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Based on the explicit coupling property, the ergodicity and the exponential ergodicity of
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1. Introduction and main results

Let (Xx
t )t≥0 be a d-dimensional Ornstein–Uhlenbeck process, which is defined as the unique

strong solution of the following stochastic differential equation:

dXt = AXt dt + dZt , X0 = x ∈ R
d . (1)

Here A is a real d ×d matrix and (Zt )t≥0 is a Lévy process in R
d . It is well known that (Xx

t )t≥0
is a strong Markov process with the following form:

Xx
t = etAx +

∫ t

0
e(t−s)A dZs. (2)

The associated Markov semigroup acting on Bb(R
d), the class of all bounded measurable

functions on R
d , is given by

Ptf (x) := E f (Xx
t ) =

∫
Rd

f (etAx + z)πt (dz), t ≥ 0, x ∈ R
d , f ∈ Bb(R

d), (3)

where πt is the law of
∫ t

0 e(t−s)A dZs . Semigroups of the type (3) are generalized Mehler
semigroups.

Let us recall that a Lévy process Z = (Zt )t≥0 with values in R
d is an R

d -valued process
defined on some stochastic basis (�, F , (Ft )t≥0, P), continuous in probability, having
stationary independent increments, càdlàg trajectories, and such that Z0 = 0, P-almost surely.
It is well known that the characteristic exponent or the symbol � of (Zt )t≥0, defined by

E(ei〈ξ,Zt 〉) = e−t�(ξ), ξ ∈ R
d ,

satisfies the following Lévy–Khintchine representation:

�(ξ) = 1

2
〈Qξ, ξ〉 + i〈b, ξ〉 +

∫
z �=0

(1 − ei〈ξ,z〉 + i〈ξ, z〉 1B(0,1)(z))ν(dz). (4)
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Here Q ∈ R
d×d is a positive semidefinite matrix, b ∈ R

d is the drift vector, and ν is the Lévy
measure, i.e. a σ -finite measure on R

d \ {0} such that
∫
z �=0(1 ∧ |z|2)ν(dz) < ∞. Our main

reference for Lévy processes is the monograph [9].
The starting point of our paper is the following result about the existence of invariant measures

for Ornstein–Uhlenbeck processes, which was proven in [10, Theorem 4.1].

Theorem 1. Let X = (Xx
t )t≥0 be a d-dimensional Ornstein–Uhlenbeck process determined

by (1), where the real parts of all the eigenvalues of A are negative. If the Lévy measure ν of
Lévy process Z satisfies ∫

{|z|≥1}
log(1 + |z|)ν(dz) < ∞,

then there exists an invariant measure µ such that, for any A ∈ B(Rd),

Pt(x, A) → µ(A) as t → ∞,

where Pt(x, dz) is the transition kernel of the process (Xt )t≥0.

We are very much interested in the ergodicity and the exponential ergodicity of Ornstein–
Uhlenbeck processes. The standard method yielding the ergodicity is to verify that the process
is strong Feller and irreducible; see [4], [6], and [15]. The strong Feller property of Ornstein–
Uhlenbeck processes has been studied in [2], [5], [7], and [14]. In particular, according to [7,
Theorem 1.1 and Proposition 2.1], if the Lévy measure ν of Lévy process Z is infinite and
has a density with respect to the Lebesgue measure, then the associated Ornstein–Uhlenbeck
process (Xt )t≥0 determined by (1) is strong Feller. We refer the reader to [8, Section 3] for
some discussions about the irreducibility of Ornstein–Uhlenbeck processes. The novelty of this
paper is the direct use of the coupling property in the proof of the ergodicity (and the exponential
ergodicity) for Ornstein–Uhlenbeck processes. The coupling property of Ornstein–Uhlenbeck
processes has been studied in [12] and [16]. As we will see in the last section, an obvious
advantage of the coupling method lies in the succinctness of the proof, which yields both the
ergodicity and the exponential ergodicity simply via the Lévy measure ν.

Before stating our main results, we first introduce some necessary notation. Let ν be the
Lévy measure of the Lévy process (Zt )t≥0; see (4). For every ε > 0, define νε on R

d as follows:
for any B ∈ B(Rd),

νε(B) =
{

ν(B) if ν(Rd) < ∞,

ν(B \ {z : |z| < ε}) if ν(Rd) = ∞.
(5)

Recall that, for any two bounded measures µ1 and µ2 on (Rd , B(Rd)),

µ1 ∧ µ2 := µ1 − (µ1 − µ2)
+,

where (µ1 − µ2)
± refers to the Jordan–Hahn decomposition of the signed measure µ1 − µ2.

In particular, µ1 ∧ µ2 = µ2 ∧ µ1, and

µ1 ∧ µ2(R
d) = 1

2 [µ1(R
d) + µ2(R

d) − ‖µ1 − µ2‖var],
where ‖ · ‖var stands for the total variation norm. Denote by Pt(x, ·) the transition kernel of the
process X.
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Theorem 2. Let X = (Xx
t )t≥0 be a d-dimensional Ornstein–Uhlenbeck process determined

by (1), where the real parts of all the eigenvalues of A are negative. Then the following two
statements hold.

