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Titchmarsh’s Method for the Approximate
Functional Equations for {’(s)?, {(s)("(s),
and ("(s)¢"(s)

Jun Furuya, T. Makoto Minamide, and Yoshio Tanigawa

Abstract. Let {(s) be the Riemann zeta function. In 1929, Hardy and Littlewood proved the ap-
proximate functional equation for ¢2(s) with error term O(x"/277((x + y)/|t|)/*log|¢|), where
-1/2 < 0 < 3/2,x,y > 1, xy = (|t|/2m)?%. Later, in 1938, Titchmarsh improved the error term by
removing the factor ((x + y)/|¢|)/*. In 1999, Hall showed the approximate functional equations
for ¢’ (s)2, {(s)¢""(s), and ¢’ (s)¢"’(s) (in the range 0 < ¢ < 1) whose error terms contain the fac-
tor ((x + ¥)/|t|)"/4. In this paper we remove this factor from these three error terms by using the
method of Titchmarsh.

1 Introduction

Hardy and Littlewood left us much important work on the Riemann zeta function
{(s). The following approximate functional equation for {(s)? is one of them [12,
p. 90, Theorem 2].

Theorem A Let A be a positive number, and s = o + it. If -1/2 < 0 < 3/2, x > A,
y> A and xy = (t/2r)?, then

a4 = X g T oo () M iogl)
n<x n<y

with

1.2) x(s) =2(2m)* 1sm( )F(l—s)

andd(n) =Yg, 1.

In the case s = 1/2 + it, t > 2,x = y = /27, formula (1.1) has the form
1\ d(n) ., t 72t d( )
(1.3) ((5+zt) = ; s +’(ﬁ) n; - -+ O(logt)

2w ~2m

(for i(t/2me) %, see (2.19) below).
Ingham [14] applied formula (1.3) to obtain an asymptotic formula of the fourth
power moment of {(s) on the critical line, though Hardy and Littlewood [11] had
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already proved its upper bound by using their approximate functional equation of
{(s). It seems that (1.3) was already known before the publication of [12] (see [14,
Introduction]). As is well known, Ingham’s result is fundamental in studies on zero
density estimates for {(s) or the divisor problem. Heath-Brown improved Ingham’s
result [13].

In 1938, Titchmarsh succeeded in improving the error term of (L.1).

Theorem B ([22,p.109]) Let o and t be the same notation of Theorem A. If0 < 0 <,
x>A y>A and xy = (|t|/2m)?, then

(1.4) {(s)?=> &T) +x(s)* > % +0(x* 7 loglt]).
n<x n<y

Titchmarsh [22] introduced an exact formula for {(s)?* involving the integral

o K(v)+2Y
15) | k) + 31 2 ) 4,
4n/nx =S

where K;(v) and Y;(v) are the Bessel functions. Analyzing the integral and applying
[12, Lemma ], he could remove the factor ((x + y)/|¢|)¥/* from (1.1). Another proof
was given by Ivi¢ [15] using the Voronoi summation formula (see also [15, Chapter 4
Note] for much valuable information on the approximate functional equation for the
Riemann zeta function).

As another aspect of the study on {(s), there is much research on the derivative of
{(s), for example, Ingham [14], Berndt [5], Conrey [6], Gonek [9], Hall [10], Levin-
son and Montgomery [16], Speiser [18], and Spira [19-21], More recently the related
subjects were also studied in Akatsuka [1], Aoki and Minamide [3], Banerjee and Mi-
namide [4], Furuya, Minamide, and Tanigawa [7, 8] and Minamide [17].

Hall studied the distribution of real positive zeros of Hardy’s function

. LT +it) 12
Z(t) =0 ( Ly ) =gt 4 27 2 (1 +it).
(2 ) { r(i _ 1%)} (2 )
In fact, he showed [10, Theorem 1] that
. tne1 — Iy 105 1/4
1 —_— 2> —)
lirljgp (27/logT) ( 4 )

where t, (n = 1,2,3,...) denote distinct positive zeros of Z(¢) that are arranged in
non-decreasing order. For this result he compared the mean values fOT Z(t)*dt and
/. OT Z'(t)* dt,in particular, he used the following asymptotic formula [10, Theorem 5]:

T 1
Z'(t)* dt = Tlog® T + O(Tlog” T).
fo (t) 202 08 T (Tlog"T)

To show this, he applied Ingham’s method to the approximate functional equation of
Z'(s)?, which is derived by those of {(s){’(s) and {’ (s)?. The approximate functional
equation of {’(s)? is formulated as follows.
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Theorem C ([10, p. 298, Theorem 8]) Let0< o <1,t> 27w, 47'[2xy =t x> y>1

Then
oy - 5 P ()
16) ¢'(s)= Y~
_+X(s)22 ! (D (n)—d(n)lognlogier(n)logzi)
n<y n'=s @ 2n 2m

12-a( Xt ) A
+O(x ( ; ) log t),
where D(1)(n) is the function defined by D(1)(n) = ¥4, (logd)(log 7).
The approximate functional equation for Z’(s)? becomes the following.

Theorem D ([10, p. 307, Lemma 7 (186)]) Lett >2m,x >1,y > 1,4n°xy = t. Then
1.7)

; 1 1 t 1 t
12— 2i0(t) 2 Loz 2 5
Z'(t)* = —e gcr/zm{D(l)(n) 2d(n)logn10g2ﬂ+4d(n)log 271}
_ezoy g L ! 1 2 b
e 2 Z; nl/z—it{D(l)(n) 2d(n)lognlog 0t 4d(n)log 271}
X+
+O(( . ) log t).

Hall employed the method of Hardy and Littlewood for the proof of (1.6), hence
the factor ((x + y)/|t|)/* appears in the error term. Though he used the formula in
the case x = y = /2 in the application of the mean value of Z'(t)*, he remarked that
it would be desirable to remove the factor ((x + y)/|¢|)/* in the above error term by
applying the method of Titchmarsh [22]. However, he mentioned that “the matter is
not straightforward because Titchmarsh’s method leads us to certain functions, aris-
ing as integrals, for which asymptotic formulae are required and which in our case are
not simple combinations of Bessel functions” In this paper we tackle this difficulty.
Combining the methods of [9,17,22], we will prove the following theorem.

Theorem 1.1 Let0 <o <1, |t| > 27 xy = (t/2m)% x > 1, y > 1. Then, uniformly in

o, we have
! 2 D(l)(”)
(8) (s =y~
+x(s)* > ! (D(l)(n) - d(n)lognlogM +d(n)log’ M)
asy 18 21 27

+0(x*log® |1]).

By (1.8) it is possible to remove the factor ((x + y)/t)"/* from the error term in
(L.7).
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For {(s){’(s) Hall mentioned in the proof of Lemma 3 [10, (63)] that

1.9)
() ()= - 3 TOLBy(gyp 57 ADBITAIE) 122 10g ),

n<x n<y

This formula can also be proved by the method of Titchmarsh and it will be used in
the proof of (1.8).

Furthermore, Hall proved the approximate functional equations of {(s){"’(s) and
{'(s){"(s) and of Z(¢)Z"(¢t) and Z'(t)Z"(t), whose error terms contain the factor
((x + y)/]t])"* as in (1.6). Applying the method of Titchmarsh we can remove this
factor. In fact, the approximate functional equation of {(s){"’(s) and {’(s){"(s) have
the following forms.

