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Symmetry relations are derived for the added mass and damping of structures where the
shape is unchanged by rotation about the vertical axis through an angle θ = 2π/N with
the integer N ≥ 3. For this type of structure, the added mass and damping for horizontal
translation are the same for all directions, as in the case of axisymmetric structures. The
same symmetry applies to rotations about horizontal axes. The principal application is to
offshore structures and other bodies floating on the free surface or submerged, but the
same symmetry relations apply more generally to unsteady body motions in an ideal fluid.

Key words: wave–structure interactions

1. Introduction

The hydrodynamic pressure force and moment acting on a rigid body due to its unsteady
motion in an unbounded ideal fluid are given by products of the acceleration components
of the body and the added-mass coefficients, also known as coefficients of virtual inertia
(Batchelor 1967, p. 407). A similar representation applies for bodies moving with small
oscillatory motion on or beneath the free surface, where the force and moment also include
products of damping coefficients with the velocity components of the body (Newman
2017, pp. 306–308). The added-mass and damping coefficients of floating and submerged
bodies are essential elements in the analysis of wave-induced motions.

Structures that are axisymmetric about a vertical axis have obvious symmetry properties.
Thus the added-mass and damping coefficients are unchanged by rotation of the body or
coordinate system about the vertical axis, through an arbitrary angle θ . In such cases, these
coefficients are identical for horizontal translation in the direction of the x-axis (surge)
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(a) (b) (c)

Figure 1. Floating structures where the submerged shape is unchanged by rotation about the vertical axis
through the angle 2π/3: (a) wind-turbine floats; (b) equilateral triangular cylinder; and (c) hemispheroids at
45◦ angles. Structures (a) and (b) are symmetric about the vertical planes that include the centre of the structure,
and the centre of an outer float in (a) or a vertex in (b); structure (c) is asymmetric.
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Figure 2. Contour plots of the free-surface elevations due to oscillatory motion of the triangular cylinder
shown in figure 1(b), with unit amplitude. The cylinder sides are 2 m wide by 1 m draft, the fluid depth is
infinite and the wavelength in the far field is 2 m.

and y-axis (sway), with no coupling between these modes. The same properties apply for
rotational motions about the same axes (roll and pitch). Our objective here is to show that
similar properties exist for structures that are not axisymmetric, if the shape is unchanged
by rotation about the vertical axis through an angle θ = 2π/N with the integer N ≥ 3. The
examples include structures with multiple columns or floats that are equally spaced around
a circle, and single cylinders with polygonal shape such as equilateral triangles or regular
pentagons. Figure 1 shows three examples with N = 3.

The symmetry properties to be derived here are obvious for cases such as a square
cylinder or square array of circular columns, where N = 4, and more generally where N
is an integer multiple of 4. For these cases, translations in the x- and y-directions produce
identical disturbances of the fluid in the corresponding frames of reference, and thus the
opposing forces are the same. The same symmetry applies for rotational motions about the
x- and y-axes. But in other cases, the fluid motions generated by translations in surge and
sway or rotations in roll and pitch are fundamentally different, especially if N is odd. This
is illustrated in figure 2, which shows the radiated waves due to surge and sway motions of
the triangular cylinder in figure 1(b); thus it is surprising to find that the added mass and
damping are identical for these two modes.
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Added mass and damping of structures with periodic shape

It is convenient to represent the added-mass and damping coefficients in matrix form,
where the columns represent the modes of motion and the rows represent the components
of the force and moment. For a single rigid body, the matrices are square with dimensions
6 × 6. These matrices are symmetric about their principal diagonal. Alternative proofs for
rotational symmetry of the added mass are presented in the following sections. The same
proofs apply directly to the damping, and these are omitted for brevity. Thus the results
that follow apply in the same manner to both the added mass and damping.

