouault (1982).
The random variablesZ−1/2

n−1 (Zk −mZk−1) for k = 1, . . . , n are asymptotically independent
and Gaussian as n → ∞ (see the proof of Theorem 2.3 of Guttorp (1991)). Intuitively speak-
ing, Zk = mZk−1 + σ

√
Zk−1εk , where the εk are ‘approximately independent and standard

Gaussian’. This leads to the ‘log-likelihood’

L = −1

2
n log(2πσ 2)− 1

2

n∑
k=1

logZk−1 − 1

2σ 2

n∑
k=1

(Zk −mZk−1)
2

Zk−1
,

and m̂n and σ̂ 2
n are the estimators maximising L.

Judging from the covariance structure of the variables Y−1/2
n−1 (Yk −mYk−1) for k = 1, . . . , n,

it does not seem that the variables whose indices differ by 1 are asymptotically independent.
However, asymptotic independence can be achieved by ‘skipping one index’ and considering
the variables Y−1/2

2ño
(Y2k+1 −mY2k) for k = 0, . . . , ño, where ño = �(n− 1)/2	. In Section 3

we show that these are asymptotically independent and Gaussian as n → ∞. From Y2k+1 =
mY2k + γ

√
Y2kεk , we obtain the ‘log-likelihood’

LY,o = −1

2
ño log(2πγ 2)− 1

2

ño∑
k=0

logY2k − 1

2γ 2

ño∑
k=0

(Y2k+1 −mY2k)
2

Y2k
,
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which is maximised by the estimators

m̂Y,n,o =
∑ño
k=0 Y2k+1∑ño
k=0 Y2k

and γ̃ 2
Y,n,o = 1

ño

ño∑
k=0

Y2k

(
Y2k+1

Y2k
− m̂Y,n,o

)2

.

To avoid problems with γ̃ 2
Y,n,o in cases where Yk = 0 for some k (which has a positive

probability), we consider the modified estimator

γ̂ 2
Y,n,o = 1

ño

ño∑
k=0

(Y2k + 1)(m̄Y,2k+1 − m̂Y,n,o)
2.

In Section 3 we show that the estimator m̂Y,n,o is strongly consistent on A, and that√√√√ ño∑
k=0

Y2k(m̂Y,n,o −m)
d−→ N(0, γ 2) as n → ∞ conditionally on A.

In Section 4 we will show that the estimator γ̂ 2
Y,n,o is weakly consistent on A, and that√

ño(γ̂
2
Y,n,o − γ 2)

d−→ N(0, 2γ 4) as n → ∞ conditionally on A.

In this sense, the estimators retain the asymptotic properties of their full-observation analogues.
Clearly, indices can be ‘skipped’ in many ways. For example, a ‘complementary skip-

ping scheme’ gives the variables Y−1/2
2ñe−1(Y2k −mY2k−1) for k = 1, . . . , ñe, where ñe = �n/2	.

These, following the same reasoning as before, yield the estimators

m̂Y,n,e =
∑ñe
k=1 Y2k∑ñe
k=1 Y2k−1

and γ̂ 2
Y,n,e = 1

ñe

ñe∑
k=1

(Y2k−1 + 1)(m̄Y,2k − m̂Y,n,e)
2.

Both estimators are consistent (m̂Y,n,e strongly and γ̂ 2
Y,n,e weakly) and asymptotically Gaussian

conditionally on A. This can be shown in the same way as for the estimators m̂Y,n,o and γ̂ 2
Y,n,o

(details can be found in Kvitkovičová and Panaretos (2010)).
Intuitively speaking, to obtain the estimators from the two ‘complementary skipping sche-

mes’, we divide the data into two parts: Y0, Y2, . . . , Y2ñe and Y1, Y3, . . . , Y2ño+1. We treat one
part of the data as a threshold to which we compare the other part, and arrive at estimators ofm
and γ 2. We then switch the roles of the two parts of the data and arrive at the second pair of
estimators. This may suggest that combining the estimators of the two skipping schemes might
improve efficiency. Recall, however, that using both parts of the data ‘on equal terms’ (like the
estimators of Meester and Trapman (2006)) complicates the asymptotic distribution. Still, with
the question of efficiency in mind, and in order to obtain a single estimator for each parameter,
we consider the estimators

m̂Y,n,a = 1

2
(m̂Y,n,o + m̂Y,n,e),

γ̂ 2
Y,n,a = 1

2

(
1

ño

ño∑
k=0

(Y2k + 1)(m̄Y,2k+1 − m̂Y,n,e)
2 + 1

ñe

ñe∑
k=1

(Y2k−1 + 1)(m̄Y,2k − m̂Y,n,o)
2
)
,

γ̂ 2
Y,n,aa = 1

2

(
1

ño

ño∑
k=0

(Y2k + 1)(m̄Y,2k+1 − m̂Y,n,a)
2 + 1

ñe

ñe∑
k=1

(Y2k−1 + 1)(m̄Y,2k − m̂Y,n,a)
2
)
.

https://doi.org/10.1239/aap/1324045703 Published online by Cambridge University Press

https://doi.org/10.1239/aap/1324045703


1172 A. KVITKOVIČOVÁ AND V. M. PANARETOS

We do not study asymptotic distributions of these estimators. Note, however, that consistency
and the rate of convergence of the estimator m̂Y,n,a follow from the corresponding properties
of the estimators m̂Y,n,o and m̂Y,n,e. Consistency and the rates of convergence of the estimators
γ̂ 2
Y,n,a and γ̂ 2

Y,n,aa follow from results given in Section 4. We comment on the practical
performance of all estimators in Section 5.

3. The offspring mean estimator

In this section we prove the properties of the estimator m̂Y,n,o. We start with a brief
presentation of some background material that provides the basis for proving the properties
of interest. We then present some preliminary results, and end by stating and proving the main
results.

3.1. The background

To establish the asymptotic distribution of the estimator, we will apply the central limit
theorem of Scott (1978). The theorem deals with random sequences with the state space
(RN,D), where RN is the space of real sequences x = (x0, x1, . . . ) and D is the Borel σ -field
on RN corresponding to the metric d(x, y) = supn≥0 ρ(

∑n
j=0 xj ,

∑n
j=0 yj ) with ρ(a, b) =

|a − b|/(1 + |a − b|) for a, b ∈ R. When dealing with random sequences, it is common to
work with the σ -field B generated by the cylinder sets, so that the distribution of a sequence
may be specified by finite-dimensional distributions. It turns out to be possible to switch
between the two σ -fields, as B ⊆ D and every measure on (RN,B) corresponding to a set of
consistent finite-dimensional distributions can be uniquely extended to a measure on (RN,D)
(see Section 2 of Scott (1978)).

Theorem 3.1. (Scott (1978).) Let (Sn,Fn)n≥0 be a martingale with martingale differences
X0 = S0 andXn = Sn−Sn−1, n ≥ 1, conditional varianceV 2

n = EX2
0 +∑n

k=1 E[X2
k | Fk−1],

and variance s2
n = E S2

n such that s2
n < ∞ for every n ≥ 0. Suppose that

(i) V 2
n /s

2
n

p−→ η2 as n → ∞, where η is a random variable such that η ≥ 0 a.s. and
E η2 < ∞;

(ii) s2
n−r/s2

n → p−r as n → ∞ for every integer r ≥ 0, where p is a constant such that
p > 1;

(iii) E[exp{itXn/(aVn)} | Fn−1] p−→ exp{−t2/2} asn → ∞ on {η > 0}, wherea is a constant
such that a > 0.

Let N = (N0, N1, . . . ) be a random sequence with independent components such that Nj ∼
N(0, p−j ), independent of η. For every n ∈ N, consider a random sequence Mn = (Xn/(aVn),

Xn−1/(aVn), . . . , X1/(aVn),X0/(aVn), 0, 0, . . . ).
For every E ∈ D such that P(N ∈ ∂E) = 0, we have

P(Mn ∈ E | η > 0) → P(N ∈ E) as n → ∞.