(i) If the Lévy measure ν of the Lévy process Z satisfies
∫
{|z|≥1} log(1 + |z|)ν(dz) < ∞ and

inf|x|≤ρ
νε ∧ (δx ∗ νε)(R

d) > 0 (6)

for some constants ε, ρ > 0, then the process X is ergodic, i.e. there is a unique invariant
measure µ such that, for any x ∈ R

d ,

lim
t→∞ ‖Pt(x, ·) − µ‖var = 0.

(ii) If the Lévy measure ν of the Lévy process Z satisfies
∫
{|z|≥1} |z|ν(dz) < ∞ and

lim sup
ρ→0

[
sup|x|≤ρ ‖νε − (δx ∗ νε)‖var

ρ

]
< ∞ (7)

for some constant ε > 0, then the process X is exponentially ergodic. More explicitly,
there exist a unique invariant measure µ and two constants κ, C > 0 such that, for any
x ∈ R

d and t > 0,

‖Pt(x, ·) − µ‖var ≤ C(1 + |x|) exp(−κt).

Remark 1. (i) Under (7) and for fixed ε > 0, there exists ρ > 0 such that

sup
|x|≤ρ

‖νε − (δx ∗ νε)‖var ≤ νε(R
d),

and so
inf|x|≤ρ

νε ∧ (δx ∗ νε)(R
d) = 1

2 inf|x|≤ρ
[νε(R

d) + (δx ∗ νε)(R
d) − ‖νε − (δx ∗ νε)‖var]

= 1

2

[
2νε(R

d) − sup
|x|≤ρ

‖νε − (δx ∗ νε)‖var

]
≥ 1

2νε(R
d)

> 0.

This shows that (7) implies (6).

(ii) We mention that in many applications condition (6) is weak. For example, Schilling and
Wang [12, Proposition 1.5] proved that (6) is satisfied when the Lévy measure ν of (Zt )t≥0
satisfies ν(dz) ≥ ρ(z) dz such that

∫
{|z−z0|≤ε} dz/ρ(z) < ∞ holds for some z0 ∈ R

d and some
ε > 0.

(iii) According to Theorem 6 below, the second assertion in Theorem 2 still holds if (7) is
replaced by

lim sup
r→0

sup|x|≤r

∫
{|z−z0|≤ε} |ρ(z) − ρ(x + z)| dz

r
< ∞

for some z0 ∈ R
d and some ε > 0, where ρ(z) is a Borel measurable function on R

d \ {0} such
that ν(dz) ≥ ρ(z) dz.
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The following result presents the exponential ergodicity for Ornstein–Uhlenbeck processes,
under weaker integral conditions for the Lévy measure ν on the range {z ∈ R

d : |z| ≥ 1}.
Theorem 3. Let X = (Xx

t )t≥0 be a d-dimensional Ornstein–Uhlenbeck process determined
by (1), where the real parts of all the eigenvalues of A are negative. If the Lévy measure ν

satisfies

lim inf|ξ |→∞

∫
{|z|≤1/|ξ |}〈z, ξ〉2ν(dz)

log(1 + |ξ |) > 0 (8)

and
∫
{|z|≥1} |z|αν(dz) < ∞ for some constant 0 < α ≤ 1, then there exist a unique invariant

measure µ and two constants κ, C > 0 such that, for any x ∈ R
d and t > 0,

‖Pt(x, ·) − µ‖var ≤ C(1 + |x|α) exp(−κt).

It is clear that Theorem 3 can be applied to the study of the exponential ergodicity for
Ornstein–Uhlenbeck processes driven by α-stable processes with α ∈ (0, 2).

The remainder of this paper is organized as follows. Section 2 is devoted to the coupling
property of Ornstein–Uhlenbeck processes, which is key to our main results. In Section 3 we
will present the proofs of Theorems 2 and 3. Here, a general conclusion for the exponential
ergodicity of Ornstein–Uhlenbeck processes is given (see Theorem 6), which improves the
second assertion of Theorem 2.

2. Coupling property

In this section we are mainly concerned with the coupling property for the Ornstein–
Uhlenbeck process X = (Xx

t )t≥0 given by (2). Recall that the process X has successful
couplings (or has the coupling property) if and only if, for any x, y ∈ R

d ,

lim
t→∞ ‖Pt(x, ·) − Pt(y, ·)‖var = 0,

where Pt(x, dz) is the transition kernel of the process X and ‖ · ‖var stands for the total
variation norm. The coupling property has been intensively studied for Lévy processes on R

d

and Ornstein–Uhlenbeck processes driven by Lévy processes on R
d ; see [3], [11], [12], [13],

and [16]. Recently, by using the lower-bound conditions for the Lévy measure with respect
to a nice reference probability measure, we have successfully obtained the coupling property
for linear stochastic differential equations driven by noncylindrical Lévy processes on Banach
spaces; see [18, Theorem 1.2].