Theorem 1.2 Let0<o <1, |t|>2m xy = (t/2m)% x > 1, y > 1. Then we have

w0 ()0 - 3 dont)
36 L 5 (doa ) —d(")logwlog% +d(n)log? %)

n<y

+ O(xl/z_” log3 lt]),

and
/ 1" d , (”) t
0w T - 302102 5L (s dosn o))
n<x n n<y n 21
~d(n)log® nlog % + %d(n) log 1 log’ %
—d(n)log’ ZL) +0(x* 7 log* |1]),
where
(1.12) deo2y(n) = Z:log2 d,
d|n
(113) d2y(n) = log’ dlog g
d|n

In this paper, we focus upon the proof of Theorem 1.1. We will omit the details of
the proof of Theorem 1.2, since it can be proved by similar arguments. However we
will show the exact formulas for these zeta functions in Theorem 3.2.

For simplicity, we use the following notation in Section 2. Let F(w) be a function
defined in an appropriate region and let ¢ be a real number. We define

S raw= [T woyan f ponaws ([ [T Eonan,
]{:F(Hiy)idy = ([:+f2°°)F(c+iy)idy.
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2 Preliminaries

In this section, following [22], we derive certain expressions of {’(s)?, {(s){"'(s), and
{'(s){""(s) in order to derive their exact formulas.

The arithmetical functions d(¢,,)(n) and d(; 5y () defined by (1.12) and (1.13) are
the coefficients of {(s){"'(s) and {'(s){"'(s), respectively. More generally, we can de-
fine (M) (s)¢(D(s) = 222, d‘%)s("), where {(¥) (s5) denotes the k-th derivatives of {(s)
and Res > 1. Clearly we have D(;)(n) = d(1;)(n). Since {’(s)? is the main object of
this paper, we will use the notation D (1) for the coefficients of {’(s)?.

The following properties are easily proved.

Lemma 2.1 Letdy y(n) (k and | are non-negative integers) be defined by the above.
Then we have

(2.1) deoy(n) = —%d(n) logn,

(2.2) Dy (n) =—do,1y(n)logn —d,z)(n) = %d(”) log® n = dg,2)(n),

(2.3) daay(n) = %d(o)z)(n)logn - id(rz)log3 n= —%D(l)(n)log n.
We need the asymptotic formulas of the sum of these functions.

Lemma 2.2 ([7], [17, p. 346]) We have

1
(2.4) > doy(n) = —Exlogzx —(y -Dxlogx + (y - 1)x + 0(x'/?),

n<x

xlog’x xlog’x (1-2y)xlogx
25 3 Duy(n) = 31"3 - 2% e YII') g
n<x ! ! !

+(2y1 - 4y2 - Dx + O (x'?),
(2.6) Z; deo2y(n) = %xlog3 x+(y-1)xlog’x —2(y - y1 - 1)xlog x
_ +2(y - y1+2y2 - Dx + O(x'?),
(2.7) rg; dapoy(n) = —éxlog“ X+ %xlog3 x + (y1 - xlog® x

_2()/1 - Y2 - l)xlogx +2(y1 - Y2 - l)x + O(x1/3),

where y is the Euler constant and y ; are the coefficients of the Laurent expansion of {(s):

(2.8) ((s):5%1+y+y1(s-1)+y2(s_1)2+....

We prepare the following functions.
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Definition 2.3 Let0<e<1/4,a =1+¢ Res=0 > —¢ x >2,and n is a positive
integer. We define

1- 2 1-w-s
Li(s;n) = = - x(-w) ad dw,
2ni Sy n" (1-w)(s-1+w)

1- 4 1- 1-w—s
Ly(s3n) = L xA-w)x'(1-w) sx i,
2mi (a) nw (1_W)(5—1+W)
d 1- 2 1-w—s
La(sin) = — [ X (1-w) sx

d >
2mi J(a) n  (1-w)(s-1+w) v

1- " 1- 1-w-s
54(5;’1) _ L X( W)X ( W) SX dw,
2mi J(a) n* 1-w)(s—-1+w)
1 / 1_ 7 1_ 1-w-s
Ls(ssn) = — Y (A= w)x"(1=w) a dw.
2mi J(a) n* (I-w)(s-1+w)

Remark 2.4 In fact, by the Stirling formula and the formula (2.20) below, we ob-
serve that the integrals £;(s;n) (j =1,...,5) are absolutely convergent for 0 < a < 1
and a # 1- 0, and we can see that these integrals are convergent in the range 0 < a <
3/2, « # 1and a # 1 - 0. In this paper, we will use these integrals over the line («)
with & = 1+ &. The assumption ¢ > —¢ is not needed for the existence of the above
integrals, however, it is necessary for the following lemma.

Henceforth, we will discuss several representations of (’(s)%, {(s){"(s),

()" (s)-
Lemma 2.5 Fors=o0+it#1,0>-¢(0<e<1/4),|t|>2, and x > 2, we have

(2.9) H#=ZB%Q

n<x

+ Z;D(l)(n)ﬁl(s; n) -2 Zl dio,1y(n)L2(s5m)

+ 3 d(n)Ls(s;n) + Ot 5 log’ x) + O(x1*7%),
n=1

d [ oo
@10) €7 = X, 20D 4 54 ) a(sim) - 2.5 oy (1) Eas )

n<x

+ . d(n)La(ssn) + O(|t['x" log® x) + O(x*~%),
n=1

&mrwﬂ@zzﬂggl

n<x

- > dz)(n)Li(s;n)
n=1

+

gk

1(d(o,z)(”) +2D1y(n))La(s5m)

- 1d(o,l)(n)(ZL3(s;n) +L4(s3m)) + Zd(n)ﬁs(s;n)

+O(|t] %! log4x) + O(xl/s_“),

=
I

8

=
Il

where these implied constants are independent of 0.
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Proof First we assume that 0 >1and1<c < 0. Let
1 sxW s

el _ & (YD (4 dw,

2mi (c)( (w)E )w(s—w)

where k and | are non-negative integers. It is easy to see that
daen(n)
15D = (B (5)(O(s) - 3 b Y. daeny ().
n<x n<x

Let & be a constant satisfying 0 < & < 1/4. Shifting the line of integration from (c)
to (—¢), we find that

100 = L 00+ (8 (000 (0)x
27i J(-¢) w(s—w)
S.xW7S

+Res {0 (w) (D (w) —.
w=1 w(s—w)

Let us consider the case k = [ = 1. By computing the residues explicitly, we have

Q1) {$)P=) Dy () L /(—e) C’(w)2£ dw

oo 2mi w(s—w)
-x* Z Dgyy(n) + {'(0)%x7F
n<x
1 x'~*log’ x 1 x'"*log® x
+(sj+1) 3! +((5—1)2_1) 2!
1 29 x log x
2 o)
+((s—1)3 s—1 y1+) 1!