The theorem asserts that the conditional distribution of the sequence Mn converges weakly
to a Gaussian measure. We will in fact only need the asymptotic distribution of a function
of that sequence, namely of

∑n
j=0Xj/(aVn). To establish this, we start by noting that∑n

j=0Xj/(aVn) = lim supk→∞
∑k
j=0Mnj , whereMnj is the j th component of the sequence

Mn. This is because Mnj = 0 for j > n by definition.
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It can be easily shown (directly from the definition of continuity) that the function
lim supk→∞

∑k
i=0 xi is a continuous function from the metric space (RN, d) to the metric

space (R ∪ {±∞}, d̃), where d̃(x, y) = |f (x)− f (y)|, f (x) = x/(1 + |x|) for x ∈ R,
and f (x) = ±1 for x = ±∞. By the continuous mapping theorem, it now follows that
L(

∑n
j=0Xj/(aVn) | η > 0) → L(lim supk→∞

∑k
j=0Nj) as n → ∞.

It remains to determine the distribution on the right-hand side. The assumption thatp > 1 im-
plies that

∑∞
j=0 varNj = ∑∞

j=0 p
−j = p/(p − 1) < ∞. Furthermore, the variables {Nj }j≥0

are centred and mutually independent. It follows that limk→∞
∑k
j=0Nj a.s. exists. Hence,

lim supk→∞
∑k
j=0Nj = limk→∞

∑k
j=0Nj a.s., and they have the same distribution.

Since L(
∑k
j=0Nj) = N(0,

∑k
j=0 p

−j ) for every k ∈ N, the characteristic function ψk(t)
of the random variable

∑k
j=0Nj satisfies

ψk(t) = exp

{
−

( k∑
j=0

p−j
)
t2

2

}
→ exp

{
− p

p − 1

t2

2

}
as k → ∞.

Thus,
∑k
j=0Nj

d−→ N(0, p/(p − 1)) as k → ∞. Since limk→∞
∑k
j=0Nj a.s. exists, it follows

that its distribution is N(0, p/(p − 1)).
These considerations imply that

L

( n∑
j=0

Xj

aVn

∣∣∣∣ η > 0

)
→ N

(
0,

p

p − 1

)
as n → ∞.

3.2. Preliminary results

We now list several results concerning functionals of the process {(Zk, Yk)�; k ≥ 0} that
will be useful in the proofs of the main results. We give the proof of the crucial lemma here;
the remaining lemmas are treated in Appendix A.

Lemma 3.1. For every n ≥ 0, we have EZn = mn.

Lemma 3.2. For every n ≥ 0, we have

(i) E[Yn+1 −mYn | Zn] = 0 a.s.;

(ii) E[(Yn+1 −mYn)
2 | Zn] = (1 − θ)γ 2Zn a.s.

Lemma 3.3. We have Yn/Zn → (1 − θ) as n → ∞ a.s. on A.

Lemma 3.4. Let W = limn→∞ Zn/m
n a.s. Then

(i)
m2 − 1

m2n+2 − 1

n∑
k=0

Z2k → W a.s. as n → ∞;

(ii)
m2 − 1

m(m2n+2 − 1)

n∑
k=0

Z2k+1 → W a.s. as n → ∞;

(iii)
m2 − 1

m2n+2 − 1

n∑
k=0

Y2k → (1 − θ)W a.s. on A as n → ∞;

(iv)
m2 − 1

m(m2n+2 − 1)

n∑
k=0

Y2k+1 → (1 − θ)W a.s. on A as n → ∞.
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Lemma 3.5. We have

E

[
exp

{
it

√
1

(1 − θ)γ 2

Yn+1 −mYn√
Zn

} ∣∣∣∣ Zn] → exp

{
− t

2

2

}
a.s. on A as n → ∞.

Proof. For every n ∈ N, let An = Z
−1/2
n (Yn+1 −mYn), and consider a version of the

conditional distribution PAn |Zn defined for every ω ∈ � and B ∈ B(R) as

PAn |Zn(B, ω) = P(An ∈ B, Zn = Zn(ω))

P(Zn = Zn(ω))
= P({ω′;An(ω′) ∈ B, Zn(ω′) = Zn(ω)})

P({ω′;Zn(ω′) = Zn(ω)}) .

We have

P(An ∈ B, Zn = Zn(ω))

= P(Z−1/2
n (Yn+1 −mYn) ∈ B, Zn = Zn(ω))

= P

(
Z

−1/2
n

(Zn+1∑
i=1

Bi,n+1 −m

Zn∑
j=1

Bj,n

)
∈ B, Zn = Zn(ω)

)

= P

(
Z

−1/2
n

(∑Zn
j=1 ξj,n(1−Bj,n)+ζj,nBj,n∑

i=1

Bi,n+1 −m

Zn∑
j=1

Bj,n

)
∈ B, Zn = Zn(ω)

)

= P

(
Z

−1/2
n

( Zn∑
j=1

∑j
k=1 ξk,n(1−Bk,n)+ζk,nBk,n∑

i=1+∑j−1
k=1 ξk,n(1−Bk,n)+ζk,nBk,n

Bi,n+1 −m

Zn∑
j=1

Bj,n

)
∈ B,

Zn = Zn(ω)

)

= P

(
Z

−1/2
n

( Zn∑
j=1

ξj,n(1−Bj,n)+ζj,nBj,n∑
i=1

Bi,j,n+1 −m

Zn∑
j=1

Bj,n

)
∈ B, Zn = Zn(ω)

)
,

where the {Bi,j,n}i∈N, j∈N, n∈N are Bernoulli random variables with success probability 1 − θ ,
mutually independent and independent of all the other variables in the model.

Define the random variables

Cj,n =
ξj,n(1−Bj,n)+ζj,nBj,n∑

i=1

Bi,j,n+1

for every n ∈ N and j ∈ N. Since {ξi,k}i∈N, k≥n, {ζi,k}i∈N, k≥n, and {Bi,k}i∈N, k≥n are
independent of {Zk; k ≤ n} by definition, so are the {Ci,k}i∈N,k≥n. We can thus write

P(An ∈ B, Zn = Zn(ω)) = P

(
Zn(ω)

−1/2
Zn(ω)∑
j=1

(Cj,n −mBj,n) ∈ B, Zn = Zn(ω)

)

= P

(
Zn(ω)

−1/2
Zn(ω)∑
j=1

(Cj,n −mBj,n) ∈ B
)

P(Zn = Zn(ω)).
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It follows that

PAn |Zn(B, ω) = P(An ∈ B, Zn = Zn(ω))

P(Zn = Zn(ω))
= P

(
Zn(ω)

−1/2
Zn(ω)∑
j=1

(Cj,n −mBj,n) ∈ B
)
.

Since we are interested in the distribution conditional on A = {Zn → ∞}, we focus on the
distribution of z−1/2

n

∑zn
j=1(Cj,n −mBj,n) for zn such that limn→∞ zn = ∞.

For a fixed n, the random variablesCj,n−mBj,n are independent and identically distributed.
Furthermore, since ξj,n, ζj,n, Bj,n, and Bi,j,n+1 are mutually independent, Wald’s identities
give ECj,n = EBi,j,n+1 E[ξj,n(1 −Bj,n)+ ζj,nBj,n] = (1 − θ)m. Thus, the random variables
Cj,n −mBj,n are centred.

We now calculate their variance: var[Cj,n −mBj,n] = E(Cj,n −mBj,n)
2 = EC2

j,n −
2mECj,nBj,n +m2 EB2

j,n. Using Wald’s identities, we obtain

EC2
j,n = varCj,n + (ECj,n)

2

= E[ξj,n(1 − Bj,n)+ ζj,nBj,n] varB1,j,n+1

+ var[ξj,n(1 − Bj,n)+ ζj,nBj,n](EB1,j,n+1)
2 + (1 − θ)2m2

= θ(1 − θ)m+ (1 − θ)2σ 2 + (1 − θ)2m2.