Let ν be the Lévy measure corresponding to the Lévy process (Zt )t≥0; see (4). For every
ε > 0, define a finite measure νε on R

d as in (5). For a d × d matrix A, we say that an
eigenvalue λ of A is semisimple if the dimension of the corresponding eigenspace is equal to
the algebraic multiplicity of λ as a root of the characteristic polynomial of A. Note that, for
symmetric matrices, all the eigenvalues are real and semisimple.

The following result generalizes [12, Theorem 1.1], and it presents the exponential rate for
the coupling property of Ornstein–Uhlenbeck processes.

Theorem 4. Let X = (Xx
t )t≥0 be the Ornstein–Uhlenbeck process given by (2), where the real

parts of all the eigenvalues of A are nonpositive and all the purely imaginary eigenvalues of A

are semisimple. If there exist two constants ε, ρ > 0 such that

inf|x|≤ρ
νε ∧ (δx ∗ νε)(R

d) > 0, (9)
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then there exists a constant C1 > 0 such that, for all x, y ∈ R
d and t > 0,

‖Pt(x, ·) − Pt(y, ·)‖var ≤ C1(1 + |x − y|)√
t

.

Furthermore, suppose that the real parts of all the eigenvalues of A are negative. If (9) is
strengthened by

lim sup
ρ→0

[
sup|x|≤ρ ‖νε − (δx ∗ νε)‖var

ρ

]
< ∞, (10)

then there exist two constants κ, C2 > 0 such that, for all x, y ∈ R
d and t > 0,

‖Pt(x, ·) − Pt(y, ·)‖var ≤ C2(1 + |x − y|) exp(−κt).

Remark 2. Condition (9) has been used to study the coupling property for Lévy processes on
R

d (see [11, Theorem 1.1]) and Ornstein–Uhlenbeck processes driven by Lévy processes on
R

d (see [12, Theorem 1.1]).

Proof of Theorem 4. The first required assertion has been proven in [12, Theorem 1.1], and
so it suffices to prove the second assertion. For simplicity, define Tt = etA for t ≥ 0. Since the
real parts of all the eigenvalues of A are negative,

‖Tt‖Rd→Rd := sup
x∈Rd , |x|=1

|Ttx| ≤ ce−λt

for all t > 0 and some constants c, λ > 0; see, e.g. [10, Equation (2.8)]. For any ε > 0, let
(Zε

t )t≥0 be a compound Poisson process on R
d with Lévy measure νε, which is well defined

since νε is a finite measure on R
d . Then, (Zε

t )t≥0 and (Zt − Zε
t )t≥0 are two independent Lévy

processes on R
d . It follows, in particular, that the random variables

X
ε,x
t := Ttx +

∫ t

0
Tt−s dZε

s and X̄ε
t := Xx

t − X
ε,x
t =

∫ t

0
Tt−s d(Zs − Zε

s )

are well defined on R
d and are independent for any ε > 0 and t ≥ 0.

Define

X
ε,0
t := X

ε,x
t − Ttx =

∫ t

0
Tt−s dZε

s .

We will rewrite X
ε,0
t as follows. Construct a sequence (τi)i≥1 of independent and identically

distributed random variables which are exponentially distributed with intensity Cε = νε(R
d),

and introduce a further sequence (Ui)i≥1 of independent and identically distributed random
variables on R

d with law ν̄ε = νε/Cε. We will assume that the random variables (Ui)i≥1 are
independent of the sequence (τi)i≥1. Then, according to [9, Theorem 4.3],

Zε
t =

Nt∑
i=1

Ui

for every t ≥ 0, where (Nt )t≥0 is a Poisson process of intensity Cε, i.e.

Nt = sup

{
k ≥ 1 :

k∑
i=1

τi ≤ t

}
,
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and here we set
∑

i∈∅
= 0 by convention. Therefore, it is not difficult to check that

X
ε,0
t = 0 · 1{τ1>t} +

∞∑
k=1

1{τ1+···+τk≤t<τ1+···+τk+1}(Tt−τ1U1 + · · · + Tt−(τ1+···+τk)Uk).

Since
τ1 + · · · + τNt ≤ t < τ1 + · · · + τNt+1, t ≥ 0,

it holds that, on the set {Nt ≥ 1},

X
ε,0
t =

Nt∑
k=1

T
t−∑k

i=1 τi
Uk.