1 20 4y2 1-s
- -2 oy —dy, - 1),
+((s—l)4 (s-1)2 so1 T )x

where y and y; are defined by (2.8). By analytic continuation, (2.12) is valid for o > —e,
except for s = 1. Substituting (2.5) in the right-hand side of (2.12) we find that

Dy (n v
(2.13) SO %() + ﬁ f(fs) (’(w)zh dw
+0(t % log’ x) + O(x>79).
It is well known that the Riemann zeta function satisfies the functional equation:
(2.14) C(w) = x(w){(1-w),

where y(s) is the function defined by (1.2). Differentiating both sides of (2.14) and
squaring, we have

(215) {(w)? = g2 (1-w)? - 200 ()L - W) (1 w)
+ Y (W) {(1-w)2

Substituting (2.15) in the integrand of (2.13), replacing w by 1 — w, and expanding zeta
functions that appear we obtain the formula (2.9).
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The other cases are similar. In fact, we have

don(n) 1 sxWs
1" _ (0,2) 7[ 17 d
() ,;C w 2w (-¢) {w)d (W)w(s—w) Y
=X ) dio,2)(n) +£(0)¢"(0)x~
n<x
1o 1 1-s1,..3 1 Y 1-s 7.2
+§(Sj+l)x log x+((s_1)2+sj—l+y)x log” x
Y N 1-s
+2( (5_1)3+ Go1) +(5_1) +1—y+y1)x log x
2y, y 14 Y2 1-s
2 L2 1hy-
((s—l)4+(s—1)3+(s—1)2+s—1 vy y1+y2)x
d(o 2) (1’1) 1 " sx"¢
= 2 7 _— d
T g o S ) s
+0(Jt] %7 log® x) + O(x1*7),
and
don(n) 1 sx"s
’ 1" (1,2) 1 7
= —— — 7‘1
()= T [ C T s
AP di,2y(n) +¢'(0)¢"(0)x™
n<x
IR VIR SRR VIS SRR I
12(S_1+1)x log™ x 3((5_1)2 1)x log” x
1 V1 1-s 7.2
- - - 1 1
((5—1)3 o1 Nt )x o8
EPYRNR U (S RNV g
2((5_1)4 Go1? 5o 1+ yz)x log x
1 Y1 V2 1-s
= (s-1° (s-1° (s-1)? 1oy
oy et L e Sy
2 o 2mi J(-¢) w(s—-w)

+0(Jt] "% log* x) + O(x'/379),

where in the second and fourth equalities we have used (2.6) and (2.7), respectively.
Substituting the functional equations

(216)  {(w){"(w) = x(w)*{(1=w){" (1= w) = 2x(w) X' (w){(1-w){ (1-w)
+ W)Y ()T -w)?,
217) {'(w)¢"(w) = —x(w)*¢ (1= w){" (1= w)
X)) ) (L0 w)" (= w) 420 (- w)?)
= (20 W)+ x (W)X () ) SA = )¢ (1= w)
X WK (W) -w)?
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in the above integrands and expanding the resulting Dirichlet series, we have (2.10)
and (2.11). [ |

We recall the asymptotic formulas for x(s), x(s)?, and x¥)(s) to modify £ ;(s; n)
to a more suitable form.

Lemma 2.6 (Titchmarsh [23, p. 78], Gonek [9, p. 9]) For o € [a,b] (a bounded
interval), |t| > 2, and |(0 —1)/t| < 1, we have

V5 rangntors i
(2.18) y(o +it) = ( ) ei(t+sg <t)4)(1+o(m)),
(2.19) x(o+it)* = ( |l;|[) 1E(f)(1+0(ﬁ)),

2200 ¥ P(o+it) = X(a+1t)(—log i |) O(|t|_%_“(log|t\)k_l),
where

(2.21) E(t) = —2tlog 1 _+ 2t + sgn(t)

and sgn(t) = t/|t| is the signature of t. The implied constants are independent of o.

Moreover, we need the following lemma, which can be easily shown.

Lemma 2.7 Let k be a non-negative integer, s = 0 + it, a =1+ ¢ 0 < ¢ < 1/4, and
0 € (-¢,b] (bis a constant) and |t| > 2. We have

k+1 |

f,

22§ 18108 18] (i 55| 4B <lif*1og

a—if)(s—1+a+if)

where the implied constant in the symbol < depends on k, o, and . Here the meaning
of . F(w) dw is given at the end of Section 1.

In order to express £ ;(s; ) in a more appropriate form, it is convenient to intro-
duce the following functions.

Definition 2.8 Lets=o0+it,a=1+¢0<e<1/4,and 0 € (—¢,b] ( bisaconstant)
and [t| > 2. We define

1 o 1 ~1+2a l-a—if-s
Lj(s;n):f,][ - (@) e'ECA) ,Sx ——idf,

—o0 nOHB\ 27r (1-a-if)(s-1+a+if)

where E(t) is the function defined by (2.21).

The relations among £ j(s; n) and L;j(s; n) are given in the next lemma.
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Lemma 2.9 Leta=1+¢0<e<1/4,ands = o+it (|t| > 2). Assumethat o € (—¢,b]
(b is a constant). Then we have
(2.23)

xl—tx—otzslo ¢
Li(ssn) = Li(s;n) + O( M) i

(2.24)

n

Pt adliE log2 |t] )

Ly(s;n) =—%(lognxLl(s;n)+L2(s;n)) +O( s

(2.25)

Li(s;n) = i(log nx)*Ly(s;n) + %log nxLy(s;n) + %L3(s;n)

+0(

x17%79|t2¢ log |t|(log? |¢| + log nx)
n )’
(2.26)

Ly4(ssn) = i(log nx)* Ly(s;n) + %log nxLy(s;n) + %L3(s;n)

x17%79|t2¢ log |t|(log” |¢| + log nx)
+ O( s ),
(2.27)

Ls(s;n) = —%(log nx)’Li(s;n) - g(log nx)*Ly(s;n) - Zlog nxLi(s;n)

3 17970 ¢2¢ log |t|( log® |¢] + log|t| - log nx + log® nx
Srsm o |1 log|¢] (log’ 1] + logt| - log g ))_

4 n%
Proof To deduce the formula (2.23), we use (2.19) and (2.22). Then we have

1 o 1 |ﬁ| ~142a B( sylma—ip=s )
a1 7 () .
1(sim) 27§ J—o0 n“*’ﬁ(ZH) ¢ (l—oc—iﬁ)(s—1+(x+iﬁ)l P

xl—tx—o|t|2£ 10g|t|)

+0(

nlx
For (2.24), by (2.18), (2.19), and (2.20), we first observe that
t i
XK () = x()*(~log 11 ) + o (i +7)

27
(30) o) (o) (1)
_ (%)l_zae"ﬂﬂ +0( 177 logl1]).