Furthermore, by the mutual independence of ξj,n, ζj,n, and Bj,n,

−2mECj,nBj,n = −2mE

[
E

[
Bj,n

ξj,n(1−Bj,n)+ζj,nBj,n∑
i=1

Bi,j,n+1

∣∣∣∣ ξj,n, ζj,n, Bj,n]]
= −2(1 − θ)mEBj,n(ξj,n(1 − Bj,n)+ ζj,nBj,n)

= −2(1 − θ)mE[Bj,nξj,n − B2
j,nξj,n + B2

j,nζj,n]
= −2(1 − θ)2mE ζ.

It follows that var[Cj,n −mBj,n] = (1 − θ)γ 2.
The classical central limit theorem now gives

((1 − θ)γ 2zn)
−1/2

zn∑
j=1

(Cj,n −mBj,n)
d−→ N(0, 1) as n → ∞.

It follows that

L

(
Yn+1 −mYn√
(1 − θ)γ 2Zn

∣∣∣∣ Zn) → N(0, 1) a.s. on A as n → ∞,

and the proof is complete.

3.3. Main results

We now derive the properties of the estimator m̂Y,n,o. We begin with consistency.

Theorem 3.2. The estimator m̂Y,n,o is strongly consistent on A.
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Proof. Since {Zk; k ≥ 0} is a branching process, we have W = limn→∞ Zn/m
n > 0 a.s.

on A. Using Lemma 3.4, we obtain

m̂Y,n,o =
∑ño
k=0 Y2k+1∑ño
k=0 Y2k

= m

(
m2 − 1

m(m2ño+2 − 1)

ño∑
k=0

Y2k+1

)(
m2 − 1

m2ño+2 − 1

ño∑
k=0

Y2k

)−1

→ m a.s. on A as n → ∞.

Next, we proceed to the determination of the asymptotic distribution.

Theorem 3.3. We have√√√√ ño∑
k=0

Y2k(m̂Y,n,o −m)
d−→ N(0, γ 2) as n → ∞ conditionally on A.

Proof. We apply Theorem 3.1 in the following setting. For every k ≥ 0, let

Fk = σ {Y0, Z1, Y1, Z2, Y2, . . . , Z2k+1, Y2k+1, Z2k+2} and Xk = Y2k+1 −mY2k.

We first show that (Sn,Fn)n≥0 is a martingale. Clearly, Xk is Fk-measurable for every k ≥ 0.
Furthermore, E[Xk | Fk−1] = 0 a.s. for every k ∈ N by Lemma 3.2. Finally, using Lemmas 3.2
and 3.1, we obtain

s2
n = E S2

n

=
n∑
k=0

EX2
k

= EX2
0 +

n∑
k=1

E[E[X2
k | Fk−1]]

= (1 − θ)γ 2
n∑
k=0

EZ2k

= (1 − θ)γ 2
n∑
k=0

m2k

= (1 − θ)γ 2m
2n+2 − 1

m2 − 1

for every n ≥ 0. Thus, s2
n < ∞ for every n ≥ 0, and (Sn,Fn)n≥0 is a martingale.

For the conditional variance, we have

V 2
n = EX2

0 +
n∑
k=1

E[X2
k | Fk−1] = (1 − θ)γ 2

n∑
k=0

Z2k a.s.

Thus, V 2
n /s

2
n = (m2 − 1)/(m2n+2 − 1)

∑n
k=0 Z2k a.s. By Lemma 3.4, it follows thatV 2

n /s
2
n →

W a.s. as n → ∞. Since {Zk; k ≥ 0} is a branching process, we have W ≥ 0 a.s.,
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EW = 1, and {W > 0} = A a.s. Hence, Theorem 3.1(i) is satisfied with η2 = W a.s.,
and {η > 0} = A a.s.

Furthermore, since m > 1, we have s2
n−r/s2

n = (m2n−2r+2 − 1)/(m2n+2 − 1) → m−2r as
n → ∞ for every integer r ≥ 0. Theorem 3.1(ii) is thus satisfied with p = m2.

Finally,

Xn

Vn
= Y2n+1 −mY2n√

(1 − θ)γ 2
∑n
k=0 Z2k

= Y2n+1 −mY2n√
(1 − θ)γ 2Z2n

√
Z2n∑n
k=0 Z2k

.

Since {Zk; k ≥ 0} is a branching process, W > 0 a.s. on A, and, by Lemma 3.4, we obtain

Z2n∑n
k=0 Z2k

= Z2n

m2n

(
m2 − 1

m2n+2 − 1

n∑
k=0

Z2k

)−1
m2n(m2 − 1)

m2n+2 − 1
→ 1−m−2 a.s. on A as n → ∞.

Lemma 3.5 together with Slutsky’s theorem now implies that Theorem 3.1(iii) is satisfied with
a = √

1 −m−2. Recall that we are assuming that m > 1, and so 1 −m−2 > 0.
Theorem 3.1 and the discussion following the theorem now gives

n∑
j=0

Xj

aVn
=

(
(1 −m−2)(1 − θ)γ 2

n∑
k=0

Z2k

)−1/2 n∑
k=0

(Y2k+1 −mY2k)

d−→ N

(
0,

m2

m2 − 1

)
as n → ∞ conditionally on A. (3.1)

By Lemma 3.4 and because W > 0 a.s. on A, we have∑n
k=0 Y2k∑n
k=0 Z2k

=
(

m2 − 1

m2n+2 − 1

n∑
k=0

Y2k

)(
m2 − 1

m2n+2 − 1

n∑
k=0

Z2k

)−1

→ (1 − θ) a.s. on A as n → ∞.

By Slutsky’s theorem and (3.1), it now follows that( n∑
k=0

Y2k

)−1/2 n∑
k=0

(Y2k+1 −mY2k)
d−→ N(0, γ 2) as n → ∞ conditionally on A,

which is equivalent to the statement of the theorem.

In the context of the preceding proof, we note that once the assumptions of Theorem 3.1
are verified, it is not difficult to derive the asymptotic distribution of the simple estimator m̄Y,n
of Meester and Trapman (2006). We first apply the continuity theorem to show that

Xño

aVño

=
(
(1 −m−2)(1 − θ)γ 2

ño∑
k=0

Z2k

)−1/2

(Y2ño+1 −mY2ño)

d−→ N(0, 1) as n → ∞ conditionally on A,

(it is straightforward to verify that the projection on the first coordinate is a continuous function
from the metric space (RN, d) to the metric space (R, | · |)). Using Lemma 3.4 and Slutsky’s
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theorem, we can then show that (Y2ño + 1)−1/2(Y2ño+1 −mY2ño)
d−→ N(0, γ 2) as n → ∞

conditionally on A, and afterwards that
√
Y2ño + 1(m̄Y,2ño+1 −m)

d−→ N(0, γ 2) as n → ∞
conditionally on A. If we now denote by Fn(x) the distribution function of the random
variable 1/

√
γ 2

√
Yn−1 + 1(Yn/(Yn−1 + 1)−m) conditional on A for every n ∈ N, we have

limk→∞ F2k+1(x) = �(x) for every x ∈ R. A similar argument for the ‘complemen-
tary skipping scheme’ gives limk→∞ F2k(x) = �(x) for every x ∈ R. It follows that
limn→∞ Fn(x) = �(x) for every x ∈ R. This leads to the following result.

Theorem 3.4. We have√
Yn−1 + 1(m̄Y,n −m)

d−→ N(0, γ 2) as n → ∞ conditionally on A.

4. The estimators of γ 2

Having established the asymptotic properties of the mean estimators, we now proceed to the
derivation of the properties of the estimator γ̂ 2

Y,n,o and related estimators. As in Section 3, we
first give some background material, then present some preliminary results, and finally prove
the main results.

4.1. The background

We will employ the following central limit theorem for martingale arrays.

