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Abstract In this paper we study the existence and nonexistence of multiple positive solutions for the
Dirichlet problem:

−∆u − µ
u

|x|2
= λ(1 + u)p, u > 0, u ∈ H1

0 (Ω), (∗)

where 0 � µ < ( 1
2 (N −2))2, λ > 0, 1 < p � (N +2)/(N −2), N � 3. Using the sub–supersolution method

and the variational approach, we prove that there exists a positive number λ∗ such that problem (∗)
possesses at least two positive solutions if λ ∈ (0, λ∗), a unique positive solution if λ = λ∗, and no
positive solution if λ ∈ (λ∗, ∞).

Keywords: positive solution; subsolution and supersolution; Palais–Smale condition;
critical Sobolev exponent
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1. Introduction and main results

Let Ω ⊂ RN (N � 3) be a bounded domain with smooth boundary ∂Ω, 0 ∈ Ω. We are
concerned with the following semilinear elliptic problem:

−∆u − µ
u

|x|2 = λ(1 + u)p in Ω,

u > 0 in Ω,

u = 0 on ∂Ω,

⎫⎪⎪⎬
⎪⎪⎭ (1.1)λ

where 0 < µ < ( 1
2 (N − 2))2, λ > 0, 1 < p � (N + 2)/(N − 2).

A positive function u ∈ H1
0 (Ω) is said to be a solution of problem (1.1)λ if u satisfies∫

Ω

(
∇u · ∇v − µ

uv

|x|2 − λ(1 + u)pv

)
dx = 0 ∀v ∈ H1

0 (Ω).

It easily follows from standard regularity theory that, for any solution u of problem
(1.1)λ, u ∈ C2(Ω\{0}) ∩ C1(Ω̄\{0}).
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Set
D1,2(RN ) = {u ∈ L2∗

(RN ) | |∇u| ∈ L2(RN )}.

Let µ̄ = ( 1
2 (N − 2))2. We then define the constant Sµ, for all µ ∈ [0, µ̄), as follows:

Sµ := inf
u∈D1,2(RN )\{0}

∫
RN (|∇u|2 − µ(u2/|x|2)) dx

(
∫

RN |u|2∗ dx)2/2∗ ,

where 2∗ = 2N/(N − 2) is the so-called critical Sobolev exponent for the embedding
H1

0 (Ω) ↪→ Lq(Ω).
From [11,12], Sµ is independent of any Ω ⊂ RN in the sense that, if

Sµ(Ω) := inf
u∈H1

0 (Ω)\{0}

∫
Ω

(|∇u|2 − µ(u2/|x|2)) dx

(
∫

Ω
|u|2∗ dx)2/2∗ ,

then Sµ(Ω) = Sµ(RN ) = Sµ.
Set

γ =
√

µ̄ +
√

µ̄ − µ, γ′ =
√

µ̄ −
√

µ̄ − µ.

Catrina and Wang [7] and Terracini [14] proved that, for ε > 0,

Uε(x) =
(4ε2N(µ̄ − µ)/(N − 2))(N−2)/4

(ε2|x|γ′/
√

µ̄ + |x|γ/
√

µ̄)
√

µ̄

satisfies
−∆u = |u|2∗−2u + µ

u

|x|2 in RN\{0},

u → 0 as |x| → ∞.

⎫⎬
⎭ (1.1)

From Theorem B in [8], all the positive solutions of problem (1.1) must have the form
of Uε. Moreover, Uε achieves Sµ.

In the case µ = 0, problem (1.1)λ has been studied extensively. In the celebrated
paper by Brezis and Nirenberg [5], it was proved that there exists a Λ∗ > 0 such that
problem (1.1)λ (with µ = 0) admits at least two positive solutions if 0 < λ < Λ∗, a
unique positive solution if λ = Λ∗, and no positive solutions if λ > Λ∗. To prove this,
two important facts are needed. One is that any solution of problem (1.1)λ (with µ = 0)
belongs to L∞(Ω); the other is that, if u ∈ H1

0 (Ω) is a solution of (1.1)λ (with µ = 0), then
a standard regularity argument shows that u ∈ C2(Ω) ∩ C1(Ω̄). The maximum principle
implies that u has a positive lower bound in any neighbourhood of zero, which is the
key point in the energy estimate (see the related papers [2,10,13], and the references
therein).

By the Hardy inequality (see [3])∫
Ω

u2

|x|2 dx � 1
µ̄

∫
Ω

|∇u|2 dx ∀u ∈ H1
0 (Ω),

we infer that, for 0 < µ < µ̄, the operator −∆ − (µ/|x|2) is positive. In this paper we use
the sub–supersolution method and the variational approach to deal with problem (1.1)λ
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for λ > 0. Due to the presence of the term µ(u/|x|2), problem (1.1)λ has a strong
singularity at zero, and we do not expect any solution of problem (1.1)λ to be bounded.
So there is some new difficulty to overcome in studying problem (1.1)λ.

Our main results are as follows.