Then replacing sby1 - w = —a — iff = —¢ — iff and applying Lemma 2.7, we get

oy 1 < 1 |B]\ ~1+2e B iE(-B)
asm= oo f (5 (Flogy)e

l-a—if—s xl—a—tx|t|2s 10g2 |t| )

na

X

* (1-a-if)(s-1+a+if)

idp+Of
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Now noting % (—eFCP) J2i) = (~log (|B|/27))e'E(-P) and integrating by parts we
obtain

1 o 1/ |B]y1+2e eiE(=B) s xl-e- S(nx)~ ip
Zim]{ooﬁ(ﬂ) (_ 2i ) (1-«a zﬂ)(s—1+a+1ﬂ) rap
1 1 |ﬁ| —1+2a piE(-B) xl-o- S(nx)~ ip -2

B [ﬁﬁ(%) e—2i (1-«a zﬁ)(si1+(x+zﬁ) ]
11 /|B] 12 eiE(-B) Kl-a- S(nx)” ip o0
+[27iﬁ(5) —2i (1-a zﬂ)(s—1+(x+zﬁ)]

1 ~1+2a / |B]\2+22 sgn (B)\ eECA) X175 (nx) P
_E][ ) (gZﬂ ) -2i (l—oc—zﬁ)(s—1+oc+zﬁ)

idp

(o
1 |B]\ ~1+2e eiE(- ﬁ) —ilo nx)sxl s (px)” ip
2711%00;(%) —2i (1— : zﬁ)(s—1+oc+1/§) idp
1 ﬂ -1+2a piE(-B) e $(nx)” ip
2mi wnj(i) -2i (1-«a zﬁ) (s-1+a+iP) idp

_LJ[mi(@)—lﬂae’E(‘ﬁ) —isx17%% (nx)” ip 45,
27mi J-oo N\ 211 -2i (1-«a zﬁ)(s—l+cx+zﬁ)2

We note that, by Lemma 2.7, the first, second, third, and fifth terms on the right-

hand side of the above formula are bounded by O (= L. “MZE logltl) We observe that
the fourth and sixth terms are lognx Li(s;n) and Ly(s; n) respectively. Hence we
have (2.24).

As for others, we have (2.25) and (2.26) by integrating by parts twice, and (2.27) by
integrating by parts three times. Note that £3(s; n) and £4(s; n) have the same form
since their integrands have the same asymptotic behaviours. ]

Remark 2.10 The O-terms in (2.24)-(2.27) are obtained by Lemma 2.7. It should
be noted that the implied constant in (2.22) depends on k, ¢, € and involves the factor
1/(o + €)/, hence the implied constants in the O-terms in (2.24)-(2.27) also have the
same factors. Trivially, if we consider only 0 < ¢ < 1, they do not depend on o.

It must be remarked that the sixth term after integration by parts contributes to
the main term in £, (s; 1) and similarly in £;(s;n) (j = 3,4,5).

Combining Lemma 2.5 and Lemma 2.9 we get the following formulas which will
be used in the next section.

Proposition 2.11  Assumethats = o+it #1,—e <0 < b (bisaconstant), 0 < e < 1/4,
and t < x < t*. We have

(2.28)

(/(3)2 - Z

n<x

+ Y doy(n)(lognx - Li(s;n) + Ly(s:n))
n=1

D(l)

Z Dy (n)Li(s; n)
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+ Zd(n)(flog nxLi(s;n) + flognxLz(s n)+ L3(s,n))

n=1

+0(x*%log? |1]),

(2.29)
deo.y(n ad
(U= 12 S i s
+ Z::Id(o,l)(n)(log nx Li(s;n) + Ly(s;n))
+ ni::ld(n)( i(lognx)le(s; n)+ élog nxLy(s;n) + %L3(s;n))
O(x ),
(2.30)
dao(n ad
(@ = X2 S (s)

1 &
*3 > (2d(o,1y(n)logn + d(g2)(n))(log nx Ly (s;n) + Ly(s;1))
n=1
o 1 5 1 1
=33 d(o’l)(rz)( Z(log nx) Li(s;n) + 3 lognxLy(s;n) + 5L3(s; n))
n=1

+ i d(n)(—%(lognx)%l(s;n) - g(lognx)sz(s;n)

3 3
- ZlognxL3(s; n) - ZL4(s;n))

+0(x % log* |1]).

Remark 2.12 The implied constants in (2.28)-(2.30) contain the factor 1/(o + €)/
by the error in Lemma 2.9 and also contain the sums like 372, D1y (n)/n'**. If we
take ¢ in [0,1], then those constants are independent of o.

3 The Exact Formulas

Here we will deduce the exact formulas for {'(s)2, {(s){"'(s), and {’(s){"’(s), which
are important as in [22]. To state them we introduce the functions Uj(s;n) for
j=0,1,2,3.

Definition 3.1 Let x > 0 be a real number, # a positive integer, and s = ¢ + it a
complex variable as above. We define

(B1)  Uj(ssn)=-

245 2s—2 oo K (v +EY v
7 f (lOgV)JM dv (j=0,1,2,3),
4

nl=s v/ nx y2s

where Kj(v) and Y;(v) are the Bessel functions.
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Theorem 3.2 Assume thats = o + it # 1, —¢ < 0 < b (where b is a constant),
0<e<1/4, and t << x << t*. Then we have

32)  {(s)’= Z D“’z( ") +siD(1)(n)U0(s n)

432 Z (n)(log®(2*7%) + 2log(2* %) log n) Uy (s; )

'S

8

—s Y d(n)(log (2*7*) +logn) Ui (s; n)

n=1

+sy d(n)Us(s;n) + O(x*77 log’ |t]),

n=1

(33) )" ()= d(%)s(”) +s id(o,z)(”)Uo(Sin)

n<x

3

+= Z d(n)(log?(2*7?) + 2log(2*n*) log n) Uy (s; n)

n=1
- Z d(n)(log(2*n*) +logn)Uy(s;n) +s Z d(n)Uy(s;n)
n=1 n=1
+0(x*log |1]),

(3.4) ' (s)("(s) = Z M - i d(1,2)(1)sUo(s;n)

oo

+y d(n)( §(10g247r2)3 + §(10g247t2)210gn

n=1
+ %(log24ﬂ2) log’ n)on(s; n)

= 3 4 2y2 3 4_2 2
—Zd(n)(f(log2 %) +7log2 n”logn +log n)sUl(s;n)

ij:ld(n)(10g247'r2 +logn)sU(s;n) - Zd(n sUs(s;n)

8 l\)\w

+Z 02)(”)(_*(log24 7*)sUo(sim) + sUi(s; n))

O(x'*~log*|1]).

To derive approximate functional equations for {’(s)?, {(s){"(s), and {'(s){"(s)
from Theorem 3.2, we need Titchmarsh’s fundamental lemma on (1.5).

Lemma 3.3 (Titchmarsh [22, p.111]) For 0 < a < 3/2 and o > —1/4 we have
1 x(1-w)? sxiTvs

5) — dw =
(3.3) 2ni Ja)  n¥ (1-w)(s—-1+w) Y
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- dv.

52457_[2572 /«oo Kl(V) + ng(V)
4an\/nx

nl—s VZS

Formula (3.5) is equivalent to the formula of Titchmarsh [22, p. 111,1.2]. He proved
his formula for o > 1first and then for o > — 1 by analytic continuation. The condition
for « is needed for the convergence of the integral.

We remark that in our notation formula (3.5) is expressed as

(3.6) Li(ssn) =sUg(s3n).

Furthermore, we can get the relations among L;(s; n) and Uj(s; n) from Lemma 3.3.