Theorem 4.1. (Corollary 3.1 of Hall and Heyde (1980).) Let kn be constants such that kn ↗ ∞
as n → ∞. For every n ∈ N, let {Sni,Fni; 0 ≤ i ≤ kn} be a zero-mean square-integrable
martingale with martingale differences Xn0 = Sn0 and Xnk = Snk − Sn,k−1 for every n ∈ N

and 1 ≤ k ≤ kn, and with conditional variance V 2
ni = ∑i

k=0 E[X2
nk | Fn,k−1], where Fn,−1 =

{∅, �}. Let η2 be an a.s. finite random variable. Suppose that

(i) for every ε > 0,
∑kn
k=0 E[X2

nk1{|Xnk| > ε} | Fn,k−1] p−→ 0 as n → ∞;

(ii) V 2
nkn

p−→ η2 as n → ∞;

(iii) Fn,i ⊆ Fn+1,i for every n ∈ N and 0 ≤ i ≤ kn.

Then

Snkn
d−→ Z as n → ∞,

where Z is a random variable with the characteristic function E exp{− 1
2η

2t2}.
4.2. Preliminary results

We again list several results concerning functionals of the process {(Zk, Yk)�; k ≥ 0} that
will be useful in the proofs of the main results. We give the proof of the crucial lemma here;
the remaining lemmas are treated in Appendix A.

Lemma 4.1. For every n ≥ 0 and Zn > 0,

E

[
1

Yn + 1
(Yn+1 −m(Yn + 1))2

∣∣∣∣ Zn] = γ 2 + g(Zn) a.s.,
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where

g(z) = 1

(1 − θ)(z+ 1)
(1 − θz+1)

× (m2 + θ2(E ξ)2 − 2θmE ξ − θ(1 − θ)E ζ − (1 − θ)2 var ζ )

− θz+1((1 + θ)(E ξ)2 + (θ − 2m)E ξ + (1 − θ) var ξ)

− θz+1z(1 − θ)(E ξ)2 (4.1)

for every z ∈ N. The function g(z) is bounded. Moreover, there exist zg ∈ N and a constant
Bg > 0 such that, for every z ≥ zg , we have |g(z)| ≤ Bg/(z + 1). Furthermore, the limit∑∞
k=0 |g(Zk(ω))| exists and is finite a.s. on A.

Lemma 4.2. For every n ≥ 0 and Zn > 0,

E

[
1

(Yn + 1)2
(Yn+1 −m(Yn + 1))4

∣∣∣∣ Zn] = 3γ 4 + h(Zn) a.s.,

where h(z) is a bounded function. Moreover, there exist zh ∈ N and a constant Bh > 0 such
that, for every z ≥ zh, we have |h(z)| ≤ Bh/(z+ 1).

Lemma 4.3. For every n ≥ 0 and Zn > 0,

var

[
1

Yn + 1
(Yn+1 −m(Yn + 1))2

∣∣∣∣ Zn] = 2γ 4 + h̃(Zn) a.s.,

where h̃(z) is a bounded function. Moreover, there exist z
h̃

∈ N and a constant B
h̃
> 0 such

that, for every z ≥ z
h̃
, we have |h̃(z)| ≤ B

h̃
/(z+ 1). In addition, the limit

∑∞
k=0 |h̃(Zk(ω))|

exists and is finite a.s. on A.

Lemma 4.4. For every n ∈ N and 0 ≤ k ≤ kn, where kn = ño, consider the random variables

Xnk = 1√
2knγ 4

(
1

Y2k + 1
(Y2k+1 −m(Y2k + 1))2 − γ 2 − g(Z2k)

)
1{Z2k > 0}.

For every ε > 0, we have
∑kn
k=0 E[X2

nk1{|Xnk| > ε} | Z2k] → 0 a.s. as n → ∞.

Proof. Let us first study the limit behaviour of the conditional expectation on Ac. Since
Ac = {Zn → 0} a.s., for almost every ω ∈ Ac, there exists k̃(ω) ≥ 0 such that Z2k̃(ω)(ω) > 0
and Z2k(ω) = 0 for every k > k̃(ω). This implies that Xnk(ω) = 0 for every k such that
k > k̃(ω). Thus, for almost every ω ∈ Ac and every n > 2k̃(ω), we have

kn∑
k=0

E[X2
nk1{|Xnk| > ε} | Z2k](ω)

≤
kn∑
k=0

E[X2
nk | Z2k](ω)

=
k̃(ω)∑
k=0

E[X2
nk | Z2k](ω)

= 1

kn

1

2γ 4

k̃(ω)∑
k=0

E

[(
1

Y2k + 1
(Y2k+1 −m(Y2k + 1))2 − γ 2 − g(Z2k)

)2 ∣∣∣∣ Z2k

]
(ω).
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Recall that the conditional expectation on the right-hand side is in fact a conditional variance
by Lemma 4.1, and, by Lemma 4.3, this conditional variance is bounded. Thus,

kn∑
k=0

E[X2
nk1{|Xnk| > ε} | Z2k] → 0 a.s. on Ac as n → ∞.

To prove the statement on A, we fix an ε > 0 and show that there exists an ñ ∈ N such that,
for every n ≥ ñ and k ≤ kn, and almost every ω ∈ A,

E[X2
nk1{|Xnk| > ε} | Z2k](ω) ≤ 1

kn
cn(ω, ε), (4.2)

where limn→∞ cn(ω, ε) = 0. For every n ≥ ñ and almost every ω ∈ A, we then have

kn∑
k=0

E[X2
nk1{|Xnk| > ε} | Z2k] ≤ kn + 1

kn
cn(ω, ε) → 0 as n → ∞.

To show (4.2), we first observe that A = {Zn → ∞} implies that Zn(ω) > 0 for every
n ∈ N and every ω ∈ A. We can thus write

E[X2
nk1{|Xnk| > ε} | Z2k]

= 1

2knγ 4 E

[(
1

Y2k + 1
(Y2k+1 −m(Y2k + 1))2 − γ 2 − g(Z2k)

)2

× 1
{∣∣∣∣ (Y2k+1 −m(Y2k + 1))2

Y2k + 1
− γ 2 − g(Z2k)

∣∣∣∣ > ε

√
2knγ 4

} ∣∣∣∣ Z2k

]
a.s. on A. Since (a + b)2 ≤ 2(a2 + b2) for every a, b ∈ R, we obtain

E[X2
nk1{|Xnk| > ε} | Z2k]

≤ 1

knγ 4 E

[
(Y2k+1 −m(Y2k + 1))4

(Y2k + 1)2

× 1
{∣∣∣∣ (Y2k+1 −m(Y2k + 1))2

Y2k + 1
− γ 2 − g(Z2k)

∣∣∣∣ > ε

√
2knγ 4

} ∣∣∣∣ Z2k

]
(4.3)

+ 1

knγ 4 E

[
(γ 2 + g(Z2k))

2

× 1
{∣∣∣∣ (Y2k+1 −m(Y2k + 1))2

Y2k + 1
− γ 2 − g(Z2k)

∣∣∣∣ > ε

√
2knγ 4

} ∣∣∣∣ Z2k

]
(4.4)

a.s. on A.
We can write (4.4) as

1

kn

(γ 2 + g(Z2k))
2

γ 4 P

(∣∣∣∣ (Y2k+1 −m(Y2k + 1))2

Y2k + 1
− γ 2 − g(Z2k)

∣∣∣∣ > ε

√
2knγ 4

∣∣∣∣ Z2k

)
,

which by Chebyshev’s inequality and Lemma 4.3 is a.s. bounded from above on A by

1

kn

(γ 2 + g(Z2k))
2

γ 4

2γ 4 + h̃(Z2k)

ε22knγ 4 = 1

k2
n

(γ 2 + g(Z2k))
2(2γ 4 + h̃(Z2k))

2γ 8ε2 .
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By Lemmas 4.1 and 4.3, both g(z) and h̃(z) are bounded functions. Thus, the right-hand side
of the above equality can be bounded by k−2

n multiplied by a finite constant for every n ∈ N,
every k ≤ kn, and almost every fixed ω ∈ A.