Theorem 1.1. Let 0 < µ < µ̄. Then there exists a λ∗ > 0 such that

(1) problem (1.1)λ possesses a minimal solution uλ if λ ∈ (0, λ∗), and there are no
solutions for problem (1.1)λ if λ > λ∗;

(2) there is a unique solution of problem (1.1)λ for λ = λ∗;

(3) uλ(x) is increasing with respect to λ ∈ (0, λ∗) for all x ∈ Ω;

(4) ‖uλ‖H1
0 (Ω) → 0 as λ → 0; and

(5) there exists a c0 > 0 such that uλ(x) � c0|x|−(
√

µ̄−√
µ̄−µ) for any x ∈ Br0(0)\{0},

where 0 < r0 < infx∈∂Ω |x|.

Remark. As we see below (Lemma 2.6), any solution of problem (1.1)λ with λ ∈ (0, λ∗]
has the property (5) in Theorem 1.1.

Theorem 1.2. Let 0 < µ � µ̄ − 1. If λ ∈ (0, λ∗), then problem (1.1)λ admits the
second solution Uλ satisfying Uλ > uλ in Ω.

Throughout this paper we denote the norm of H1
0 (Ω) by

‖u‖H1
0 (Ω) =

( ∫
Ω

|∇u|2 dx

)1/2

,

the norm of Ll(Ω) (1 � l < ∞) by

‖u‖Ll(Ω) =
( ∫

Ω

|u|l dx

)1/l

,

and positive constants (possibly different) by C, C1, C2, . . . .

2. Proof of Theorem 1.1

Before giving the proof of Theorem 1.1, we introduce some notation and preliminary
lemmas.

Lemma 2.1. There exists a λ0 > 0 such that problem (1.1)λ has a solution for all
λ ∈ (0, λ0).

Proof. Obviously, 0 is a subsolution of problem (1.1)λ for any λ > 0. By the sub–
supersolution principle, we know that to obtain a solution of problem (1.1)λ, we only
need to find an H1

0 (Ω) supersolution of (1.1)λ. Set Q(t) = t2 + (N − 2)t + µ, 0 < µ < µ̄.
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A direct computation then shows that −γ, −γ′ are two roots of Q(t) = 0, and that
γ′p < p + 2, where

γ =
√

µ̄ +
√

µ̄ − µ, γ′ =
√

µ̄ −
√

µ̄ − µ.

Furthermore, we can choose t0 ∈ (γ′, γ) and t0 close enough to γ′, such that t0p < p + 2,
|x|−t0 ∈ H1(Ω) and Q(−t0) < 0.

Set w = A|x|−t0 (A > 0 will be fixed below). After a simple calculation, we have

−∆w − µ
w

|x|2 = −AQ(−t0)|x|−t0−2.

We want to show that

−AQ(−t0)|x|−t0−2 > λ(1 + w)p = λ(1 + A|x|−t0)p in Ω. (2.1)

This will be true when

− 1
2AQ(−t0)|x|−t0−2 > λ2p,

− 1
2AQ(−t0)|x|−t0−2 > λ2pAp|x|−t0p.

}
(2.2)

Choose

λ0 = − 1
2p+1 Q(−t0)(diamΩ)−t0−2 and A <

(
− Q(−t0)

λ02p+1(diamΩ)t0+2−t0p

)1/p

.

Then (2.2) can be satisfied for any λ ∈ (0, λ0) with such a choice of λ0 and A, and we
have constructed w ∈ H1(Ω) such that, for any λ ∈ (0, λ0),

−∆w − µ
w

|x|2 > λ(1 + w)p in Ω,

w > 0 on Ω̄.

Finally, we need to construct an H1
0 (Ω) supersolution of (1.1)λ for λ ∈ (0, λ0). Let w1

be the unique positive solution of

−∆w1 − µ
w1

|x|2 = 0 in Ω,

w1 = w on ∂Ω.

Set w̃ = w − w1; w̃ then satisfies

−∆w̃ − µ
w̃

|x|2 > λ(1 + w)p > 0 in Ω,

w̃ = 0 on ∂Ω.

By the maximum principle, w̃ > 0 in Ω, and then

−∆w̃ − µ
w̃

|x|2 > λ(1 + w)p = λ(1 + w̃ + w1)p > λ(1 + w̃)p,

which implies that w̃ is an H1
0 (Ω) supersolution of (1.1)λ for λ ∈ (0, λ0). Then the sub–

supersolution method shows that (1.1)λ has a solution ũλ with the property 0 � ũλ � w̃

for λ ∈ (0, λ0). By the maximum principle, we conclude that ũλ > 0 in Ω. �
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Set

λ∗ = sup{λ̃ ∈ R
+ | problem (1.1)λ has at least one solution for λ ∈ (0, λ̃)}.

We then have the following lemma.

Lemma 2.2. 0 < λ∗ < ∞.