In § 2 the structure is defined as a single rigid body and the total force and moment
are considered, acting on the entire body. Since the shape is unchanged by rotation of
the coordinate system through the angle θ = 2π/N, the added-mass matrix is the same
in the rotated system. The symmetry relations follow by equating the matrices in the
two coordinate systems. In § 3 the force and moment acting on each angular sector are
considered, when the entire structure moves as a rigid body. The proof is based on the fact
that the 6 × 6 matrix for each sector is the same when the coordinate system is rotated.
The symmetry relations for the entire structure follow by summing the N matrices for
the sectors. In § 4 the most general case is considered, where the structure within each
sector moves as a separate body with a total of 6N modes of motion. The simple case
of two-dimensional motion in an unbounded fluid is discussed in § 5, including the added
mass of the equilateral triangle. Computations are presented in § 6 for the floating offshore
wind turbine and the array of three hemispheroids, to confirm and illustrate the symmetry
relations. The results are discussed in § 7.

2. Symmetry relations based on the total force and moment

The structure is assumed to be rigid, with six degrees of body motion. The added mass
is represented by the 6 × 6 matrix A with coefficients Aij. The row index i represents
the three components of the force (i = 1, 2, 3) and moment (i = 4, 5, 6). The column
index j represents the modes of translation (j = 1, 2, 3) and rotation (j = 4, 5, 6). These
are defined with respect to the Cartesian coordinate system x = (x, y, z), with the z-axis
vertical. The matrix A is symmetric, with Aij = Aji.

The origin of the coordinate system x is located such that the vertical z-axis coincides
with the axis of rotational symmetry. The vertical position of the origin is arbitrary.

A second coordinate system x∗ is introduced by rotation about the z-axis through the
angle θ . Thus x = Qx∗ and x∗ = QTx, where the transformation matrix Q is defined by

Q =
⎡
⎣cos θ −sin θ 0

sin θ cos θ 0
0 0 1

⎤
⎦ , (2.1)

and QT is its transpose. The same transformations apply to any vector v and the
corresponding vector v∗ in the rotated system. It is convenient hereafter to abbreviate
c = cos θ and s = sin θ . Thus

Q =
⎡
⎣c −s 0

s c 0
0 0 1

⎤
⎦ , QT =

⎡
⎣ c s 0

−s c 0
0 0 1

⎤
⎦ . (2.2a,b)

The matrix A can be partitioned into four 3 × 3 submatrices Amn, and similarly for the
matrix A∗ in the rotated coordinate system:

A =
[

A11 A12
A21 A22

]
, A∗ =

[
A∗

11 A∗
12

A∗
21 A∗

22

]
. (2.3a,b)
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The force F and moment M that act on the body in response to translation and rotation
with accelerations (U̇, �̇) are represented in the two coordinate systems by the equations

F = −A11U̇ − A12�̇, F ∗ = −A∗
11U̇∗ − A∗

12�̇
∗,

M = −A21U̇ − A22�̇, M∗ = −A∗
21U̇∗ − A∗

22�̇
∗.

}
(2.4)

It follows that

A∗ =
[

A∗
11 A∗

12
A∗

21 A∗
22

]
=

[
QTA11Q QTA12Q
QTA21Q QTA22Q

]
. (2.5)

Here Q transforms U̇ and �̇ from x∗ to x and QT transforms the force and moment back
to the x∗ system. After evaluating the matrix products in (2.5) the first submatrix is given
by

A∗
11 =

⎡
⎣ A11c2+A12sc+A21sc+A22s2 −A11sc+A12c2−A21s2+A22sc A13c+A23s

−A11cs−A12s2+A21c2+A22cs A11s2−A12cs−A21sc+A22c2 −A13s+A23c
A31c+A32s −A31s+A32c A33

⎤
⎦ .

(2.6)

Since the shape of the structure is unchanged by rotation through the angle θ = 2π/N,
rotation of the coordinates through the same angle does not change the added-mass matrix.
Thus A∗

11 = A11. Equating the coefficients in these two submatrices gives a set of equations,
which can be reduced to the following forms if s /= 0:

(A11 − A22)s − (A12 + A21)c = 0,

(A11 − A22)c + (A12 + A21)s = 0,

}
A13(1 − c) − A23s = 0,

A13s + A23(1 − c) = 0.