Lemma 3.4 Let—-¢ <0 <b(bisaconstant),|t| >2,0<e<1/4, and a =1+¢. Then

we have
l-a-o 251
(3.7) Li(s;n) :on(s;n)+O(w),
noc
(3.8) logxLi(s;n) + Ly(s;n)
= —s(log2*m*n) Uy (s;n) + 25Uy (s;n)
l-a-o 2¢e
+O(x (logx)|¢] log|t|),
na
(3.9) (logx)*Ly(s;n) + 2log xLy(s; 1) + 2L3(s; 1)

= s(log2**n)*Uy(s; 1)
—4s(log2*m*n)Uy(s;n) + 4sU,(s3 1)
l-a-o 2|¢|2¢
+O(x (logx)?|¢] log|t|),

na

(3.10) —(logx)>Ly(s;n) —3(logx)*Ly(s;n) — 6logxLs(s;n) — 6L4(s371)
= (log2*n*n)*sU,(s;n) — 6(log 2* n*n)2s Uy (s; )
+12(log2* i n)sU, (s; n)

x1797% (log x)*|t|*¢ log |¢|
—85U3(s;n)+O( g”a 8 )
Proof The first assertion (3.7) is obtained by (3.6) and (2.23) immediately. For other
assertions, divide (3.6) by s and differentiate with respect to s repeatedly. Thus we get

N S

1 x1-w)* x"  —(logx)x~ x~ d
- . - d = 7U ) >
2mi J(a) ¥ 1—w( s—1+w (s—1+w)2) Y= ds o(s:1)
1 y(1-w)* x7 ( (logx)*x~* . 2(logx)x~* . 2x7° )
2ri (@)  n¥  l-w\ s—1+w  (s—1+w)? (s-1+w)3
d2

= EU@(S;H),
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1 y(1=w)* x= ( —(logx)*x~* ~ 3(logx)*x~* _ 6(logx)x”*
2ni J(a)  n¥ 1-w\ s—1l+w (s=1+w)2 (s—-1+w)3
6x~* a
- . NA = 7U 5 >
(s—1+w)4) Vs o(sim)

By multiplying +s on both sides and using (2.19) and Lemma 2.7, we can see that the
left-hand sides of the above formulas can be written as a linear combination of L;(s; n)
as in the left-hand sides of (3.8), (3.9), and (3.10), plus the error terms there. On the
other hand, the right-hand sides above can be calculated by

di n? e 2%%n

—U 5 = -
dsi olsin) n 4n\/ﬂ( y2

) (log2*n*n - 210gv)j( Ki(v) + ng(v)) dv.
Now by a simple calculation we get the assertions (3.8), (3.9), and (3.10). [ |

By Lemma 2.7 we observe that implied constants are independent of ¢ in [0, 1].
Finally, we will prove the exact formulas for {’(s)? and others.

Proof of Theorem 3.2  First we consider the case {’(s)2. In (2.28), we substitute the
identity d(o,1)(n) = —3d(n) logn and get

D(l)(”)
ns

0D s ilpm(n)u(s; n)

+> d(n){—; logn(lognxLi(s;n) + La(ssn)) + i(log nx)*Li(s;n)
n=1

+ 1log nxLy(s;n) + 1L3(s;n)}
2 2
+0(x* 7 log’ |t])
_ Z D(l)(n)

S
n<x 1

oo 1 %)
+ Z D(l)(”)Ll(S;”) - Z Z d(n)10g2 nLl(s;n)
n=1 n=1
+ % Z d(n)(log2 xL1(S;1’l) + Zlongz(s;n) + 2L3(S;n))
n=1

+0(x*log |1]).

Now we apply (3.7) and (3.9) in the right-hand side of the above formula. Then the
coefficient of d(n) from the third and the fourth terms in the right-hand side above
becomes

- o n(sti(sm) + o 108 )

1
+ 4(s(log2(24712) +log? n + 2log2*n® -logn) Uy(s; n)

l-a—o 21 4]2¢
~ 4s(log2*n* +logn)U1(s;n)+4sU2(5;n)+O(x (logx)?[¢| 10g|t|))
ntx
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= i(logz(z“nz) +2log2*n? -logn) Uy (s; n) — s(log (2*n*) +log n) Uy (s; 1)

)le—zx—o|t|2£

( (logn log|t|) . O( x1797% (log x ) ?|t|** log|t|).

+sUy(s;n)+ O L

na

This proves (3.2).
Similarly we have

don(n) & > d(n)log*n
{(s)C"(s) = Z: %5() + ;d(o)z)(n)Ll(s;n) - Z::l %Ll(s;n)

+y @(log2 xLi(s;n) +2logxLy(s;n) +2L3(s;n))

n=1

+0(x*"7log’ 1))

and

C((s) = Y (”)(”) 3°° d(n)log® n(logxLy(s;n) + Ly(ssn))

n<x =

3 Zd(n)(log xLy(s;n) +3log® xL,(s;n)
n=1
+6logxLs(s;n) + 6La(s; n))
1 oo
*3 Y d(o,2)(n)(logxLi(sin) + Ly(s;n)) + o(x"*log* |1]).
n=1

Applying (3.7) and (3.9) to the case {(s){"(s), as well as (3.8) and (3.10) to the case
{'(s){"(s), we get (3.3) and (3.4). These implied constants in the arguments are in-
dependent of ¢ in [0,1]. [ |

Remark 3.5 By a similar method we can obtain the exact formula for {(s){’(s):

don(n) s & 42
() (s) = Z %5() + > ;d(n)(log(z %) +logn)Uy(s;n)

n<x

—s Y d(n)Ui(ssn) + O(x* " log” t]).
n=1

4 Lemma f of Hardy and Littlewood

We need to know the behaviour of the integrals

o jeos(v —m/4) 71/4)
_Anm( ) 25+1/2

for j = 1,2, 3. Following [22] we investigate these functions by an extension of Lemma
B of Hardy and Littlewood. As in [12, (2.22)], let

(41 =185 = [ ogv)v cos(v -] ) av
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for j = 0,1,2,3. Since s should be replaced by 2s + 1/2 in (4.1), we need to consider
I;(&,s) intherange 1/2 < 0 = Res < 5/2. It is carried out by integration by parts as in
[22]. We get the following lemma.

Lemma 4.1 Suppose that A denotes a positive constant, which may be different at
each occurrence. ' Let1/2 < 0 < 5/2 and t > A, £ > A. Then we have

(i) I <&’ logj & fort< At <,
mif4 gl-s ik j 1-0 j
e &e't log £+O( t&%log’ &

R &1y

) +0(&° logj )

fort+ A< &< AL

& log/ & )

T 1 ; 1 ;
_ _ 7 2 j 410 j-1
i) I;=T( s)cosz(s 2)log t+0(0;t log t)+O( .

for &< At < t,

1 j 1 .
(i) Ij=r(- S)COSg(S - E) log’ t + O((Sjt‘i‘ﬂlogj—l t)

et Erefloght & loglEy 87 logl
+2(1—5)(2—3) t-§& +O( (t_g)3)+o(f)

for At < &<t —A,

V) I 129 log/ (max{&,t}) for all cases,

where

5 - 0 forj=0,
Tl forj=1,2,3.

These O-constants are independent of o (1/2 < 0 <5/2).