Proof. It follows from Lemma 2.1 that λ∗ > 0. Now we show λ∗ < ∞.
Let λ1(µ) be the first eigenvalue of the operator: −∆ − (µ/|x|2) with 0 < µ < µ̄, and

ϕ1 > 0 (the corresponding eigenfunction). Assume that u ∈ H1
0 (Ω) is a solution of (1.1)λ.

We then have

λ1(µ)
∫

Ω

uϕ1 dx = λ

∫
Ω

(1 + u)pϕ1 dx � λpp

(p − 1)p−1

∫
Ω

uϕ1 dx, (2.3)

where we use the inequality

(1 + s)p � pp

(p − 1)p−1 s

for all s � 0.
Therefore, from (2.3), we infer that

λ � (p − 1)p−1

pp
λ1(µ),

which implies that λ∗ < ∞. �

Lemma 2.3. For any λ ∈ (0, λ∗), problem (1.1)λ has a minimal solution uλ. Moreover,
uλ is increasing with respect to λ.

Proof. We already know that there exists a solution u of (1.1)λ for every λ ∈ (0, λ∗).
Obviously, 0 is a subsolution of (1.1)λ. Using the method of monotone iteration and
the maximum principle, it follows that there exists a solution uλ of (1.1)λ such that
0 < uλ � u for all x ∈ Ω, and uλ is a minimal solution of problem (1.1)λ for λ ∈ (0, λ∗).
Similarly, we can also prove that uλ is increasing with respect to λ. �

Let uλ be the minimal solution of problem (1.1)λ obtained in Lemma 2.3. We consider
the following eigenvalue problem with respect to m:

−∆ψ − µ
ψ

|x|2 = mλp(1 + uλ)p−1ψ in Ω,

ψ = 0 on ∂Ω.

⎫⎬
⎭ (2.4)

We then have the following lemma.

Lemma 2.4. The first eigenvalue of problem (2.4),

m(λ) = inf
{ ∫

Ω

(
|∇ψ|2 −µ

ψ2

|x|2

)
dx

∣∣∣∣ ψ ∈ H1
0 (Ω), λp

∫
Ω

(1+uλ)p−1ψ2 dx = 1
}

, (2.5)

can be achieved by a function ψ1 > 0 in H1
0 (Ω) if λ ∈ (0, λ∗). Furthermore, m(λ) > 1.
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Proof. Observe that, for any ψ ∈ H1
0 (Ω)\{0},∫

Ω

(
|∇ψ|2 − µ

ψ2

|x|2

)
dx − ελp

∫
Ω

(1 + uλ)p−1ψ2 dx

�
∫

Ω

(
|∇ψ|2 − µ

ψ2

|x|2

)
dx − ελp

( ∫
Ω

(1 + uλ)p+1 dx

)(p−1)/(p+1)( ∫
Ω

ψp+1 dx

)2/(p+1)

� (1 − εC(λ, p))
(

1 − µ

µ̄

)
‖ψ‖2

H1
0 (Ω)

> 0 with 0 < ε < 1/C(λ, p),

where C(λ, p) > 0 is a constant depending only on λ and p.
Thus we conclude that m(λ) � ε > 0 with 0 < ε < 1/C(λ, p). Since (1 + uλ)p−1 ∈

LN/2(Ω), by choosing a minimizing sequence in H1
0 (Ω), we can easily prove that the

infimum in (2.5) can be achieved by a function ψ1 > 0 in Ω. So it remains to prove
that m(λ) > 1. For any λ ∈ (0, λ∗), there exists a λ̄ ∈ (λ, λ∗). Suppose that uλ, uλ̄

are the minimal solutions of (1.1)λ, (1.1)λ̄, respectively. Then, by Lemma 2.3, we have
0 < uλ < uλ̄ in Ω, and

−∆(uλ̄ − uλ) − µ
uλ̄ − uλ

|x|2 = λ̄(1 + uλ̄)p − λ(1 + uλ)p

> λ((1 + uλ + (uλ̄ − uλ))p − (1 + uλ)p)

� λp(1 + uλ)p−1(uλ̄ − uλ). (2.6)

Thus, from (2.5) and (2.6), we deduce that

λm(λ)p
∫

Ω

(1 + uλ)p−1(uλ̄ − uλ)ψ1 dx =
∫

Ω

(
− ∆ψ1 − µ

ψ1

|x|2

)
(uλ̄ − uλ) dx

=
∫

Ω

(
− ∆(uλ̄ − uλ) − µ

uλ̄ − uλ

|x|2

)
ψ1 dx

> λp

∫
Ω

(1 + uλ)p−1(uλ̄ − uλ)ψ1 dx,

which implies that m(λ) > 1. �

Lemma 2.5. There exists a unique solution of problem (1.1)λ for λ = λ∗.

Proof. First we prove the existence of a minimal solution of problem (1.1)λ for λ = λ∗.
Multiplying both sides of (1.1)λ by uλ for λ ∈ (0, λ∗), we get∫

Ω

(
|∇uλ|2 − µ

u2
λ

|x|2

)
dx = λ

∫
Ω

(1 + uλ)puλ dx.