}
(2.7a,b)

These equations are homogeneous and the determinants s2 + c2 and s2 + (1 − c)2 are
non-zero. Thus

A11 − A22 = 0, A12 + A21 = 0, A13 = 0, A23 = 0. (2.8)

Following the same procedure for the other submatrices gives the results:

A14 − A25 = 0, A15 + A24 = 0, A16 = 0, A26 = 0, (2.9)

A41 − A52 = 0, A42 + A51 = 0, A43 = 0, A53 = 0, (2.10)

A44 − A55 = 0, A45 + A54 = 0, A46 = 0, A56 = 0. (2.11)

Since A is symmetric, A12 = A21 = 0 and A45 = A54 = 0. After using (2.8)–(2.11) and
imposing symmetry it follows that

A =

⎡
⎢⎢⎢⎢⎢⎣

A11 0 0 A14 A15 0
0 A11 0 −A15 A14 0
0 0 A33 0 0 A36

A14 −A15 0 A44 0 0
A15 A14 0 0 A44 0
0 0 A36 0 0 A66

⎤
⎥⎥⎥⎥⎥⎦ . (2.12)

These results are based on the fact that A∗ = A when θ = 2π/N, but they imply more
general conclusions. Indeed, they have been derived without explicitly assigning the angle
θ of the rotated coordinate system. Since (2.7a,b) are homogeneous, the solutions (2.8) do
not depend on θ , and similarly for (2.9)–(2.11). Thus the matrix A∗ is independent of θ .
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Added mass and damping of structures with periodic shape

Alternatively, θ = 2π/N can be assigned explicitly throughout the steps leading to (2.12);
if (2.5) is then used to transform this matrix with rotation through an arbitrary angle θ , the
result is identical to (2.5). Thus the added mass and damping are independent of the angle
of rotation of the coordinate system, as in the case of an axisymmetric structure.

In most cases of practical interest, the shape of the structure is symmetric about N
vertical planes, as in figure 1(a,b). It is logical, then, to define the coordinates such that the
x-axis lies in a plane of symmetry with y = 0 in the same plane. It then follows that surge
and roll are uncoupled, and similarly for heave and pitch. Thus A14 = 0 and A36 = 0. In
that case the only difference in (2.12) relative to an axisymmetric structure is the non-zero
coefficient A66, representing the added moment of inertia due to rotation about the vertical
axis. The only non-zero coupling is between surge and pitch (A15) and between sway and
roll (A24). It is evident from (2.12) that these are equal in magnitude with opposite signs. In
general, they are non-zero, as in the axisymmetric case, depending on the vertical position
of the origin.

Since the case N = 2 has been excluded, the restriction that sin θ is non-zero is justified
in (2.7a,b) and these equations are non-singular. If N = 2 and the coordinate system
is rotated through the angle π, the only effect is to change the signs of the coupling
coefficients in the third row or column of each submatrix. Thus the equality A∗ = A
does not provide any relations between different elements of the added-mass matrix and
no conclusions can be reached analogous to (2.8)–(2.12) except that there is no coupling
between horizontal and vertical modes.

3. The force and moment on each sector of a rigid structure

A triangular array with N = 3 identical bodies is considered to simplify the analysis.
The bodies are centred on a circle at polar angles θn = (n − 1)(2π/3) (n = 1, 2, 3) or,
equivalently, at θ = 0 and θ = ±(2π/3). The entire structure moves as a rigid body with
six degrees of freedom, as in § 2. The added mass corresponding to the force and moment
on the body n is represented by the 6 × 6 matrix a(n) with coefficients a(n)

ij . In general,
these matrices are full and asymmetric. The matrix for the entire structure is

A = a(1) + a(2) + a(3). (3.1)

Following a similar procedure as in § 2, the force and moment acting on body n can
be evaluated from a(n) in the x system, or from a(n)∗ in the rotated system θ = θn. Since
a(n)∗ = a(1), it follows for (n = 2, 3) that the force f (n) on body n is given by the alternative
expressions

f (n) = −a(n)
11 U̇ − a(n)

12 �̇, f (n)∗ = −a(1)
11 U̇∗ − a(1)

12 �̇∗, (3.2a,b)

and similarly for the moment. Since f (n) = Q f (n)∗ and (U̇∗, �̇∗) = QT(U̇, �̇), it follows
from (3.2a,b) that

a(n) =
[

a(n)
11 a(n)

12

a(n)
21 a(n)

22

]
=

[
Qna(1)

11 QT
n Qna(1)

12 QT
n

Qna(1)
21 QT

n Qna(1)
22 QT

n

]
, (3.3)

where Qn and QT
n are defined by (2.2a,b) with θ = θn.