Proof (i), (ii), and (v) are proved by the similar method from [12].
We consider the other cases. First we suppose that 0 < ¢ <1 and we have

Ij:{fom—/;f}(logv)jv_scos(v—%) dv =t Jij + J2js

IWe follow [12, Lemma ] for the use of a constant A in the conditions on £ and ¢. As is noted in [12],
“the inequalities on & and t sometimes restrict the possible values of A”
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say. For J,j, by repeating integration by parts and using the method of [12, Lemma ],

we have
1-0] j
O(w) forE<At<t
t
mif4 3-s,if] j
42) Jaj={ s ellog’d
2(1-s)(2-5) t-&
2-0] j 1-0] j
+O( E(t (;g)3f)+o(‘f tog E) forAt<é<t-A.
Note that formula (4.2) is valid when % <0< %
To evaluate the integral J;;(j = 0,1,2,3), we recall the well-known formula [2, p.
50]:
(4.3) f Mdv:l"(l—s)cos (s 2),
0 L 2

which is valid for 0 < Res < 1 and is uniformly convergent in a small neighbourhood
of s in this range. Differentiating both sides of (4.3) with respect to s repeatedly, we
have

sin
2 2

(4.4) Ju=T(1-5) {1//(1—5) cos TF(SZ— 5) N n . 7(s- 2)}’

n(s-3)

(4.5) ]12=F(l—s){(t//'(l—s)Jru/z(l—s)) cos

1 1
n(s— 3 (s — =
( 2) —17T2COS ( 2) R
2 4 2

+my(l-s)sin

(4.6) Jis=T(1 —s){(l//3(1 —s)+3y(1-s)y'(1-s) +y"(1—5)
(s — %)
2

- ZTL’ZI//(I - s)) cos

37 3nm By n(s-1
+(7w2(1—s)+7w(1—s)—?)sm > 2 },

where y(s) = I'(s)/T(s) is the digamma function. By (4.3), (4.4), (4.5), and (4.6),
Ij = Juj + Joj is valid for 1/2 < o < 5/2.

It remains to evaluate the right-hand sides of (4.4), (4.5), and (4.6). From [2, Corol-
lary 1.4.5] we have

i 1
(4.7) w(l—s):logt—%+0(;)
for t > 1 and hence

n(s-3)
2

w(1-s)cos
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1

Therefore, by the Stirling formula of T function I'(o + it) = O(|t|" 25 !!), we have

cos(v—17) (s

(4.8) Ju-= foologvidv =T(1-s)cos
0 Vs

2_ 2 logt+O (t_%_").

For Ji;, squaring both sides of (4.7), substituting it into (4.5), and using the well-
known estimate y'(1—s) = O(1/t) [2, (1.2.14)], we find that

(4.9)

2 _1
Tz :F(l—s){(logzt—m’logt— ﬂz) cos )

j n(s-2
+n(logt—%) sin ( 3 )

2

a(s—1 logt =
—n—cos ( 2)+O(Ogezt)}
t

4 2
n(s-3)
2

= F(l—s){logzt cos - (m‘logt+ g)eni(sz_%) + O( logte%t)}

t
1
_5)

n(s
=T(1-s)cos log? t + O(t™/* 7 logt).

By noting ¥/ (1-s) = O(1/t?), similarly we have that

n(s-1)

(4.10) Jiz =T(1-5)cos 5 22 Jog® t+ O(+72 7 log? t).

Finally, from (4.2), (4.8), (4.9), and (4.10) we get the assertions (iii) and (iv). ®
5 The Approximate Functional Equation

In order to prove the approximate functional equations for {’(s)2, {(s){"'(s), and
{"(s){""(s), we approximate U;(s; n) in Theorem 3.2 by I;(4m\/nx,2s +1/2), which
we discussed in the previous section. It is well known that

Ki(v) + giﬁ(v) = (%)1/2(—cos(v - Z) + %sin(v - %) + O( #))
[22, p. 111], hence by (3.1) and (4.1) we find that

(5.1)
24s-1/2,25-3/2 3 e (logv)/sin(v - n/4)

1
Uj(S, n) = nl_s{IJ(47T\/ nx,25 + 5) - =

8 4n/nx v23+3/2 dv

+ O((nx)_"_3/4 logj(nx))} ,

where O-constant is independent of ¢ if 0 > —=3/2+¢; (for any ¢; > 0). Let us consider
the case {’(s). There is no loss of generality in assuming that ¢ > 27.
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First we treat the case 1 < y < x. Since xy = (t/2m)?, this implies y < /27 < x <
(t/2m)%. In view of (3.2) of Theorem 3.2, we need to evaluate the series

(5.2) s i Dy (n)Uo(ssn) + i i d(n)(log?(2*7%) + 2log(2*7*) log n) Uy (s; 1)
n=1 n=1

—s > d(n)(log(2*n*) +logn)Ui(s;n) +s > d(n)Us(s;n)
n=1 n=1
::SI+SZ—S3+S4.

Evaluation of S; First, we consider the sum Sy = s>, d(n)U,(s; n) closely. By
(5.1), we have

Sa=8M +53 +5,

where

S(l) 25573 253 Z 12 (4n/nx,2s +1/2),

() _ 3 4s-1 2s—— d(n)
S -2 25y —=
4 8 HZ:I nl=s Jan/nx

sin(v-12)
(ogry ™2+ ay,

2

Sf’) :O( Z (n)( x)7" 3/‘llogz(nx)).

n=1
If o > 0 is bounded, the O-constant is independent of ¢. It is easy to see that

Sis) < x4 1og? x.
To evaluate Sil) , we follow the method of [22], where Lemma 4.1 is essentially used.

We divide the infinite sum in Sil) into five parts as

Z PIEED VL D D)
=Lon<§ Fsn<y=F yVISHSyH/Y yry<n<dy  n>dy
=24+ 2+ 23+ Xy + s,

For X3, we apply Lemma 4.1 (v) and get

d
PR S Z (n) 1/z(nx) o 1/4log ((nx)l/2 +1)
y—ﬁSn§y+ﬁ
< 125 WA (log 1)2y~5/4 > d(n)
y=V/IEnsy/y

1/2x7071/4 -3/4

<t log’ t

< %20 og’ ¢,
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For X5, we note that 47/nx > 2 - 2t. Hence we can apply Lemma 4.1 (i) and get

Tk Yy i(i)(nx)‘”‘l/“logz(nx)

1
n>4y

< x7oV4 > d(n )(log n +2log nlog x + log” x)

nol4
n>4y /

< x~0 4y (Jog® y + log? xlog y)

< 1% %08’ ¢,
For ¥4, we note that 2¢ + 1 < 47\/nx < 2 - 2t. Using Lemma 4.1 (ii) we have
S () { ™% (4 /7)Y (log /) ? |
yrSancay M 2 4m\/nx - 2t

t(nx)"*=? (log4my/nx)* —o-1/4 2
+0( NN ) + O((nx) =" (logamy/nx) )}

=: 241 + 242 + 243.

Note that these O-constants are independent of ¢ if ¢ is bounded. The term X4, is
bounded by

d(n)
1/4- 7y -3/4 log ¢
y+ﬂz<:ns4y (27-[\/ nx — t)3

d(n)
log” ¢
y+ﬁz<:ns4y (n-y)?