On the other hand, using Lemma 2.4, we derive∫
Ω

(
|∇uλ|2 − µ

u2
λ

|x|2

)
dx > λp

∫
Ω

(1 + uλ)p−1u2
λ dx.
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Therefore, we obtain

p

∫
Ω

(1 + uλ)p−1u2
λ dx <

∫
Ω

(1 + uλ)puλ dx =
∫

Ω

(1 + uλ)p−1(uλ + u2
λ) dx.

We then have

(p−1)
∫

Ω

up+1
λ dx < (p−1)

∫
Ω

(1+uλ)p−1u2
λ <

∫
Ω

(1+uλ)p−1uλ dx � ε

∫
Ω

up+1
λ dx+C(ε).

(2.7)
Take ε = 1

2 (p − 1) in (2.7), we conclude that
∫

Ω
up+1

λ dx � C. Furthermore, by the
Hardy inequality, we infer that∫

Ω

|∇uλ|2 dx �
(

1 − µ

µ̄

)−1 ∫
Ω

(
|∇uλ|2 − µ

u2
λ

|x|2

)
dx

=
(

1 − µ

µ̄

)−1

λ

∫
Ω

(1 + uλ)puλ dx

�
(

1 − µ

µ̄

)−1

λ∗2p

∫
Ω

(uλ + up+1
λ ) dx

� C. (2.8)

Suppose that {λj}j�1 is an increasing sequence in (0, λ∗) that satisfies limj→∞ λj = λ∗.
The corresponding sequence of minimal solutions is {uλj }j�1 ⊂ H1

0 (Ω). From (2.8), and
up to a subsequence, we may assume that, as j → ∞,

uλj ⇀ ū weakly in H1
0 (Ω),

uλj ⇀ ū weakly in L2(Ω, |x|−2 dx),

uλj ⇀ ū weakly in Lp+1(Ω) if p =
N + 2
N − 2

,

uλj
→ ū strongly in Lp+1(Ω) if 1 < p <

N + 2
N − 2

,

uλj → ū a.e. on Ω.

Thus, for any ϕ ∈ H1
0 (Ω),

0 =
∫

Ω

(
∇uλj · ∇ϕ − µ

uλj ϕ

|x|2 − λj(1 + uλj )
pϕ

)
dx

→
∫

Ω

(
∇ū · ∇ϕ − µ

ūϕ

|x|2 − λ∗(1 + ū)pϕ

)
dx as j → ∞,

and hence ∫
Ω

(
∇ū · ∇ϕ − µ

ūϕ

|x|2 − λ∗(1 + ū)pϕ

)
dx = 0,

i.e. ū is a solution of (1.1)λ∗ . Obviously, 0 is a subsolution of (1.1)λ∗ . For any solution u

of (1.1)λ∗ , using the method of monotone iteration and the maximum principle, it follows
that there exists a minimal solution uλ∗ of (1.1)λ∗ .
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Now we prove the uniqueness of problem (1.1)λ∗ . Suppose to the contrary that there
is a different solution u∗ of (1.1)λ∗ . That is,

−∆u∗ − µ
u∗

|x|2 = λ∗(1 + u∗)p in Ω,

u∗ > 0 in Ω,

u∗ = 0 on ∂Ω.

Moreover, uλ∗ � u∗ and uλ∗ 
≡ u∗. Set

L(u∗, uλ∗) =
∫ 1

0
(1 + uλ∗ + s(u∗ − uλ∗))p−1 ds.

We then obtain

L(u∗, uλ∗) > (1 + uλ∗)p−1 > 0, (2.9)

and

−∆(u∗ − uλ∗) − µ
u∗ − uλ∗

|x|2 = pλ∗L(u∗, uλ∗)(u∗ − uλ∗) in Ω,

u∗ − uλ∗ = 0 on ∂Ω.

⎫⎬
⎭ (2.10)

We claim that λ∗ is the first eigenvalue of

−∆u − µ
u

|x|2 = ptL(u∗, uλ∗)u in Ω,

u = 0 on ∂Ω.

⎫⎬
⎭ (2.11)

In fact, assume that t1 > 0 is the first eigenvalue of (2.11) and that ϕ∗
1 > 0 is the

corresponding eigenfunction. Then, from (2.10), (2.11), we get

pt1

∫
Ω

L(u∗, uλ∗)(u∗ − uλ∗)ϕ∗
1 dx =

∫
Ω

(
∇(u∗ − uλ∗)∇ϕ∗

1 − µ
(u∗ − uλ∗)ϕ∗

1

|x|2

)
dx

= pλ∗
∫

Ω

L(u∗, uλ∗)(u∗ − uλ∗)ϕ∗
1 dx. (2.12)

Since u∗ − uλ∗ � 0 and u∗ − uλ∗ 
≡ 0 in Ω, from (2.9), (2.12), we infer that

∫
Ω

L(u∗, uλ∗)(u∗ − uλ∗)ϕ∗
1 dx > 0, and then λ∗ = t1.