To complete the proof, it suffices to find an appropriate bound for (4.3). We have

1
{∣∣∣∣ (Y2k+1 −m(Y2k + 1))2

Y2k + 1
− γ 2 − g(Z2k)

∣∣∣∣ > ε

√
2knγ 4

}
= 1

{
(Y2k+1 −m(Y2k + 1))2

Y2k + 1
− γ 2 − g(Z2k) > ε

√
2knγ 4

}
+ 1

{
(Y2k+1 −m(Y2k + 1))2

Y2k + 1
− γ 2 − g(Z2k) < −ε

√
2knγ 4

}
.

Thus, (4.3) is a.s. equal to

1

knγ 4 E

[
(Y2k+1 −m(Y2k + 1))4

(Y2k + 1)2

× 1
{
(Y2k+1 −m(Y2k + 1))2

Y2k + 1
> ε

√
2knγ 4 + γ 2 + g(Z2k)

} ∣∣∣∣ Z2k

]
(4.5)

+ 1

knγ 4 E

[
(Y2k+1 −m(Y2k + 1))4

(Y2k + 1)2

× 1
{
(Y2k+1 −m(Y2k + 1))2

Y2k + 1
< −ε

√
2knγ 4 + γ 2 + g(Z2k)

} ∣∣∣∣ Z2k

]
. (4.6)

By Lemma 4.1, the function g(z) is bounded. It follows that there exists an ñ1 ∈ N such that,
for every n ≥ ñ1, every k ≤ kn, and everyω ∈ A, we have −ε√2knγ 4 + γ 2 + g(Z2k(ω)) < 0.
Thus, (4.6) is 0 for every n ≥ ñ1, every k ≤ kn, and almost every ω ∈ A. Furthermore, since
the function g(z) is bounded, there exists ñ2 ∈ N such that, for every n ≥ ñ2, every k ≤ kn,
and every ω ∈ A, we have ε

√
2knγ 4 + γ 2 + g(Z2k(ω)) > 0. Thus, (4.5) is equal to

1

knγ 4 E

[
(Y2k+1 −m(Y2k + 1))4

(Y2k + 1)2

× 1
{
(Y2k+1 −m(Y2k + 1))4

(Y2k + 1)2
>

(
ε

√
2knγ 4 + γ 2 + g(Z2k)

)2} ∣∣∣∣ Z2k

]
for every n ≥ ñ2, every k ≤ kn, and almost every ω ∈ A.

LetAk = (Y2k+1 −m(Y2k+1))4/(Y2k+1)2 for every k ≥ 0. The random variables {Ak}k≥0
are nonnegative and E[Ak | Z2k] is finite a.s. for every k ≥ 0 by Lemma 4.2. Furthermore, by
Lemma 3.5, together with Lemma 3.3 and Slutsky’s theorem, we have

L

(
Y2k+1 −mY2k√

Y2k

∣∣∣∣ Z2k

)
→ N(0, γ 2) a.s. on A as k → ∞.

It follows that the same result holds for

Y2k+1 −m(Y2k + 1)√
Y2k + 1

=
√
Y2k√

Y2k + 1

(
Y2k+1 −mY2k√

Y2k
− m√

Y2k

)
.
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The continuous mapping theorem yields L(Ak | Z2k) → (N(0, γ 2))4 a.s. on A as k → ∞ .
Thus, the conditional distributions of Ak converge to the distribution of a nonnegative random
variable with a finite expectation. Furthermore, by Lemma 4.2 we have E[Ak | Z2k] = 3γ 4 +
h(Z2k) → 3γ 4 a.s. on A as k → ∞. Since 3γ 4 = E(N(0, γ 2))4, Theorem 3.6 of Billingsley
(1999) on uniform integrability implies that limc→∞ supk≥0 E[Ak1{Ak ≥ c} | Z2k] = 0 a.s.
on A.

Since, by Lemma 4.1, the function g(z) is bounded, for cn = (ε
√

2knγ 4 + γ 2 + g(Z2k))
2,

we have limn→∞ cn = ∞. It now suffices to observe that

(4.5) = 1

kn

1

γ 4 E[Ak1{Ak ≥ cn} | Z2k] a.s.

for every n ≥ ñ2 and k ≤ kn. This completes the proof.

4.3. Main results

We now prove the properties of estimators of γ 2. As the first step, we derive the asymptotic
distribution of the random variable 1/ño

∑ño
k=0(Y2k + 1)(m̄Y,2k+1 −m)2. Note that the random

variable itself could be regarded as a method-of-moments-type estimator of γ 2 in view of
Theorem 3.4, if m were assumed to be known.

Lemma 4.5. We have

√
ño

(
1

ño

ño∑
k=0

(Y2k + 1)(m̄Y,2k+1 −m)2 − γ 2
)

d−→ N(0, 2γ 4) as n → ∞ conditionally onA.

Proof. We first apply Theorem 4.1 to show that

1√
ño

ño∑
k=0

(
1

Y2k + 1
(Y2k+1 −m(Y2k + 1))2 − γ 2 − g(Z2k)

)
d−→ N(0, 2γ 4) as n → ∞

conditionally on A. From this, we will deduce the result for the quantity of interest.
Let kn = ño = �(n− 1)/2	, and, for every n ∈ N and 0 ≤ k ≤ kn, let

Fnk = σ {Z1, Y1, Z2, Y2, . . . , Z2k+1, Y2k+1, Z2k+2}
and

Xnk = 1√
2knγ 4

(
1

Y2k + 1
(Y2k+1 −m(Y2k + 1))2 − γ 2 − g(Z2k)

)
1{Z2k > 0}

with g(z) given by (4.1). Let Sni = ∑i
k=0Xnk for every n ∈ N and k ≤ kn. Set Fn,−1 =

σ {Z0} = {∅, �}.
Clearly, kn ↗ ∞ as n → ∞. Furthermore, Xnk is Fnk-measurable for every n ∈ N and

k ≤ kn. Moreover, for every n ∈ N and k ≤ kn, E[Xnk | Fn,k−1] = E[Xnk | Z2k] = 0 a.s. by
definition on {ω;Z2k(ω) = 0}, and by Lemma 4.1 otherwise. Finally, E S2

ni = ∑i
k=0 EX2

n,k ≤∑kn
k=0 EX2

n,k for every n ∈ N and 0 ≤ i ≤ kn. Using Lemma 4.3, we obtain

E S2
ni ≤

kn∑
k=0

E[E[X2
nk | Z2k]] ≤ 1

kn

kn∑
k=0

(
1 + 1

2γ 4 E[h̃(Z2k)1{Z2k > 0}]
)
.
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The expression on the right-hand side is bounded, since, by Lemma 4.3, the function h̃(z) is
bounded. Thus, {Sni,Fni; n ∈ N, 0 ≤ i ≤ kn} defined above is a zero-mean square-integrable
martingale array as described in Theorem 4.1.

We now turn to the calculation of the conditional variance. By Lemma 4.3, on {ω;Z2i (ω) >

0} we have

V 2
ni(ω) =

i∑
k=0

E[X2
nk | Fn,k−1](ω) = 1

kn

(
i + 1 + 1

2γ 4

i∑
k=0

h̃(Z2k(ω))

)
a.s.,

and on {ω; there exists j (ω) < i;Z2j (ω)(ω) > 0, Z2j (ω)+2(ω) = 0}, we have

V 2
ni(ω) =

i∑
k=0

E[X2
nk | Fn,k−1](ω) = 1

kn

(
j (ω)+ 1 + 1

2γ 4

j (ω)∑
k=0

h̃(Z2k(ω))

)
a.s.

Now, Ac = {ω; there exists j (ω);Z2j (ω)(ω) > 0, Z2j (ω)+2(ω) = 0} a.s. Thus, for almost
every ω ∈ Ac and every n ∈ N such that kn ≥ j (ω),

V 2
nkn
(ω) = 1

kn

(
j (ω)+ 1 + 1

2γ 4

j (ω)∑
k=0

h̃(Z2k(ω))

)
.