Next, we will make use of the decomposition

Ptg(x) = E(g(Xx
t ) 1{Nt=0}) + P 1

t g(x), g ∈ Bb(R
d), t ≥ 0, x ∈ R

d , (11)

where
P 1

t g(x) = E(g(Xx
t ) 1{Nt≥1}). (12)

According to all the above statements, we know that, for any g ∈ Bb(R
d) and x ∈ R

d ,

P 1
t g(x) = E(1{Nt≥1} g(Ttx + X̄ε

t + X
ε,0
t ))

= E

(
1{Nt≥1} g

(
Ttx + X̄ε

t +
Nt∑

k=1

T
t−∑k

i=1 τi
Uk

))

= E

(
1{Nt≥1} g

(
Ttx + X̄ε

t +
Nt−1∑
k=1

T
t−∑k

i=1 τi
Uk + T

t−∑Nt
i=1 τi

UNt

))

= 1

Cε

E

(
1{Nt≥1}

∫
Rd

g

(
Ttx + X̄ε

t +
Nt−1∑
k=1

T
t−∑k

i=1 τi
Uk + T

t−∑Nt
i=1 τi

z

)
νε(dz)

)
.

Therefore, for any x, y ∈ R
d ,

|P 1
t g(x) − P 1

t g(y)|

= 1

Cε

[
E

(
1{Nt≥1}

∫
Rd

g

(
Ttx + X̄ε

t +
Nt−1∑
k=1

T
t−∑k

i=1 τi
Uk + T

t−∑Nt
i=1 τi

z

)
νε(dz)

)

− E

(
1{Nt≥1}

∫
Rd

g

(
Tty + X̄ε

t +
Nt−1∑
k=1

T
t−∑k

i=1 τi
Uk + T

t−∑Nt
i=1 τi

z

)
νε(dz)

)]

= 1

Cε

[
E

(
1{Nt≥1}

(∫
Rd

g

(
Tty + X̄ε

t +
Nt−1∑
k=1

T
t−∑k

i=1 τi
Uk

+ T
t−∑Nt

i=1 τi
(z + T∑Nt

i=1 τi
(x − y))

)
νε(dz)

−
∫

Rd

g

(
Tty + X̄ε

t +
Nt−1∑
k=1

T
t−∑k

i=1 τi
Uk + T

t−∑Nt
i=1 τi

z

)
νε(dz)

))]
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= 1

Cε

[
E

(
1{Nt≥1}

(∫
Rd

g

(
Tty + X̄ε

t +
Nt−1∑
k=1

T
t−∑k

i=1 τi
Uk + T

t−∑Nt
i=1 τi

z

)

× νε

(
dz − T∑Nt

i=1 τi
(x − y)

)

−
∫

Rd

g

(
Tty + X̄ε

t +
Nt−1∑
k=1

T
t−∑k

i=1 τi
Uk + T

t−∑Nt
i=1 τi

z

)
νε(dz)

))]

≤ 1 − e−Cεt

Cε

‖g‖∞ sup
z∈Rd , |z|≤c|x−y|

‖νε − δz ∗ νε‖var

≤ ‖g‖∞
c�

Cε

|x − y|,

where, in the first inequality we have used the facts that P(Nt ≥ 1) = 1 − e−Cεt for t ≥ 0 and
‖Tt‖Rd→Rd ≤ c for all t ≥ 0; and in the last inequality we set

� := sup
ρ>0

[
inf |x|≤ρ ‖νε − (δx ∗ νε)‖var

ρ

]
,

which is finite due to (10) and the fact that

sup
|x|≤ρ

‖νε − (δx ∗ νε)‖var ≤ 2Cε, ρ > 0, ε > 0.

On the other hand, we have

|E(g(Xx
t ) 1{Nt=0})| ≤ ‖g‖∞e−Cεt , t ≥ 0, g ∈ Bb(R

d).

Combining all the estimates with (11), we obtain, for any x, y ∈ R
d ,

|Ptg(x) − Ptg(y)| ≤ 2‖g‖∞e−Cεt + c�

Cε

‖g‖∞|x − y|.

Having all the conclusions above at hand, we can follow the proof of [18, Theorem 1.3]
to obtain the desired assertion. Since ‖Tt‖Rd→Rd ≤ ce−λt for all t ≥ 0 and some constants
c, λ > 0, it follows from (2) that

|Xx
t − X

y
t | ≤ ce−λt |x − y|, x, y ∈ R

d , t ≥ 0.

Therefore, for any 0 < s < t and x, y ∈ R
d ,

|Ptg(x) − Ptg(y)| = E |Psg(Xx
t−s) − Psg(X

y
t−s)|

≤ 2‖g‖∞e−Cεs + c�

Cε

‖g‖∞|Xx
t−s − X

y
t−s |

≤ c1‖g‖∞(1 + |x − y|)(e−Cεs ∨ e−λ(t−s))

holds for some constant c1 > 0. Setting s = λt/(Cε + λ), we obtain the required assertion.
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According to the above proof, under condition (10), we can get the following gradient
estimates for a modified version (P 1

t )t≥0 of (Pt )t≥0 (see (12)):

sup
t≥0, ‖g‖∞=1, x∈Rd

|∇P 1
t g(x)| := sup

t≥0, ‖g‖∞=1, x∈Rd

lim sup
x→y

|P 1
t g(y) − P 1

t g(x)|
|y − x| < ∞.