Suppose that s(λ∗) > 0 is the first eigenvalue of

−∆e − µ
e

|x|2 = ps(1 + uλ∗)p−1e, e ∈ H1
0 (Ω),
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and e1 > 0 is the corresponding eigenfunction. Then, from (2.9), (2.11), we deduce that

λ∗ = inf
u∈H1

0 (Ω)\{0}

∫
Ω

(|∇u|2 − µ(u2/|x|2)) dx

p
∫

Ω
L(u∗, uλ∗)u2 dx

�
∫

Ω
(|∇e1|2 − µ(e2

1/|x|2)) dx

p
∫

Ω
L(u∗, uλ∗)e2

1 dx

<

∫
Ω

(|∇e1|2 − µ(e2
1/|x|2)) dx

p
∫

Ω
(1 + uλ∗)p−1e2

1 dx

= s(λ∗). (2.13)

On the other hand, we claim that there is a non-trivial solution of the linear problem

−∆w − µ
w

|x|2 = pλ∗(1 + uλ∗)p−1w, w ∈ H1
0 (Ω).

In fact, it follows from Lemma 2.4 that∫
Ω

(
|∇ψ|2 − µ

ψ2

|x|2

)
dx − λp

∫
Ω

(1 + uλ)p−1ψ2 dx � 0 ∀ψ ∈ H1
0 (Ω),

and letting λ → λ∗ we have∫
Ω

(
|∇ψ|2 − µ

ψ2

|x|2

)
dx − λ∗p

∫
Ω

(1 + uλ∗)p−1ψ2 dx � 0 ∀ψ ∈ H1
0 (Ω).

This implies that µ1 � 0, where µ1 denotes the first eigenvalue of the linear problem

−∆w − µ
w

|x|2 − pλ∗(1 + uλ∗)p−1w = µw, w ∈ H1
0 (Ω).

Now we prove that µ1 = 0. Suppose, by way of contradiction, that µ1 > 0 and introduce
the function F : H1

0 (Ω) × R → H−1(Ω) defined by

F (v, λ) = −∆v − µ
v

|x|2 − λ((1 + v)+)p.

Then, with µ1 > 0 we infer that the linear operator

w �→ 〈F ′
v(uλ∗ , λ∗), w〉 = −∆w − µ

w

|x|2 − pλ∗(1 + uλ∗)p−1w

is an isomorphism and the ‘implicit function theorem’ applies, contradicting the maxi-
mality of λ∗ (see, for example, [9], [10] and §§ 2 and 7 in [6]).

Hence, by the definition of s(λ∗), we infer that s(λ∗) � λ∗, which contradicts (2.13).
So the uniqueness of solutions of (1.1)λ∗ is proved. �

Lemma 2.6. For any solution u of problem (1.1)λ with λ ∈ (0, λ∗], there exists a
c0 > 0 such that

u(x) � c0|x|−(
√

µ̄−√
µ̄−µ)

for any x ∈ Br0(0)\{0}, where 0 < r0 < infx∈∂Ω |x|.
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Proof. Set
v(x) = |x|

√
µ̄−√

µ̄−µu(x).

As mentioned in § 1, u ∈ C2(Ω\{0}). Then, after a direct computation, we have v ∈
C2(Ω\{0}) and

− div(|x|−2(
√

µ̄−√
µ̄−µ)∇v) = λ|x|−(

√
µ̄−√

µ̄−µ)(1 + |x|−(
√

µ̄−√
µ̄−µ)v)p in Ω,

v > 0 in Ω,

v = 0 on ∂Ω.

⎫⎪⎬
⎪⎭
(2.14)

Let 0 < t0 < r0 < infx∈∂Ω |x| and let n(t) = min|x|=t v(x), t0 � t � r0, such that

n(t0) = At
−2

√
µ̄−µ

0 + B, n(r0) = Ar
−2

√
µ̄−µ

0 + B,

where

A =
n(r0) − n(t0)

r
−2

√
µ̄−µ

0 − t
−2

√
µ̄−µ

0

, B =
n(r0)t

−2
√

µ̄−µ
0 − n(t0)r

−2
√

µ̄−µ
0

t
−2

√
µ̄−µ

0 − r
−2

√
µ̄−µ

0

.

It is easy to verify that

− div(|x|−2(
√

µ̄−√
µ̄−µ)∇(|x|−2

√
µ̄−µ)) = 0 ∀x ∈ Ω\{0}. (2.15)

Combining (2.14) with (2.15) we get

− div(|x|−2(
√

µ̄−√
µ̄−µ)∇(v − (A|x|−2

√
µ̄−µ + B)))

= λ|x|−(
√

µ̄−√
µ̄−µ)(1 + |x|−(

√
µ̄−√

µ̄−µ)v)p

> 0 in Ω\{0},

and v(x) − minx∈∂(Br0 (0)\Bt0 (0)) v(x) � 0, ∀x ∈ ∂(Br0(0)\Bt0(0)).
Therefore, by the maximum principle, we obtain

v(x) � A|x|−2
√

µ̄−µ + B

=
|x|−2

√
µ̄−µ − r

−2
√

µ̄−µ
0

t
−2

√
µ̄−µ

0 − r
−2

√
µ̄−µ

0

n(t0) +
t
−2

√
µ̄−µ

0 − |x|−2
√

µ̄−µ

t
−2

√
µ̄−µ

0 − r
−2

√
µ̄−µ

0

n(r0)

� |x|2
√

µ̄−µ − t
2
√

µ̄−µ
0

|x|2
√

µ̄−µ − t
2
√

µ̄−µ
0 r

−2
√

µ̄−µ
0 |x|2

√
µ̄−µ

n(r0) for all x ∈ Br0(0)\Bt0(0).