In the following equations, it is convenient to omit the superscript 1 for the coefficients
of the matrix a(1). Thus aij ≡ a(1)

ij . After the indicated multiplications, the results are
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similar to (2.6) except for the signs of terms that are linear in s = sin θn. However, these
terms cancel when the sum in (3.1) is evaluated, since sin θ3 = −sin θ2, and the first
submatrix of A is given by

A11 =
⎡
⎣a11 a12 a13

a21 a22 a23
a31 a32 a33

⎤
⎦ + 2

⎡
⎣ a11c2 + a22s2 a12c2 − a21s2 a13c

−a12s2 + a21c2 a11s2 + a22c2 a23c
a31c a32c a33

⎤
⎦ . (3.4)

After substituting c = cos(2π/3) = −1/2, c2 = 1/4, s2 = 3/4, and combining the two
matrices in (3.4),

A11 = 3
2

⎡
⎣a11 + a22 a12 − a21 0

a21 − a12 a11 + a22 0
0 0 2a33

⎤
⎦ . (3.5)

Thus

A11 = A22 = 3
2(a11 + a22), (3.6)

A33 = 3a33. (3.7)

Since A is symmetric, a12 − a21 = 0 and it follows that

A12 = A21 = 0. (3.8)

Repeating the same process for the other submatrices gives the results

A44 = A55 = 3
2(a44 + a55), (3.9)

A66 = 3a66, (3.10)

A14 = A25 = A41 = A52 = 3
2 (a14 + a25) = 3

2(a41 + a52), (3.11)

A15 = −A24 = A51 = −A42 = 3
2 (a15 − a24) = 3

2 (a51 − a42), (3.12)

A36 = A63 = 3a36 = 3a63. (3.13)

The other coefficients Aij not included in (3.6)–(3.13) are equal to zero. These results are
consistent with (2.12).

This analysis has been described for three separate bodies, but it can be applied more
generally to structures such as those shown in figure 1(a,b) by dividing the submerged
surface into angular sectors with included angles 2π/3 and replacing the force and moment
on each body by the force and moment due to the pressure acting on the surface in the
corresponding sector. The extension for N > 3 follows by summing (3.1) over all bodies
or sectors. The final results are unchanged, except that the factors 3 and 3/2 in (3.5)–(3.13)
are replaced by N and N/2.

4. The force and moment on separate bodies moving independently

If the structure is composed of N separate bodies, each having six independent degrees
of freedom, the added mass and damping for the entire configuration are represented by
matrices with dimensions 6N × 6N. The analysis is described here in the context of three
separate bodies, as in § 3, but it is applicable more generally to structures such as the
floating offshore wind turbine and the triangular cylinder if the structure is divided into
sectors with equal included angles.
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Added mass and damping of structures with periodic shape

To preserve the meaning of the previous notation, the symbol C is used here for the
complete 18 × 18 matrix of added-mass coefficients cij, with nine submatrices Cij. Thus

C =
⎡
⎣C11 C12 C13

C21 C22 C23
C31 C32 C33

⎤
⎦ . (4.1)

Here Cii is the 6 × 6 matrix for body i due to its own motions with the other bodies fixed,
and Cij represents the force and moment on body i due to the motions of body j. The
matrix C is symmetric, with cij = cji. Thus the submatrices Cii are symmetric but Cij is
asymmetric if i /= j.

The matrix a(n) defined in § 3 represents the force and moment acting on body n when
all three bodies have the same motions. It follows that

a(n) = Cn1 + Cn2 + Cn3. (4.2)

An alternative to the approach in § 3 is to consider the force and moment on the entire
structure with separate motions for each body. In this case there are six components of the
force and moment and 18 modes of motion. The matrix α(n) is defined to represent the
force and moment on the entire structure due to motions of body n with the others fixed.
In this case

α(n) = C1n + C2n + C3n. (4.3)

Since C is symmetric, it follows from (4.2) and (4.3) that α(n) is the transpose of a(n).
The relations (3.1) and (3.3) apply to both a(n) and α(n). This can be confirmed directly,

or from the fact that α(n) is the transpose of a(n). Thus the proof of rotational symmetry in
§ 3 can be based on either the force and moment acting on each separate body when they
move together or the total force and moment when each body moves independently.