24y K Ix

—0-5/4 3/4

< tx

075/4 -1/4

< tx” log’ t

1/2- 94

KX og’ ¢,

where we have used the estimate 3, /5.q<ay % < y~'logy from [22, p. 112]. It

is easy to see that 343 is also bounded by O(x/2=t 'log’ t).

In the case {(s)?, Titchmarsh took a genius approach to the corresponding sum to
341 by approximating it with an exponential sum. However, we take a slightly different
approach from that of Titchmarsh. We will evaluate

(5.3) T < x4 d(n)e* i\/T(log47l\/_x+ %log n)?
: 41 E
y+/y<nsdy 3/4(\/Z ﬁ)

Write y; = y + ,/y for simplicity; let
d(n)e*™V"* (logn)>
y1<n<4y n3/4(\/ﬁ_ ﬂ) '
G(W) _ Z d(f’l)€4ﬂim= Z e4ni\/;m,

y1<n<yr+w YI<UVEY1+w

W =
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for 0 < w < 4y — y;. By partial summation we find that

4y-yn
(5.4) W =Gy - yFy-y) - [ GnF (w) dw,
where we put
F(w) = log” (y1 +w)
O+ w)PA (= w=/y)

Now we must evaluate the sum G(w). By the symmetry for y and v, we see that

G(w)=2 2mih Lo 4
ys;ﬁ };‘1<§y1;w ( \/y )
u<v

with f, (v) = 2,/uvx. To estimate the above exponential sum, we recall van der Cor-
put’s theorem [23, Theorem 5.9].

Lemma 5.1 If f(x) is real and twice differentiable, and
0< A< f'(x) <hdy (ordy <—f"(x) < hhy)
throughout the interval [a,b], and b > a + 1, then

S MM~ o(h(b - a)AY?) + 0(A;?).

a<n<b

Since |f,/ (v)] 1?x12y=3/2 e find by this lemma that

(5.5) Z eznif!‘(v) < Wx1/4)/73/4 + ﬂ71x71/4y3/4 +1
ﬂ<vsm
u
U<v
Thus we get
(5.6) G(w) < wxllty™ 4 4 x V43 4 og y 4+ 12
« wx1/4y_1/4 +y1/2 log .

Using (5.6), the first term on the right-hand side of (5.4) is bounded by x'/* y =/ log? t.
On the other hand, the second term on the right-hand side of (5.4) is bounded by

4y-y 4y-y
x1/4y_1/4 /0 l w|E' (w)| dw +y1/2 logy[0 1 |F'(w)|dw

4y-n 4y-n
= x1/4y_1/4| / wE'(w) dw‘ +y1? 10gy| / F'(w) dw|
0

< x4y og® y + y V4 l0g® y

log’ .

< x4 y_l/z

In the first equality, we used that F(w) is monotonically decreasing. We have also
used the assumption y < x in the last inequality. Therefore we get

-1/2

W« xYty 2 og’ 1.
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The other terms in (5.3) that involve log> x and log x log n are treated similarly and
we find that they are all bounded by x'/%y~/2log® t. Hence we finally get

Sap << x0TV A2 003 o k270 () 2 log? £ << X201 og? 1

Combining these estimates we have 34 <« x/2~¢ 'log’ ¢.
Next we consider £; and X,. It follows by Lemma 4.1 (iii)and (iv) that

d 1
=y n(li) { F( 3 25) cosslog®(2t) + O(t 7% log t)
n<?
. O( (nx)~*4(log nx)z)
t

=: 211 + 212 + 213
and

d 1
PEEEDY (11) { F( 3 25) cos s log® (2t) + O(t "% log t)

§£n<y7\/7 h
N emil4 (47_[ /_nx)5/2—2364ni\/ﬂ(10g4ﬂ /—nx)z
2(3 -25)(3 - 29) 2t — 4m/nx

(nx)=7**/4(log nx)? (nx)~7*Y4(log nx)?
o (st o Ll llonna)y |

: 221 + 222 + 223 + 224 + 225.

By the similar method for X4, we can see easily that

o
i, Tpp K t‘l( ty—z) log® t < t7'x™log” t
and
13, Zaa, Tos < x4 log’ t
On the other hand,
x—0+3/4 d(n)nl/“e“”im(bg 4n /—”x)z
223 < 2 ‘ .
t L<n<y-/7 N Vi

We will estimate
v Z d(n)n1/4e4”"\/ﬂlog2n.

L<n<y-/7 ﬂ_ \/ﬁ

For this purpose, instead of G(w) in X4;, we define, by writing y, = y — /7,

Y2—w<n<y, ﬂ_ vV Y2 =W

for 0 <w < 2y — /7. By partial summation we have

Gw)= > d(n)e*™™™ and F(w)= (72 = w)"*(log(y2 - w))?

e gy— V3)F( gy— V7) - /O%y_ﬁé(t)ﬁ'(t) dt.
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Asin G(w), we have

G(w) < wxlty™ 4 4 x V43 Jog y + Y12« wxllty V4 4y 2 10g y.

Similarly to the case W, by noting that F(t) is monotonically decreasing, we obtain

W <« x4y ]og® y. The other terms involving log® x and log 7 log x are the same
and we get
5 < 1 2x AL /4 1/21og y<tlx X1/2- a( )’) log® y < xl/z"’t’llog3 ‘

In X,;, we will extend the range of n to y with the error

1 d
|1"(f—2s) cosnslogZ(Zt)‘ > (n ) 29 00g? t- y" V2 logy
2 y—/7ensy nl-
< X% 0g’ ¢,
Hence we get
1 log2t)?
Sil) _ 245—1/2ﬂ25—3/25r( 5" 25) COS 715 Z d(n)(log2t) " O(xl/z_” 10g3 t),

1-s
n<y h

where the O-constant is independent of ¢ if ¢ is bounded.

As for Siz), it is treated more easily since there exists the extra factor %v’l in the
asymptotic expansion of K;(v) + 7 Y1(v). In fact, first by integration by parts and then
by Lemma 4.1 (v) we have

/ (logv)zsm(v )d « t2gCots ) log®(t + §).

y2s+3/2

Hence

Siz) < 112 > d(n)rz"—l(nx)_(”%)(log2 t +logtlogn +log* n) « x4~ log* .

n=1
Now combining the estimates of S, @ S, ) and 8(3), we finally get
_ . d(n)(log2t)? _
(5.7) Sy =2%712p2 3/25F( 3 25) cos ﬂs’;’ % + O(xl/2 ”log3 t).

Evaluations of S, and S; The terms S, and S; in (5.2) are treated similarly to Sg,

that is,
(5.8)
1 d(n)( Llog(24n?)? + L log(2%n?) logn
Sy = 245_1/27125_3/251"( - - 25) COS TS Z ( )( i Log( )"+ 3 log( )log )
2 W<y nl—s
+ O(xl/zf‘f log3 1),
(5.9)
1 log(2*7?) +1 log2
Sy = 245-1/2ﬂ25—3/25r( - 25) s 71 Z d(n)(log(2*m 1) +logn)log2t
n —S

n<y

+0(x"* 7 log’ t).
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Evaluation of S;  For S;, we follow the same lines as in S4. Substituting (5.1) we have

S = Sl(l) + Sl(z) + 81(3), where

> D n 1
S —pts1/2 72573025 Y 7(;35 )10(471\/%, 25 + E)’
n=1

dv,

S(Z) 324s 1/2 25-3/2 ZD(l)(”) f sm V—*)
! 8 4n\/nx

— nl-s V25+3/2

s o (tZ Do)(”) X)o3h).