Let t0 → 0. We conclude that v(x) � n(r0) = min|x|=r0 v(x) > 0, ∀x ∈ Br0(0)\{0}. �

Proof of Theorem 1.1. Parts (1)–(3) and (5) of Theorem 1.1 are direct consequences
of Lemmas 2.2, 2.3, 2.5 and 2.6. Now we prove (4). By (2.8) and the Sobolev inequality,
we derive that

∫
Ω

|uλ|p+1 dx � C for all λ ∈ (0, λ∗). Therefore,

‖uλ‖2
H1

0 (Ω) �
(

1 − µ

µ̄

)−1 ∫
Ω

(
|∇uλ|2 − µ

u2
λ

|x|2

)
dx

=
(

1 − µ

µ̄

)−1

λ

∫
Ω

(1 + uλ)puλ dx � Cλ → 0,

as λ → 0. �
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3. Proof of Theorem 1.2

In this section, we deal only with the case in which p = (N + 2)/(N − 2), because the
subcritical case (i.e. 1 < p < (N + 2)/(N − 2)) is trivial. In order to find the second
solution of problem (1.1)λ, we consider the following problem:

−∆u − µ
u

|x|2 = λ(1 + uλ + u)p − λ(1 + uλ)p in Ω,

u > 0 in Ω,

u = 0 on ∂Ω.

⎫⎪⎪⎬
⎪⎪⎭ (3.1)λ

Clearly, if problem (3.1)λ possesses a solution u, then u + uλ is another solution of
problem (1.1)λ. So we only need to prove that problem (3.1)λ admits one solution for
λ ∈ (0, λ∗).

Set g(x, u) = (1 + uλ + u)p − (1 + uλ)p − up for u � 0, and a(x) = p(1 + uλ)p−1. Since
the values of g(x, u) for u < 0 are irrelevant and we may assume that g(x, u) = 0 for
u < 0, it will suffice to prove that

−∆u − µ
u

|x|2 = λup + λg(x, u) in Ω,

u > 0 in Ω,

u = 0 on ∂Ω.

⎫⎪⎪⎬
⎪⎪⎭ (3.2)λ

It is well known that solutions of problem (3.2)λ are equivalent to the non-zero critical
points of the variational functional of problem (3.2)λ:

Iλ,µ(u) = 1
2

∫
Ω

(
|∇u|2−µ

u2

|x|2

)
dx− λ

p + 1

∫
Ω

(u+)p+1 dx−λ

∫
Ω

G(x, u) dx, u ∈ H1
0 (Ω),

where u+ = max{u, 0}, G(x, u) =
∫ u

0 g(x, s) ds.
The functional Iλ,µ ∈ C1(H1

0 (Ω), R) is said to satisfy the Palais–Smale condition at
the level c ((PS)c for short) if any sequence {un} ⊂ H1

0 (Ω) such that, as n → ∞,

Iλ,µ(un) → c, dIλ,µ(un) → 0 strongly in H−1(Ω),

contains a subsequence converging in H1
0 (Ω) to a critical point of Iλ,µ.

Lemma 3.1. The functional Iλ,µ satisfies condition (PS)c with

c < (1/Nλ(N−2)/2)SN/2
µ .

Proof. Assume that {un} ⊂ H1
0 (Ω) is a Palais–Smale sequence of Iλ,µ at the level c,

i.e.

Iλ,µ(un) → c, dIλ,µ(un) → 0.
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We then have

λ

(
1
2

− 1
p + 1

) ∫
Ω

(u+
n )p+1 dx

= Iλ,µ(un) − 1
2 〈 dIλ,µ(un), un〉 + λ

∫
Ω

(G(u+
n ) − 1

2g(x, u+
n )u+

n ) dx

= c + o(1)(1 + ‖un‖H1
0 (Ω)) + λ

∫
Ω

(G(u+
n ) − 1

2g(x, u+
n )u+

n ) dx. (3.1)

Observe that

lim
u→+∞

g(x, u)
up

= 0 uniformly in x ∈ Ω, (3.2)

lim
u→0+

g(x, u)
u

= a(x) uniformly in x ∈ Ω. (3.3)

Then, from (3.2) and (3.3), we deduce that, for any ε > 0,∫
Ω

(G(u+
n )− 1

2g(x, u+
n )u+

n ) dx � ε

p + 1

∫
Ω

(u+
n )p+1 dx+C(ε)