Such estimates have been considered in [17, Theorem 3.1] and [18, Proposition 4.1] by using
the formula for random shifts of the compound Poisson measures when the Lévy measure
is required to have absolutely continuous lower bounds with respect to some nice reference
measures, e.g. the Lebesgue measure on R

d or the Gaussian measure on the Wiener space.
Here, our condition (10) is more general and the proof is more direct.

A close inspection of the proof of Theorem 4 gives the following result.

Corollary 1. Let X = (Xx
t )t≥0 be the Ornstein–Uhlenbeck process given by (2), where the

real parts of all the eigenvalues of A are nonpositive and all the purely imaginary eigenvalues
of A are semisimple. If there exists a finite measure µ on R

d such that ν ≥ µ and

lim sup
ρ→0

[
sup|x|≤ρ ‖µ − (δx ∗ µ)‖var

ρ

]
< ∞,

then there exist two constants κ, C > 0 such that, for all x, y ∈ R
d and t > 0,

‖Pt(x, ·) − Pt(y, ·)‖var ≤ C(1 + |x − y|) exp(−κt).

The following estimate ‖Pt(x, ·) − Pt(y, ·)‖var for large values of t is based on the charac-
teristic exponent �(ξ) of the Lévy process (Zt )t≥0.

Theorem 5. Let X = (Xx
t )t≥0 be a d-dimensional Ornstein–Uhlenbeck process determined

by (1), where the real parts of all the eigenvalues of A are negative. Assume that the Lévy
measure ν of Z satisfies

∫
{|z|≥1} log(1 + |z|)ν(dz) < ∞, and that the associated symbol �

fulfills

lim inf|ξ |→∞
Re �(ξ)

log(1 + |ξ |) > 0.

Then there exist t1, C > 0 such that, for any x, y ∈ R
d and t ≥ t1,

‖Pt(x, ·) − Pt(y, ·)‖var ≤ C|etA(x − y)|ϕ−1
t (1),

where, for t, ρ > 0,

ϕt (ρ) := sup
|ξ |≤ρ

∫ t

0
Re �(esA�

ξ) ds

and A� denotes the transpose of the matrix A.

Proof. We first assume that the Lévy process (Zt )t≥0 is a pure jump process, i.e. Q = 0 and
b = 0 in (4). According to [12, Theorem 1.7], it suffices to verify that

ξ �→
∫ ∞

0
Re �(esA�

ξ) ds is locally bounded,

and there exists some t0 > 0 such that

lim inf|ξ |→∞

∫ t0
0 Re �(esA�

ξ) ds

log(1 + |ξ |) > 2d + 2.
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First, since the driving Lévy process (Zt )t≥0 has no Gaussian part, according to [10,
Theorem 4.1] (or [5, Proposition 2.2]) and the assumptions, the process (Xt )t≥0 possesses an
invariant measure µ, which is an infinite divisible distribution with the characteristic exponent
ξ �→ ∫ ∞

0 �(esA�
ξ) ds. In particular, the function

ξ �→
∫ ∞

0
Re �(esA�

ξ) ds

is well defined and locally bounded.
On the other hand, set

c0 := lim inf|ξ |→∞
Re �(ξ)

log(1 + |ξ |) > 0.

Choosing t0 > (2d + 2)/c0, we have

lim
|ξ |→∞

∫ t0
0 Re �(esA�

ξ) ds

log(1 + |ξ |) ≥ lim
|ξ |→∞

∫ t0

0

Re �(esA�
ξ)

log(1 + |esA�
ξ |) ds

inf0<s<t0 log(1 + |esA�
ξ |)

log(1 + |ξ |)

≥
∫ t0

0
lim

|ξ |→∞
Re �(esA�

ξ)

log(1 + |esA�
ξ |) ds

> 2d + 2,

where the second inequality follows from the Fatou lemma and the fact that

lim|ξ |→∞
inf0<s<t0 log(1 + |esA�

ξ |)
log(1 + |ξ |) = 1.

This proves the required assertion.
Next, we consider the general case. Let (Yt )t≥0 and (Zt )t≥0 be two independent Lévy

processes, whose symbols are

�Y (ξ) =
∫

z �=0
(1 − ei〈ξ,z〉 + i〈ξ, z〉 1B(0,1)(z))ν(dz)

and
�Z(ξ) = �(ξ) − �Y (ξ),

respectively. Denote by Qt and Qt(x, ·) the semigroup and the transition function of the
d-dimensional Ornstein–Uhlenbeck process driven by (Yt )t≥0. Similarly, Rt and Rt(x, ·) stand
for the semigroup and the transition function of the d-dimensional Ornstein–Uhlenbeck process
driven by (Zt )t≥0. Note that Qt(x, ·) is the transition kernel of an Ornstein–Uhlenbeck process
driven by a pure jump Lévy process. Then

‖Pt(x, ·) − Pt(y, ·)‖var = sup
‖f ‖∞≤1

|Ptf (x) − Ptf (y)|

= sup
‖f ‖∞≤1

|QtRtf (x) − QtRtf (y)|

≤ sup
‖g‖∞≤1

|Qtg(x) − Qtg(y)|

= ‖Qt(x, ·) − Qt(y, ·)‖var.