5. Added mass of cylinders in two dimensions

The simplest application of the symmetry relations is in two dimensions, with the body
geometry and flow field independent of z. If the body profile has periodic rotational
symmetry, the only non-zero added-mass coefficients are A11 = A22 and A66. The
examples include equilateral triangles and circular arrays of identical profiles.

The added mass of the equilateral triangle has been studied by Goldschmidt & Protos
(1968), including both experimental and theoretical results for the ratio A11/ρS, where
ρ is the fluid density and S is the area of the triangle. The experimental value given
is 1.57. Their theoretical value A11/ρS = 1.53 is based on a simplified analysis using
the conformal mapping of an approximation to the triangle with continuous curvature
and rounded vertices. If the conformal transformation for the triangle is used without
approximation, and integrated numerically, we find that the correct theoretical value is
1.581. It is noted by Goldschmidt & Protos (1968) that ‘the angle of attack isn’t of concern
in computing the kinetic energy’, implying that the added mass is the same in all directions.
No other references have been found that refer to this topic.

6. Examples of computational results

Results are shown here for the added mass and damping of the floating offshore wind
turbine in figure 1(a) and the hemispheroids in figure 1(c). The forces, moments and
modes of motion are defined with respect to the coordinate system x with the origin at
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ω (rad s–1)

0.5 1.0 1.5

A11

A22

B11

B22

0

0.2

0.4

0.6

0.8

1.0

Figure 3. Added-mass (Aii) and damping (Bii) coefficients of the floating offshore wind-turbine floats shown
in figure 1(a).

A B

0.7258 0.0000 0.0000 0.0000 −0.1144 0.0000 0.0520 0.0000 0.0000 0.0000 0.0051 0.0000
0.0000 0.7258 0.0000 0.1144 0.0000 0.0000 0.0000 0.0520 0.0000 −0.0051 0.0000 0.0000
0.0000 0.0000 1.3714 0.0000 0.0000 0.0000 0.0000 0.0000 0.0495 0.0000 0.0000 0.0000
0.0000 0.1144 0.0000 0.6551 0.0000 0.0000 0.0000 −0.0051 0.0000 0.0742 0.0000 0.0000

−0.1144 0.0000 0.0000 0.0000 0.6551 0.0000 0.0051 0.0000 0.0000 0.0000 0.0742 0.0000
0.0000 0.0000 0.0000 0.0000 0.0000 0.7560 0.0000 0.0000 0.0000 0.0000 0.0000 0.1777

Table 1. Added-mass (A) and damping (B) coefficients for the floating offshore wind-turbine configuration
shown in figure 1(a).

the centre of the structure, in the plane of the free surface, and the z-axis positive upwards.
The centres of the outer floats or hemispheroids are on a circle of radius Rc in the plane
z = 0, at polar angles θn = (n − 1)(2π/3) (n = 1, 2, 3). The added-mass coefficients are
non-dimensionalized by the displaced mass ρV and the damping by ρVω, where ρ is the
fluid density, V is the volume and ω is the frequency. The cross-coupling coefficients are
non-dimensionalized by the additional factor Rc and the moments due to rotation by R2

c .
The gravitational acceleration g = 9.80665 m2 s−1 is assigned.

Figure 3 shows the coefficients for surge and sway motions of the floating offshore wind
turbine over a range of the frequency ω. The coefficients for surge are shown by solid lines
and for sway by circular symbols. It is apparent that these coefficients have the same values
for all frequencies. The complete matrices A and B are shown in table 1 for ω = 1 rad s−1.
For this structure, Rc = 23.9 m and V = 2612.12 m3. The outer floats have a total draft
of 9.185 m, including upper cylinders of radius 3.6 m and depth 5.885 m, and lower skirts
with six rectangular sides 8.1 m wide by 3.3 m high. The radius of the inner cylinder is
3.15 m and the draft is 6.6 m. The fluid depth is 65 m.