(
1+

∫
Ω

(1+uλ)p+1 dx

)
. (3.4)

Inserting (3.4) into (3.1), and taking ε = 1
4 (p − 1), we derive∫

Ω

(u+
n )p+1 dx � C + o(‖un‖H1

0 (Ω)). (3.5)

Furthermore,(
1
2

− 1
p+1

)
‖un‖2

H1
0 (Ω)

�
(

1
2

− 1
p+1

)(
1− µ

µ̄

)−1 ∫
Ω

(
|∇un|2 −µ

u2
n

|x|2

)
dx

=
(
1− µ

µ̄

)−1(
Iλ,µ(un)− 1

p+1
〈 dIλ,µ(un), un〉+λ

∫
Ω

(
G(u+

n )− 1
p+1

g(x, u+
n )u+

n

)
dx

)

=
(
1− µ

µ̄

)−1(
c+o(1)(1+‖un‖H1

0 (Ω))+λ

∫
Ω

(
G(u+

n )− 1
p+1

g(x, u+
n )u+

n

)
dx

)
� C +o(‖un‖H1

0 (Ω)).

which implies that ‖un‖H1
0 (Ω) � C.

Thus, up to a subsequence, we may assume that

un ⇀ u weakly in H1
0 (Ω),

un ⇀ u weakly in L2(Ω, |x|−2 dx),

un ⇀ u weakly in Lp+1(Ω),

un → u a.e. on Ω.
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It is then easy to verify that u ∈ H1
0 (Ω) is a non-negative critical point of Iλ,µ. Let

vn = un − u. By the Brezis–Lieb lemma [4], we conclude that, as n → ∞,

c − Iλ,µ(u) = Iλ,µ(un) − Iλ,µ(u) + o(1)

= 1
2

∫
Ω

(
|∇vn|2 − µ

v2
n

|x|2

)
dx − λ

p + 1

∫
Ω

(v+
n )p+1 dx + o(1) (3.6)

and

o(‖un‖H1
0 (Ω)) = 〈 dIλ,µ(un), un〉 =

∫
Ω

(
|∇vn|2 − µ

v2
n

|x|2

)
dx − λ

∫
Ω

(v+
n )p+1 dx + o(1).

(3.7)
Thus, from (3.7), we may assume that

lim
n→∞

∫
Ω

(
|∇vn|2 − µ

v2
n

|x|2

)
dx = a, lim

n→∞
λ

∫
Ω

(v+
n )p+1 dx = a,

where a is a non-negative number.
By the Sobolev inequality, we obtain

( ∫
Ω

(v+
n )p+1 dx

)2/(p+1)

�
( ∫

Ω

|vn|p+1 dx

)2/(p+1)

� S−1
µ

∫
Ω

(
|∇vn|2 − µ

v2
n

|x|2

)
dx.

(3.8)
Passing to a limit in (3.8), we derive

(
a

λ

)2/(p+1)

� S−1
µ a.

If a = 0, the proof is complete. Assume that a > 0. We then get

a � S
N/2
µ

λ(N−2)/2 .

Note that Iλ,µ(u) � 0, and, from (3.6), we deduce that

c = 1
2a − 1

p + 1
a + Iλ,µ(u) �

(
1
2

− 1
p + 1

)
a � 1

Nλ(N−2)/2 SN/2
µ ,

which contradicts the assumption concerning c at the beginning of this proof. �

Lemma 3.2. Let 0 < µ � µ̄ − 1. There then exists a non-negative function v ∈
H1

0 (Ω)\{0} such that

sup
t�0

Iλ,µ(tv) <
1

Nλ(N−2)/2 SN/2
µ .
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Proof. Let uε(x) = η(x)Uε(x), where η ∈ C∞
0 (Ω), satisfying 0 � η � 1. Following [5],

and after a simple calculation, we have∫
Ω

(
|∇uε|2 − µ

u2
ε

|x|2

)
dx = SN/2

µ + O(εN−2),

∫
Ω

|uε|p+1 dx = SN/2
µ + O(εN ),

∫
Ω

|uε|2 dx �
{

C1ε
2
√

µ̄/
√

µ̄−µ if 0 < µ < µ̄ − 1,

C2ε
N−2|ln ε| if µ = µ̄ − 1.

Since, for s > 0,

g(x, s) = (1 + uλ + s)p − (1 + uλ)p − sp � c(p)(1 + uλ)p−1s,

we have, for s > 0,
G(x, s) � 1

2c(p)(1 + uλ)p−1s2, (3.9)

where we use the following inequality: for all p > 1, there exists a c(p) > 0 such that

(a + b)p � ap + bp + c(p)ap−1b ∀a, b � 0.