It follows that limn→∞ V 2
nkn
(ω) = 0 a.s. on Ac.

On A, we have Zn(ω) > 0 for every n ≥ 0. Thus,

V 2
nkn
(ω) = kn + 1

kn
+ 1

2γ 4kn

kn∑
k=0

h̃(Z2k(ω)) a.s. on A

for every n ∈ N. Concentrating on the limit limn→∞ 1/kn
∑kn
k=0 h̃(Z2k), we have∣∣∣∣ n∑

k=0

h̃(Z2k)

∣∣∣∣ ≤
n∑
k=0

|h̃(Z2k)| ≤
2n∑
k=0

|h̃(Zk)| for every n ≥ 0.

The right-hand side of the above inequality has a finite limit for n → ∞ a.s. onA by Lemma 4.3.
It follows that limn→∞ 1/kn

∑kn
k=0 h̃(Z2k) = 0 a.s. onA. Thus, limn→∞ V 2

nkn
(ω) = 1 a.s. onA.

Combined with the result on Ac, this gives

lim
n→∞V

2
nkn
(ω) = 1{A} a.s.

Summarising our findings, we have shown that {Sni,Fni; n ∈ N, 1 ≤ i ≤ kn} is a zero-mean
square-integrable martingale array. Since the σ -fields Fni do not depend on n, Theorem 4.1(iii)
is satisfied. We have shown that Theorem 4.1(ii) is satisfied withη2 = 1{A}. Finally, Lemma 4.4
implies that Theorem 4.1(i) is satisfied as well. Thus, we may invoke Theorem 4.1 to deduce
that Snkn

d−→ Z as n → ∞, where Z is a random variable with the characteristic function
P(A) exp{− 1

2 t
2} + P(Ac).

For the distribution functions Fn of the random variables Snkn , we have limn→∞ Fn(x) =
P(A)�(x) if x < 0 and limn→∞ Fn(x) = P(A)�(x)+P(Ac) if x > 0, where�(x) denotes the
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1184 A. KVITKOVIČOVÁ AND V. M. PANARETOS

distribution function of a standard Gaussian random variable. Besides, since Ac = {Zn → 0}
a.s., we have Snkn → 0 a.s. on Ac as n → ∞. It follows that

lim
n→∞ P(Snkn ≤ x | A) = 1

P(A)
lim
n→∞(P(Snkn ≤ x)− P(Snkn ≤ x,Ac)) = �(x) (4.7)

for every x ∈ R \ {0}. Now if Pn denotes the conditional distribution of Snkn given A, (4.7)
guarantees thatPn(B) converges to P(N ∈ B) for everyB ∈ A, whereN is a standard Gaussian
random variable and

A = ∅ ∪ {(−∞, r]; r ∈ Q \ {0}} ∪ {(r1, r2]; r1, r2 ∈ Q \ {0}, r1 < r2}.
The class A is a class of convergence-determining sets by Theorem 2.3 of Billingsley (1999).
Hence, Snkn

d−→ N(0, 1) as n → ∞ conditionally on A.
Recall that

Snkn = 1√
2knγ 4

kn∑
k=0

(
1

Y2k + 1
(Y2k+1 −m(Y2k + 1))2 − γ 2 − g(Z2k)

)
1{Z2k > 0},

where kn = ñ0 and g(z) is given by (4.1). Since Zn > 0 for every n ∈ N on A, we have in fact
shown that

1√
ño

ño∑
k=0

(
1

Y2k + 1
(Y2k+1 −m(Y2k + 1))2 − γ 2 − g(Z2k)

)
d−→ N(0, 2γ 4) as n → ∞

conditionally on A. This completes the first part of the proof.
We now use this result to derive the asymptotic distribution of

√
ño

(
1

ño

ño∑
k=0

(Y2k + 1)(m̄Y,2k+1 −m)2 − γ 2
)

= 1√
ño

ño∑
k=0

(
1

Y2k + 1
(Y2k+1 −m(Y2k + 1))2 − γ 2

)
.

To this end, it suffices to study the limit limn→∞ 1/
√
ño

∑ño
k=0 g(Z2k). We have∣∣∣∣ n∑

k=0

g(Z2k)

∣∣∣∣ ≤
n∑
k=0

|g(Z2k)| ≤
2n∑
k=0

|g(Zk)| for every n ∈ N.

The right-hand side of this inequality has a finite limit for n → ∞ a.s. on A by Lemma 4.1. It
follows that limn→∞ 1/

√
ño

∑ño
k=0 g(Z2k) = 0 a.s. on A. Slutsky’s theorem now gives

1√
ño

ño∑
k=0

(
1

Y2k + 1
(Y2k+1 −m(Y2k + 1))2 − γ 2

)
d−→ N(0, 2γ 4) as n → ∞

conditionally on A, which is equivalent to the statement of the theorem.

We now establish the asymptotic distribution of the estimator γ̂ 2
Y,n,o.
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Theorem 4.2. We have√
ño(γ̂

2
Y,n,o − γ 2)

d−→ N(0, 2γ 4) as n → ∞ conditionally on A.

Proof. Recall that γ̂ 2
Y,n,o = 1/ño

∑ño
k=0(Y2k + 1)(m̄Y,2k+1 − m̂Y,n,o)

2. The statement of the
theorem is thus equivalent to

√
ño

(
1

ño

ño∑
k=0

(Y2k + 1)(m̄Y,2k+1 − m̂Y,n,o)
2 − γ 2

)
d−→ N(0, 2γ 4) as n → ∞

conditionally on A. By Lemma 4.5, the convergence holds if we replace m̂Y,n,o in the above
expression by m. We now show that the difference

√
ño

(
1

ño

ño∑
k=0

(Y2k + 1)(m̄Y,2k+1 −m)2 − γ 2
)

−
√
ño

(
1

ño

ño∑
k=0

(Y2k + 1)(m̄Y,2k+1 − m̂Y,n,o)
2 − γ 2

)
(4.8)

converges to 0 in distribution conditionally on A. This implies convergence to 0 in probability
on A. The statement of the theorem then follows by Slutsky’s theorem.

To show that (4.8) converges to 0 in distribution conditionally on A, we write

(4.8) = 1√
ño

ño∑
k=0

(Y2k + 1)

((
Y2k+1

Y2k + 1
−m

)2

−
(
Y2k+1

Y2k + 1
− m̂Y,n,o

)2)

= 1√
ño

(
2(m̂Y,n,o −m)

ño∑
k=0

Y2k+1 − (m̂2
Y,n,o −m2)

ño∑
k=0

(Y2k + 1)

)

= 1√
ño
(m̂Y,n,o −m)

(
2
ño∑
k=0

Y2k+1 − (m̂Y,n,o +m)

ño∑
k=0

Y2k

)
− ño + 1√

ño
(m̂2

Y,n,o −m2).

Recall that m̂Y,n,o = (
∑ño
k=0 Y2k+1)/(

∑ño
k=0 Y2k). Thus,

(4.8) = 1√
ño
(m̂Y,n,o −m)

ño∑
k=0

Y2k(2m̂Y,n,o − (m̂Y,n,o +m))− ño + 1√
ño

(m̂2
Y,n,o −m2)

= 1√
ño

ño∑
k=0

Y2k(m̂Y,n,o −m)2 − ño + 1√
ño

(m̂2
Y,n,o −m2).

We now show that the two summands converge to 0 in distribution conditionally onA. The-
orem 3.3 together with the continuous mapping theorem implies that 1/γ 2 ∑ño

k=0 Y2k(m̂Y,n,o −
m)2 converges in distribution to a χ2-distributed random variable conditionally onA. It follows
that 1/

√
ño

∑ño
k=0 Y2k(m̂Y,n,o −m)2

d−→ 0 as n → ∞ conditionally on A. Strong consistency
of m̂Y,n,o onA implies that (m̂Y,n,o +m) → 2m a.s. onA as n → ∞. Furthermore, Lemma 3.4
gives

ño + 1√
ño

∑ño
k=0 Y2k

= ño + 1√
ño(m2ño+2 − 1)

√√√√m2ño+2 − 1∑ño
k=0 Y2k

→ 0 a.s. on A as n → ∞,
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since we assume that m > 1. Together with Theorem 3.3, this implies that

ño + 1√
ño

(m̂2
Y,n,o −m2) = ño + 1√

ño
∑ño
k=0 Y2k

√√√√ ño∑
k=0

Y2k(m̂Y,n,o −m)(m̂Y,n,o +m)

d−→ 0 as n → ∞ conditionally on A,

and the proof is complete.