Divide the sum in Sl(l) into five parts as in Sil). Almost all parts are a repetition of
the arguments of Sil) but we use Lemma 2.2 (2.5) this time. However, the exponential

sums corresponding to X4 and X3 in the case Sil) are different. In fact, we need to
evaluate the sums

v, = x_a_l/4‘ Z D(l)(i’l)e‘*m\/ﬁ‘
y+/y<n<dy 113/4(\/_ - \/_)
—0+3/4 D(l)(n)nl/4e4m\/ﬁ

a F<n<y-/7 Vy-Vn

~ X
Vi=

in this case. For Vi, let

; 1
Gi(w) = Dy (n)e*™ V™ F(y)= — =
' y1<n§1+w o ' V3/4(\/1_/ - \/7)

where y; = y + /. As in the case 24, we have, by partial summation,

sy 3, Dot
y1<n<dy n3/4(ﬁ - \/y)

If we can show that

4y-n
= Gilay =A@ - [ G0F (v dv

(5.11) Gi(w) < (wx'ty V% 1+ )12 log y) log? y,

which is similar to (5.6), we get the desired result V; <« t~'x"/>~%log’ t from (5.10) by
noticing that F; (w) is monotonically decreasing. To show (5.11) we rewrite G;(w) as

Gi(w)= > logulogy e*"Vi*

N<pv<yi+w

:2%:10&“ > logv e4"i\/‘m+0((% +1) logzy).

Nyt
u [

U<v

By (5.5) and partial summation, we have

Z logv e*™VI'F « log)/(w3c1/4}2_3/4 + y_lx_1/4y3/4 +1)

Ay 1w
[ [0
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and hence (5.11). We have similarly that V; « t~'x/2=% log’ t. Thus we get

1
S(l) gds=1/2_25-3/2 I‘(E—Zs) cosnsZ (1)( n) O(xl/z"’logz' 1).

It is easy to see that 81(2), Sl(s) « xM2-0o
Collecting these estimate we have

(1)( )

(5.12) 8 = 247227302 F( 3 2s) cosms Yy —-——= +0(x/* % log’ 1).

n<y

By (5.7), (5.8), (5.9), and (5.12), equation (5.2) becomes

1/2_25- 1 Dey(m) d(n)
(5.13) 2872230250 ( =~ 2s) cos s H
(32) cosms{ £ =5+ Z 55 0n)
+0(x* % log’ 1),
where H(n) is given by
(5.14)
1 1
H(n) = Z(logz‘lnz)2 +5 log2*n* -logn — (log2*n* + logn) log2t + (log2t)*
t t
= (log —)? ~log — -log n.
(log ——)* ~log —— -logn
We remark further that

1
(5.15) 212257302 T( 3 25) cos s = y(s) + O(t727)

(see [22, p. 114]) and

d
(5.16) 120 Z (nﬂ) <ty logy < x “logy

1-
n<y n

for0O<o <1

By (3.2), (5.13), (5.14), (5.15), and (5.16) we finally get (1.8) in the case x > y.

We will prove (1.8) in the case x < y. Applying the approximate functional equation
for x < y and replacing s by 1 - s, we know that

(5.17) ('(l—s)Z:ZD(rZI)i_(Sn) x(1-s) > — (D(l)(n) d(n)lognlog—

n<y n<x 1
t
+d(n)log® ) +0(y° Y log’ 1).
2
We use the functional equation (2.15), namely

(5.18)  {'(5)* =y ()¢ (1= 5)" = 2x() A (5)E(1 =)' (1=5) + ' (5)*C (1 - )™,
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By (2.20) and (1.4) we have
(519) ¥'(s)*(1-5) = (X (s) log —t O(t™*log t))

(25 (”’ 9% M o(y1ogn)

n<x
t d(n) ) t d(n)
— log? log®? —
X(S) o8 Zﬂnzy nl=s Tlog 2 2; ns
+0(x* % log’ 1).
By (2.20) and (1.9) we have similarly that
(5200 2x(s)x'(s)¢(1-5)'(1-5)
t d(n)logn t d(n)log =4 s
= (log— ST 222780 e — ST 212 2

+0(x* % log’ t).

Substituting (5.17), (5.19), and (5.20) in (5.18) we find that the same formula (1.8) holds
for x < y.

6 Remarks on the Proof of Theorem 1.2

The proofs of (1.10) and (1.11) are similar to that of (1.8). So we only give some simple
remarks on them.

Comparing (3.2) and (3.3), we observe that the difference between them is the
coefficients D(yy(n) and d,,)(n) in the first two series on their right-hand side. As
in the case of G;(w) in the previous section, we obtain

Z do, 2)(n)e4’“m < (wx y 1/2 logy)log y.
yi<n<yr+w

Furthermore, since the sums of D(y) () and d g ) () have the same asymptotic order
(see Lemma 2.2 (2.5) and (2.6)), we can see that (1.10) holds true in the case x >
y. In the case x < y, we can prove that the same formula (1.10) holds by applying
(1.10) for x < y with s replaced by 1 — s, and utilizing the functional equation (2.16)
and the approximate functional equations for {(s)? and {(s){’(s) ((1.4) and (1.9),
respectively).

Finally we consider (1.11) of Theorem 1.2. Let y < x. If we apply the similar argu-
ment to the right-hand side of (3.4), we find that the terms from the second sum to
the sixth sum there reduce (up to the error O(x"/?~?log* t)) to the sumover 1 < n < y
with sU;(s, n) replaced by 24712 72573/21(1/2 - 25) cos s (log 2t)In*~". Hence we
have

d
()" (s) =), . (n) + 28722573261 (1/2 - 25) cos s
nS

n<x

-d n)+d n)log £ + d(n)K(n
. Z (1,2)( ) (0,2)(71125 g (n)K( )+O(x1/2_”10g4 ),
n<y
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where K(n) is given by
K(n) = (%(logZ“ﬂz)3 + %(logz‘*nz)zlogn + %logz‘*ﬂ2 -log? n)
- (Z(logfﬂz)2 + %logz‘lﬂ2 logn + log2 n) log 2¢
+ g(log 2*7* +logn)(log2t)® - (log2t)’.

It is easy to see that

t 3 ty?2 ty3
K(n)z—logﬂ-log2n+§(logg) logn—(logg) ;

hence by noting (5.15), we get (1.11) in the case y < x.

In the case x < y, similarly to the other two cases, we first apply (1.11) for the case
x < ywith s replaced by 1-s, utilize the functional equation (2.17) and the approximate
functional equations for {(s)?, {(s){'(s), {'(s)% and {(s){"'(s) ((1.4), (1.9), (1.8), and
(1.10), respectively), and we can see that the same formula also holds for the case x < y.
Note that we need all the other approximate functional equations and (2.3).
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