Therefore, using (3.9), we infer that

Iλ,µ(tuε) = 1
2 t2

∫
Ω

(
|∇uε|2 − µ

u2
ε

|x|2

)
dx − λtp+1

p + 1

∫
Ω

|uε|p+1 dx − λ

∫
Ω

G(x, tuε) dx

� 1
2 t2

∫
Ω

(
|∇uε|2 − µ

u2
ε

|x|2 − 1
2λc(p)(1 + uλ)p−1u2

ε

)
dx − λtp+1

p + 1

∫
Ω

|uε|p+1 dx

� 1
N

(∫
Ω

(|∇uε|2 − µ(u2
ε/|x|2) − 1

2λc(p)(1 + uλ)p−1u2
ε) dx

(λ
∫

Ω
|uε|p+1 dx)2/(p+1)

)N/2

� 1
Nλ(N−2)/2

(
S

N/2
µ − 1

2λc(p)α(ε) + O(εN−2)

(SN/2
µ + O(εN ))2/(p+1)

)N/2

<
1

Nλ(N−2)/2 SN/2
µ ,

where

α(ε) =

{
C1ε

2
√

µ̄/
√

µ̄−µ if 0 < µ < µ̄ − 1,

C2ε
N−2|ln ε| if µ = µ̄ − 1,

and the following fact has been used:

max
t�0

(
1
2 t2A − tp+1

p + 1
B

)
=

1
N

A

(
A

B

)(N−2)/2

, A, B > 0.

�
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Proof of Theorem 1.2. Set c := infγ∈Γ maxt∈[0,1] Iλ,µ(γ(t)), where

Γ = {γ ∈ C([0, 1], H1
0 (Ω)) | γ(0) = 0 and Iλ,µ(γ(1)) < 0}.

Then we claim that c > 0. In fact, by (3.2), (3.3), we derive∫
Ω

(G(x, u) − 1
2a(x)u2) dx � 1

2ε

∫
Ω

a(x)u2 dx +
C(ε)
p + 1

∫
Ω

|u|p+1 dx, ε > 0,

and then, for any u ∈ H1
0 (Ω)\{0}, by Lemma 2.4, we have

Iλ,µ(u) = 1
2

∫
Ω

(
|∇u|2 − µ

u2

|x|2 − λa(x)u2
)

dx − λ

p + 1

∫
Ω

(u+)p+1 dx

− λ

∫
Ω

(G(x, u) − 1
2a(x)u2) dx

� 1
2

(
1 − 1

m(λ)

) ∫
Ω

(
|∇u|2 − µ

u2

|x|2

)
dx − λ

p + 1

∫
Ω

(u+)p+1 dx

− 1
2λε

∫
Ω

a(x)u2 dx − λC(ε)
p + 1

∫
Ω

|u|p+1 dx

� 1
2

(
1 − 1

m(λ)

)(
1 − µ

µ̄

)
‖u‖2

H1
0 (Ω)

− ελp

2Sµ

(
1 − µ

µ̄

)( ∫
Ω

(1 + uλ)p+1 dx

)(p−1)/(p+1)

‖u‖2
H1

0 (Ω)

− λ(1 + C(ε))

(p + 1)S(p+1)/2
µ

(
1 − µ

µ̄

)(p+1)/2

‖u‖(p+1)/2
H1

0 (Ω) .

Setting

C3 =
1
2

(
1 − 1

m(λ)

)(
1 − µ

µ̄

)
,

C4 =
λp

2Sµ

(
1 − µ

µ̄

)( ∫
Ω

(1 + uλ)p+1 dx

)(p−1)/(p+1)

,

C5 =
λ(1 + C(ε))

(p + 1)S(p+1)/2
µ

(
1 − µ

µ̄

)(p+1)/2

,

and taking ε = C3/2C4, we obtain

Iλ,µ(u) � 1
2C3‖u‖2

H1
0 (Ω) − C5‖u‖(p+1)/2

H1
0 (Ω) .

If

‖u‖H1
0 (Ω) = ρ =

(
C3

4C5

)2/(p−1)

> 0,

we obtain

Iλ,µ(u) � 1
4C3

(
C3

4C5

)4/(p−1)

> 0 = Iλ,µ(0).
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So c > 0. In addition, Iλ,µ(tv) → −∞ as t → ∞, where v is from Lemma 3.2. Hence
there exists a t0 > 0 such that ‖t0v‖H1

0 (Ω) > ρ and Iλ,µ(t0v) < 0. By the mountain pass
lemma (see [1]), there is a sequence {un} ⊂ H1

0 (Ω) such that

Iλ,µ(un) → c, dIλ,µ(un) → 0.

Observe that

c � sup
t∈[0,1]

Iλ,µ(tt0v) � sup
t�0

Iλ,µ(tv) <
1

Nλ(N−2)/2 SN/2
µ .

By Lemma 3.1, we infer that there is a subsequence of {un}, still denoted by {un}, and
a function u ∈ H1

0 (Ω), which satisfy

un → u strongly in H1
0 (Ω),

and then c is a positive critical value of Iλ,µ, and, by the maximum principle, u is a
solution of problem (3.1)λ for λ ∈ (0, λ∗). �
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