It now remains to prove weak consistency of the estimator γ̂ 2
Y,n,o onA. In fact, Theorem 4.2

allows us to show even more.

Theorem 4.3. The estimator γ̂ 2
Y,n,o is weakly consistent on A. Moreover, γ̂ 2

Y,n,o = oP(an/n)

for any sequence an such that 1/an
d−→ 0 as n → ∞ on A.

Proof. By Theorem 4.2 and Slutsky’s theorem, 1/an × n/
√
ño × √

ño(γ̂
2
Y,n,o − γ 2)

d−→ 0
as n → ∞ conditionally on A.

Recall that to derive the asymptotic distribution of the estimator γ̂ 2
Y,n,o, we first established the

asymptotic distribution of the variable 1/ño
∑ño
k=0(Y2k + 1)(m̄Y,2k+1 −m)2, and then showed

that the distribution does not change when we replace m in the formula by its estimator
m̂Y,n,o. Alternatively, we can replace m in the formula by m̂Y,n,e to obtain the estimator
1/ño

∑ño
k=0(Y2k + 1)(m̄Y,2k+1 − m̂Y,n,e)

2. The asymptotic properties of the estimator can be
established in the same way as for γ̂ 2

Y,n,o (and a similar argument applies for an estimator that
uses m̂Y,n,a to estimate m).

Indeed, after simplifying the difference

ño∑
k=0

(Y2k + 1)(m̄Y,2k+1 −m)2 −
ño∑
k=0

(Y2k + 1)(m̄Y,2k+1 − m̂Y,n,e)
2

as we did in the proof of Theorem 4.2 with the difference involving m̂Y,n,o, and after dividing
by

√
ño, we arrive at

2√
ño

ño∑
k=0

Y2k(m̂Y,n,e −m)(m̂Y,n,o −m)

− 1√
ño

ño∑
k=0

Y2k(m̂Y,n,e −m)2 − ño + 1√
ño

(m̂2
Y,n,e −m2). (4.9)

The first term of (4.9) can be written as

2√
ño

√√√√ ∑ño
k=0 Y2k∑ñe
k=1 Y2k−1

√√√√ ñe∑
k=1

Y2k−1(m̂Y,n,e −m)

√√√√ ño∑
k=0

Y2k(m̂Y,n,o −m).

Its convergence to 0 in probability on A follows by Theorem 3.3 and the corresponding result
for the estimator m̂Y,n,e, and because

∑ño
k=0 Y2k/

∑ñe
k=1 Y2k−1 is bounded in probability by

Lemma 3.4. The remaining terms of (4.9) can be shown to converge to 0 in probability onA by
using the boundedness of

∑ño
k=0 Y2k/

∑ñe
k=1 Y2k−1 and otherwise proceeding as before. Thus,

the difference in question is oP(
√
ño) on A. As we have already discussed, this implies both

asymptotic Gaussianity and weak consistency on A.
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5. Simulation results

We have seen that we can choose from several estimators to estimate the parametersm and γ 2,
and can also construct asymptotic confidence intervals based on various combinations of these
estimators. In this section we study how they may be expected to perform in practice. A more
detailed study can be found in Kvitkovičová and Panaretos (2010). We simulated realisations
of the process {(Zk, Yk)�; k ≥ 0} under the two scenarios described in Table 1. Geometric
and Poisson offspring distributions are chosen; the former is related to a linear birth-and-death
process, while the latter was adopted in the applications of Meester et al. (2002) and Meester
and Trapman (2006). We consider a slowly spreading infection observed for a long period
and a quickly spreading infection observed for a short period. For each setting, the number
of realisations is chosen so that at the end of the observation period, at least 10 000 of them
are nonextinct. The simulations were carried out in the R statistical computing environment,
version 2.12.0.

The performance of the mean estimators is summarised in the upper half of Table 2. Between
the estimators m̂Y,n,o and m̂Y,n,e, we report the results for that which includes the last observation

Table 1: Simulation settings. The offspring distributions (� and ϒ), the detection probability (θ ), the
length of the observation period (n), the number of the realisations such that Zn > 0 (N ), and the number

of all simulated realisations (in parentheses).

Setting � ϒ θ m γ 2 n N

1 Ge( 2
5 ) Ge( 4

5 )
2
3 1.0833 3.0903 61 10 253 (170 000)

2 Po( 3
2 ) Po( 4

5 )
1
2 1.1500 2.2750 30 10 205 (44 000)

Table 2: Performance of the estimators. The first three quartiles and the mean of the difference θ̂ − θ ,
the standard deviation (SD), the mean squared error (MSE), and the mean absolute deviation (MAD) of

the estimator.

First Third
Setting Estimator quartile Median Mean quartile SD MSE MAD

1 m̂Y,n,o −0.0221 −0.0002 −0.0029 0.0187 0.0436 0.0019 0.0204
1 m̂Y,n −0.0111 −0.0007 −0.0039 0.0070 0.0186 0.0004 0.0086
1 m̂Y,n,a −0.0103 −0.0002 −0.0031 0.0074 0.0182 0.0003 0.0086

2 m̂Y,n,e −0.0546 −0.0012 −0.0033 0.0506 0.1032 0.0107 0.0524
2 m̂Y,n −0.0262 −0.0013 −0.0071 0.0184 0.0413 0.0018 0.0216
2 m̂Y,n,a −0.0234 0.0007 −0.0040 0.0206 0.0410 0.0017 0.0218

1 γ̂ 2
Y,n −0.5759 −0.1596 −0.0777 0.3261 0.7159 0.5185 0.4813

1 γ̂ 2
Y,n,a −0.3708 0.1131 0.2300 0.7063 0.8691 0.8081 0.5159

1 γ̂ 2
Y,n,aa −0.5316 −0.1095 −0.0255 0.3850 0.7281 0.5308 0.4761

2 γ̂ 2
Y,n −0.7008 −0.3210 −0.2013 0.1733 0.7172 0.5548 0.5302

2 γ̂ 2
Y,n,a −0.4823 0.0167 0.2434 0.7010 1.0758 1.2165 0.5683

2 γ̂ 2
Y,n,aa −0.6820 −0.2858 −0.1606 0.2249 0.7436 0.5786 0.5273
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Table 3: Performance of the 95% asymptotic confidence intervals. Coverage, the first three quartiles,
the mean, and the standard deviation of their length.

First Third
Setting Based on Coverage quartile Median Mean quartile SD

1 m̂Y,n,o, γ̂ 2
Y,n 0.9486 0.0860 0.1195 0.1452 0.1786 0.0860

1 m̂Y,n,o, γ̂ 2
Y,n,a 0.9799 0.0896 0.1250 0.1524 0.1876 0.0911

1 m̂Y,n,o, γ̂ 2
Y,n,aa 0.9509 0.0868 0.1205 0.1465 0.1804 0.0869

2 m̂Y,n,e, γ̂ 2
Y,n 0.9461 0.2125 0.2909 0.3365 0.4166 0.1713

2 m̂Y,n,e, γ̂ 2
Y,n,a 0.9940 0.2300 0.3162 0.3699 0.4560 0.2001

2 m̂Y,n,e, γ̂ 2
Y,n,aa 0.9495 0.2140 0.2935 0.3399 0.4208 0.1744

(that is, m̂Y,n,o if the sample size is odd, and m̂Y,n,e if the sample size is even). The results are
rather promising, showing both low bias and variance. The best performance is exhibited by
the estimators m̂Y,n and m̂Y,n,a.