This, along with the conclusion above for Q(x, dz), completes the proof.
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3. Proofs

In this section we will apply the results of Section 2 to the study of the ergodicity and the
exponential ergodicity for Ornstein–Uhlenbeck processes. It is well known that the coupling
property along with the existence of a stationary measure can yield the ergodicity for the process,
which motivates the proof of Theorem 2.

Proof of Theorem 2. As mentioned in Theorem 1, according to [10, Theorem 4.1] or [5,
Proposition 2.2], the process X has an invariant measure µ. In particular, µPt(·, dz) = µ(dz)

for any t > 0, where Pt(x, dz) is the transition kernel of the process X. On the other hand,
by Theorem 4, (6) and the condition that the real parts of all the eigenvalues of A are negative
imply that there exists C1 > 0 such that, for any t > 0 and x, y ∈ R

d ,

‖Pt(x, ·) − Pt(y, ·)‖var ≤ C1(1 + |x − y|)√
t

.

That is, when t → ∞, ‖Pt(x, ·) − Pt(y, ·)‖var converges to 0 uniformly for all x, y ∈ R
d with

bounded |x − y|. Note that, for any x ∈ R
d and t > 0,

‖Pt(x, ·) − µ‖var ≤
∫

‖Pt(x, ·) − Pt(y, ·)‖varµ(dy).

This along with the statement above yields, for any x ∈ R
d ,

lim
t→∞ ‖Pt(x, ·) − µ‖var = 0.

We mention here that the proof above also yields the uniqueness of the invariant measure.
Indeed, let µ1 and µ2 be invariant measures for the process X. Then

‖µ1 − µ2‖var ≤
∫

‖Pt(x, ·) − Pt(y, ·)‖varµ1(dx)µ2(dy).

By combining this with the proof above and letting t → ∞, we obtain µ1 = µ2. This proves
the first required assertion.

For the second assertion, by (7) and Theorem 4, we know that there exist θ, C2 > 0 such
that, for any t > 0 and x, y ∈ R

d ,

‖Pt(x, ·) − Pt(y, ·)‖var ≤ C2(1 + |x − y|)e−θt .

We will claim that, under the assumption that
∫
{|z|≥1} |z|ν(dz) < ∞,∫

|x|µ(dx) < ∞. (13)

If this holds then, following the argument above, we have

‖Pt(x, ·) − µ‖var ≤
∫

‖Pt(x, ·) − Pt(y, ·)‖varµ(dy)

≤ C2(1 + |x|)e−θt

∫
|y|µ(dy)

≤ C3(1 + |x|)e−θt .

The required assertion follows.
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Next, we consider the proof of (13). For t > 0, set Tt = etA and Yt = ∫ t

0 Tt−s dZs . For
simplicity, we assume that Z is a Lévy process on R

d without the Gaussian part. Thus, according
to the Lévy–Itô decomposition (see [9, Chapter 4]), there exist b ∈ R

d and a Poisson random
measure N on [0, ∞) × R

d \ {0} with intensity measure ds ⊗ ν(dz) (where ds is the Lebesgue
measure on [0, ∞)) such that

dZs = b ds +
∫

{|z|≤1}
zÑ(ds, dz) +

∫
{|z|>1}

zN(ds, dz),

where Ñ(ds, dz) is the compensated Poisson measure on [0, ∞) × R
d \ {0}, i.e.

Ñ(ds, dz) = N(ds, dz) − dsν(dz).

Hence, the integral Yt is defined by

Yt =
∫ t

0
Tt−sb ds +

∫ t

0

∫
{|z|≤1}

Tt−szÑ(ds, dz) +
∫ t

0

∫
{|z|>1}

Tt−szN(ds, dz).

Since the real parts of all the eigenvalues of A are negative, ‖Tt‖Rd→Rd ≤ ce−λt for all t > 0
and some constants c, λ > 0; see, e.g. [10, Equation (2.8)]. Thus, for any t > 0,∣∣∣∣

∫ t

0
Tt−sb ds

∣∣∣∣ ≤
∫ t

0
‖Tt−s‖Rd→Rd |b| ds ≤ c|b|

∫ t

0
e−λ(t−s) ds ≤ c

λ
|b|,

and, by using the Cauchy–Schwarz inequality and the fact that Ñ(ds, dz) is a square-integrable
martingale measure, see [1, Chapter 4.2],

E

∣∣∣∣
∫ t

0

∫
{|z|≤1}

Tt−szÑ(ds, dz)

∣∣∣∣ ≤
(

E

∣∣∣∣
∫ t

0

∫
{|z|≤1}

Tt−szÑ(ds, dz)

∣∣∣∣
2)1/2

=
(∫ t

0

∫
{|z|≤1}

|Tt−sz|2ν(dz) ds

)1/2

≤
(∫ t

0
‖Tt−s‖2

Rd→Rd ds

∫
{|z|≤1}

|z|2ν(dz)

)1/2

≤ c

λ

√∫
{|z|≤1}

|z|2ν(dz).