Table 2 shows the coefficients for the configuration of three hemispheroids. This is
intended to illustrate the general case of an asymmetric structure. The hemispheroids
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Added mass and damping of structures with periodic shape

A B

0.5587 0.0000 0.0000 −0.0008 −0.0732 0.0000 0.0423 0.0000 0.0000 0.0066 0.0382 0.0000
0.0000 0.5587 0.0000 0.0732 −0.0008 0.0000 0.0000 0.0423 0.0000 −0.0382 0.0066 0.0000
0.0000 0.0000 0.1104 0.0000 0.0000 0.2259 0.0000 0.0000 0.0933 0.0000 0.0000 −0.0177

−0.0008 0.0732 0.0000 0.5583 0.0000 0.0000 0.0066 −0.0382 0.0000 0.1335 0.0000 0.0000
−0.0732 −0.0008 0.0000 0.0000 0.5583 0.0000 0.0382 0.0066 0.0000 0.0000 0.1335 0.0000

0.0000 0.0000 0.2259 0.0000 0.0000 0.7385 0.0000 0.0000 −0.0177 0.0000 0.0000 0.0666

Table 2. Added-mass (A) and damping (B) coefficients for the three hemispheroids shown in figure 1(c).

are prolate, with length 3 m, maximum radius 0.5 m, V = 2.3562 m3 and Rc = 2 m. The
major axis of each hemispheroid is in the plane of the free surface, oriented at 45◦ from the
tangent to the circle that includes the centres. The calculations are performed for infinite
fluid depth at the wavenumber K = ω2/g = 1 m−1.

The matrices in tables 1 and 2 have the same form as the matrix (2.12). Since the floating
offshore wind-turbine configuration is symmetric, the coefficients A14, A25 and A36 are
zero in table 1, and likewise for B14, B25 and B36. These coefficients are non-zero in table 2
since the configuration with three hemispheroids is asymmetric.

The coefficients in tables 1 and 2 have been computed using the higher-order panel
method described by Lee & Newman (2005, pp. 226–228). The geometry is defined
analytically, without approximation, and the potential on the body surface is represented by
continuous B-splines. Non-uniform mapping is used for the floating offshore wind turbine
to account for the singularities at the corners of the skirts. A sequence of progressively
smaller panels are used, and extrapolated linearly to zero to achieve the final results. The
estimated accuracy is ±0.0002 for the added-mass coefficients in table 1 and ±0.0001 for
the damping coefficients in table 1 and all coefficients in table 2.

There is supplementary material available at https://doi.org/10.1017/jfm.2022.709 that
includes the matrices C, a(n) and α(n) for both structures, as defined in §§ 3 and 4.

7. Discussion

Structures with periodic angular shape have been considered, where the geometry is
unchanged by rotation about the vertical axis through an angle 2π/N, with the integer
N ≥ 3. For this type of structure, the added-mass and damping coefficients for surge and
sway are equal, and uncoupled. The same properties apply for roll and pitch. The general
form of the coefficients is shown in the matrix (2.12). If the structure is symmetric about
a vertical plane, as in most cases of practical importance, the only difference compared to
an axisymmetric structure is the non-zero moment due to rotation about the vertical axis.

These properties apply only to the force and moment due to body motions, and not
to the exciting force and moment due to incident waves or other characteristics such as
the radiated wave patterns shown in figure 2. However, there are integral relations that
apply. For example, the rate of energy flux in the radiated waves is related to the damping
coefficients; thus the integral of the square of the wave amplitude around a circle of large
radius has the same value for the two wave patterns shown in figure 2. Similarly, the
integral of the square of the exciting forces and moments over all incident-wave directions
can be related to the damping coefficients using the Haskind relations (Newman 2017,
pp. 315–316); thus these integrals have the same value for the exciting forces in surge and
sway or the moments in roll and pitch.
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The case N = 2 is an exception. When θ = π the coordinate rotation simply changes
the signs of the horizontal coordinates, modes, forces and moments, providing no relations
between the coefficients for different modes. A vertical flat plate in the plane y = 0 is an
obvious example where (2.12) is not valid, since the added mass and damping are zero for
surge and non-zero for sway.

The principal result of this work is to show that the added-mass and damping matrices
have the relatively simple forms shown in (2.12) if the structure has periodic angular shape.
One of the referees has posed the inverse problem: If the matrix is of the same form as
(2.12), does it follow that the structure necessarily has periodic angular shape? This is an
interesting question, at least from the intellectual standpoint, which is left for future work.

Supplementary material. Supplementary material is available at https://doi.org/10.1017/jfm.2022.709.
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