The lower half of Table 2 deals with the estimators γ̂ 2
Y,n, γ̂ 2

Y,n,a, and γ̂ 2
Y,n,aa. They are

roughly comparable both in terms of bias and variance, and appear to perform better than all
the other estimators suggested above (γ̂ 2

Y,n,o, γ̂ 2
Y,n,e, and their variants). The estimator γ̂ 2

Y,n,a
shows a slight tendency to overestimate the true value. This effect may actually follow from
the construction. The estimator is based on squared differences between mean estimators,
with each estimator in a pair motivated by a different part of the data (recall the discussion in
Section 2). Indeed, the estimator 1/2(γ̂ 2

Y,n,o + γ̂ 2
Y,n,e), comparing mean estimators based on

the same part of the data, shows a tendency to underestimate the true value (results not shown
here). The same tendency is exhibited by the estimator γ̂ 2

Y,n,aa and even more noticeably by γ̂ 2
Y,n.

Although these estimators often have a larger bias than the estimator γ̂ 2
Y,n,a, they have a smaller

variance, which gives them an advantage in terms of the median absolute deviation. We prefer
this characteristic to the mean squared error here, since the distributions of the estimators seem
to have heavy right tails.

Table 3 summarises the performance of 95% asymptotic confidence intervals based on
different combinations of point estimators. Overall, they have both reasonable coverage and
length, showing the ability to detect even small departures from 1. Note that the latter is an
important property, since the construction assumes that the mean is greater than 1 and we are
mostly interested in small departures from this threshold. The choice of the estimator of γ 2

is crucial for the performance of the intervals. The intervals based on γ̂ 2
Y,n,a have a higher

coverage and are on average longer than those based on the other estimators.

6. Conclusions

We have considered the problem of estimation in a partially observed branching process,
previously studied in Meester and Trapman (2006). Similarly to their work, we focused on
estimators that can be explicitly defined and mimic those employed when a branching process
is fully observed. However, whereas Meester and Trapman (2006) pursued the construction
of consistent estimators of parameters related to the first three moments of the offspring dis-
tribution, we focused on the construction of asymptotically Gaussian estimators of parameters
related to the first two moments.
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Motivated by the dependence structure of the observed process, we proposed estimators
that are consistent and asymptotically Gaussian, and allow for the construction of asymptotic
confidence intervals, all valid conditionally on explosion. We also studied several estimators
derived from those proposed originally, which improve properties of the confidence intervals.
A simulation study carried out to evaluate the performance of our estimators showed favourable
results.

Appendix A. Proofs of the auxiliary lemmas

Proof of Lemma 3.1. Since we assume that Z0 = 1, we have EZ0 = 1. For every n ∈ N,
we then have EZn = E[E[Zn | Zn−1]] = mEZn−1 = mn.

Proof of Lemma 3.3. To prove consistency of m̄Y,n, Meester and Trapman (2006) considered
a random sequence {Mn}n∈N such that Mn = ∏n

k=1(Yk + 1)/((1 − θ)Zk + 1). They showed
that Mn → M a.s. as n → ∞, where M is a random variable a.s. finite and positive on A.
We can use their result to show that (Yn + 1)/((1 − θ)Zn + 1) = Mn/Mn−1 → 1 a.s. on A
as n → ∞. Since Zn → ∞ a.s. on A, it follows that Yn/((1 − θ)Zn + 1) → 1 a.s. on A as
n → ∞, and finally that Yn/((1 − θ)Zn) → 1 a.s. on A as n → ∞.

Proof of Lemma 3.4. We apply the Toeplitz lemma with xn = Z2n/m
2n and ak = m2k to

show (i), xn = Z2n+1/m
2n+1 and ak = m2k+1 to show (ii), xn = Y2n/m

2n and ak = m2k to
show (iii), and with xn = Y2n+1/m

2n+1 and ak = m2k+1 to show (iv). Convergence of xn on
the explosion set follows by Lemma 3.3 in the two latter cases.

The proofs of the remaining statements are essentially calculations exploiting conditional
distributions in the process {(Zk, Yk)�; k ≥ 0}, properties of the conditional expectation, and
properties of the binomial distribution. We now indicate the main steps of the calculations;
details can be found in Kvitkovičová and Panaretos (2010).

Proof of Lemma 3.2. (i) We write Yn+1 −mYn as (Yn+1 − (1 − θ)Zn+1)+ (1 − θ)(Zn+1 −
mZn)+m((1 − θ)Zn − Yn). Then

E[Yn+1 −mYn | Zn] = E[Yn+1 − (1 − θ)Zn+1 | Zn] + (1 − θ)E[Zn+1 −mZn | Zn]
+mE[(1 − θ)Zn − Yn | Zn]

= E[E[Yn+1 − (1 − θ)Zn+1 | Zn+1, Zn] | Zn] + 0 + 0

= 0 a.s.

(ii) We use the same expansion of Yn+1 −mYn as above, and apply the multinomial theorem
to obtain a sum of conditional expectations. We then treat each of them separately.

Proof of Lemma 4.1. We write Yn+1 −m(Yn+1) as (Yn+1 −(1−θ)Zn+1)+(1−θ)(Zn+1 −
E[Zn+1 | Yn, Zn])+ ((1−θ)E[Zn+1 | Yn, Zn]−m(Yn+1)). We again apply the multinomial
theorem to write E[(Yn+1 −m(Yn + 1))2/(Yn + 1) | Zn] as a sum of conditional expectations,
which can then be treated separately.

The function g(z) is such that there exist constants ci such that, for every z ∈ N, |g(z)| ≤
1/(z+1)(c1 + θzc2 + (z+1)θzc3 + z(z+1)θzc4). Since limz→∞ zk1θz = 0 for every k1 ≥ 0,
we can choose any Bg > c1 and find zg so that c1 + θzc2 + (z+ 1)θzc3 + z(z+ 1)θzc4 ≤ Bg
for every z ≥ zg . Boundedness now follows.

Finally, since {Zk; k ≥ 0} is a branching process, we have A = {ω;Zn(ω)/mn → W(ω) >

0 as n → ∞} a.s. For every ω in the latter set, fix ε(ω) > 0 such that, W(ω) − ε(ω) > 0.
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There exists ñ(ω) ∈ N such that, for every n ≥ ñ(ω), we have Zn(ω) ≥ zg , and, moreover,
|Zn(ω)/mn −W(ω)| < ε(ω). It follows that 0 < 1/(Zn(ω)+ 1) < 1/(mn(W(ω)− ε(ω))+
1) < 1/(mn(W(ω) − ε(ω))) for every n ≥ ñ(ω), and so |g(Zn(ω))| ≤ Bg/(Zn(ω) + 1) <
Bg/(m

n(W(ω)− ε(ω))) for every n ≥ ñ(ω).

Proof of Lemma 4.2. We use the same expansion of Yn+1 − m(Yn + 1) as in the proof of
Lemma 4.1 and the multinomial theorem to write E[(Yn+1 −m(Yn+ 1))4/(Yn+ 1)2 | Zn] as a
sum of conditional expectations. We express each of them as a function of E[1/(Yn+1)2 | Zn].
This expectation cannot be derived explicitly. However, it corresponds to the expectation of the
reciprocal of a positive binomial random variable. To approximate the latter, Stephan (1945)
used the fact that

1

x
=

t∑
i=1

(i − 1)! x!
(x + i)! + t ! (x − 1)!

(x + t)!
for x > 0 and t ≥ 1. This expansion with t = 3 allows us to identify the terms of order at most
1/(Zn + 1) in the expression for E[(Yn+1 −m(Yn + 1))4/(Yn + 1)2 | Zn]. By studying these
and the remaining terms separately, we eventually obtain the statement of the lemma.

Proof of Lemma 4.3. The statements comprising the lemma follow from Lemmas 4.1 and
4.2; the last one can be shown in the same way as for the function g(z).
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