On the other hand, noting that the integral
∫ t

0

∫
{|z|>1} Tt−szN(ds, dz) is defined as the Riemann

integral and
∫ t

0

∫
{|z|>1} zN(ds, dz) is a compound Poisson process with intensity ν({z ∈ R

d ,

|z| > 1}), it follows from the argument in [1, Chapter 4.3.5] that
∫ t

0

∫
{|z|>1} Tt−szN(ds, dz) is

an infinitely divisible random variable associated with a Lévy measure

νt (D) :=
∫ t

0

∫
T −1

t−s(D ∩ {z ∈ R
d : |z| > 1})ν(dz) for D ∈ R

d \ {0}.
Thus, ∫

νt (dz) =
∫ t

0

∫
{|Tt−s z|>1}

ν(dz) ds

≤
∫ t

0

∫
{|z|>c−1}

ν(dz) ds

≤ t

∫
{|z|>c−1}

ν(dz).
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That is, for any t > 0, the Lévy measure νt is a finite measure. Thus,
∫ t

0

∫
{|z|>1} Tt−szN(ds, dz)

can be regarded as the random variable Et,1 for some compound Poisson process (Et,s)s≥0
with bounded Lévy measure νt . According to the explicit expression of the semigroup for the
compound Poisson process, see the proof of [9, Theorem 25.3] or [11, Equation (2.1)], we
obtain

E

∣∣∣∣
∫ t

0

∫
{|z|>1}

Tt−szN(ds, dz)

∣∣∣∣ ≤
∞∑

n=0

1

n!
∫

|z|ν∗
t
n
(dz) ≤

∞∑
n=0

1

n!
(∫

|z|νt (dz)

)n

,

where ν∗
t
n is the n-fold convolution of νt and ν∗

t
0 = δ0. By using the fact that, for any t > 0,∫

|z| dνt (dz) =
∫ t

0

∫
{|Tt−s z|>1}

|Tt−sz|ν(dz) ds

≤
∫ t

0
‖Tt−s‖Rd→Rd ds

∫
{|z|>c−1}

|z|ν(dz)

≤ c

λ

∫
{|z|>c−1}

|z|ν(dz),

we arrive at

E

∣∣∣∣
∫ t

0

∫
{|z|>1}

Tt−szN(ds, dz)

∣∣∣∣ ≤ exp

(
c

λ

∫
{|z|>c−1}

|z|ν(dz)

)
.

Combining with all the conclusions above, it follows that E |Yt | is bounded uniformly for all
t > 0, i.e. supt>0 E |Yt | ≤ C0 for some absolutely constant C0.

Furthermore, by (2), for any m ≥ 1 and t > 0,

|Xx
t | ∧ m ≤ |Ttx| ∧ m + |Yt |,

and so
E(|Xx

t | ∧ m) ≤ E(|Ttx| ∧ m) + E |Yt | ≤ (ce−λt |x|) ∧ m + C0.

Integrating this inequality with µ(dx), we obtain

µ(|x| ∧ m) ≤ µ[(ce−λt |x|) ∧ m] + C0, t > 0, m ≥ 1.

Letting first t → ∞ and then m → ∞, we prove the required assertion (13). This completes
the proof.

We note that the argument of Theorem 2 above yields the following result.

Corollary 2. Let X = (Xx
t )t≥0 be a d-dimensional Ornstein–Uhlenbeck process determined

by (1), where the real parts of all the eigenvalues of A are negative. If the Lévy measure ν of
the Lévy process Z satisfies (6) and

∫
{|z|≥1} |z|ν(dz) < ∞, then the process X is ergodic in the

sense of algebraic convergence, i.e. there exist a unique invariant measure µ and a positive
constant C such that, for any x ∈ R

d and t > 0,

‖Pt(x, ·) − µ‖var ≤ C(1 + |x|)√
t

.

Furthermore, according to Corollary 1 and the proof of Theorem 2, we have the following
conclusion for the exponential ergodicity of Ornstein–Uhlenbeck processes, which improves
the second assertion of Theorem 2.
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Theorem 6. Let X = (Xx
t )t≥0 be a d-dimensional Ornstein–Uhlenbeck process determined

by (1), where the real parts of all the eigenvalues of A are negative and the Lévy measure ν of
the Lévy process Z satisfies

∫
{|z|≥1} |z|ν(dz) < ∞. If there exists a finite measure µ on R

d such
that ν ≥ µ and

lim sup
ρ→0

[
sup|x|≤ρ ‖µ − (δx ∗ µ)‖var

ρ

]
< ∞,

then there exist a unique invariant measure µ and two constants κ, C > 0 such that, for any
x ∈ R

d and t > 0,
‖Pt(x, ·) − µ‖var ≤ C(1 + |x|) exp(−κt).

The proof of Theorem 3 is based on the following lemma.

Lemma 1. Let X = (Xx
t )t≥0 be a d-dimensional Ornstein–Uhlenbeck process determined by

(1), where the real parts of all the eigenvalues of A are negative, and the symbol for the Lévy
process Z satisfies

lim inf|ξ |→∞
Re �(ξ)

log(1 + |ξ |) > 0. (14)

If there exists a constant 0 < α ≤ 1 such that the Lévy measure ν of the Lévy process Z

satisfies
∫
{|z|≥1} |z|αν(dz) < ∞, then there exist a unique invariant measure µ and two constants

κ, C > 0 such that, for any x ∈ R
d and t > 0,

‖Pt(x, ·) − µ‖var ≤ C(1 + |x|α) exp(−κt).

Proof. For t, ρ > 0, define

ϕt (ρ) := sup
|ξ |≤ρ

∫ t

0
Re �(esA�

ξ) ds.

According to Theorem 5 and the Markov property, there exists a constant t1 > 0 such that, for
any t ≥ t1, s > 0, and g ∈ Bb(R

d),

|Ptg(x) − Pt+sg(x)| = |E(Ptg(x) − Ptg(Xx
s ))|

≤ E |Ptg(x) − Ptg(Xx
s )|

= E

( |Ptg(x) − Ptg(Xx
s )|α

|Xx
s − x|α |Ptg(x) − Ptg(Xx

s )|1−α|Xx
s − x|α

)
≤ Cα

t ‖g‖α∞(2‖g‖∞)1−α E(|Xx
s − x|α)

= 21−αCα
t ‖g‖∞ E(|Tsx − x + Ys |α),

where Tsx = esAx, Ys = ∫ s

0 Ts−u dZu, and

Ct = ‖Tt‖Rd→Rd ϕ
−1
t (1).

Since the real parts of all the eigenvalues of A are negative, ‖Tt‖Rd→Rd ≤ ce−λt for all t > 0
and some constants c, λ > 0; see, e.g. [10, Equation (2.8)]. Therefore, for any α ∈ (0, 1],

E(|Tsx − x + Ys |α) ≤ E((|Tsx − x| + |Ys |)α) ≤ |Tsx − x|α + E |Ys |α

and
|Tsx − x|α ≤ |Tsx|α + |x|α ≤ (1 + cα)|x|α,
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where we have used the fact that

(a + b)α ≤ aα + bα, a, b ≥ 0.

On the other hand, under the assumption that
∫
{|z|≥1} |z|αν(dz) < ∞, one can follow the proof

of (13) to verify that E |Ys |α is uniformly bounded for all s > 0, i.e. sups>0 E |Ys |α < ∞.

Therefore, there exists a constant C0 > 0 such that

sup
s>0

E(|Tsx − x + Ys |α) ≤ C0(1 + |x|α).

Combining this with all the conclusions above, we obtain

|Ptg(x) − Pt+sg(x)| ≤ 21−αC0(1 + |x|α)Cα
t ‖g‖∞.

That is,
‖Pt(x, ·) − Pt+s(x, ·)‖var ≤ 21−αC0(1 + |x|α)Cα

t .

Letting s → ∞ and noting that µ is the invariant measure of the process X,

‖Pt(x, ·) − µ‖var ≤ 21−αC0(1 + |x|α)Cα
t .

As mentioned above, ‖Tt‖Rd→Rd ≤ ce−λt for all t > 0. On the other hand, since, for t ≥ t1,
ϕt (ρ) ≥ ϕt1(ρ) and limρ→∞ ϕt1(ρ) = ∞, it holds that ϕ−1

t (1) ≤ ϕ−1
t1

(1) < ∞ for any t ≥ t1.
Therefore, there exists C > 0 such that, for any t ≥ t1, Cα

t ≤ Ce−λt , which along with the
conclusion above yields the required assertion.

Proof of Theorem 3. According to Lemma 1, it is sufficient to verify that (8) implies (14).
For any ξ ∈ R

d with large enough |ξ |,

Re �(ξ) =
∫

z �=0
(1 − cos 〈ξ, z〉)ν(dz)

≥
∫

0<|z|≤/1|ξ |
(1 − cos 〈ξ, z〉)ν(dz)

≥ cos 1

2

∫
0<|z|≤/1|ξ |

〈ξ, z〉2ν(dz),

where in the second inequality we have used the inequality

1 − cos r ≥ cos 1

2
r2, |r| ≤ 1.

This satisfies the desired assertion.
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