
46

On the Numerical Solution of Integral Equations.

By GORAKH P B A S A D .

(Bead 1st February 1924. Received 1st February 19%%).

1. Introductory.

The numerical solution of Integral equations with variable
upper limits has been investigated by Professor Whittaker.* In
this investigation the nucleus, supposed to be given numerically
by a table of single entry, is replaced by an approximate expression
consisting of a finite number of terms, each term involving an
exponential or simply a power of the variable, and then the solution
is found as an analytical expression from which its numerical values
may be computed. The numerical solution of integral equations
with fixed limits has been discussed by H. Bateman.f Methods
for solving differential equations numerically have long been
known \ and extensive use of such methods has been made,
specially for the calculation of "special perturbations" in Astro-
nomy. The differential equations giving the forms of drops of fluid
under the influence of capillary action have also been numerically
solved by Bashforth and Adams, § Methods for the numerical
solution of differential equations from a somewhat different point
of view have been investigated by Runge, || Heun, ** Kutta, ft
and Piaggio. JJ The aim of the present paper is to find a method
for the numerical solution of integral equations on the lines of the
metlJtids for solving differential equations.

• Proc. Royal Soc, XCIV (A), 1918, pp. 367-383.
t Proc. Royal Soc, C(A), 1921, pp. 441-449.
t See, for example, Bond, Proc. American Academy, IV., 1849, pp.

189-203, or Encke, Aslronomische Jahrbuch fur 1858.
§ Bashforth and Adams: An attempt to test the Theories of Capillary

Action, Cambridge, 1883.
|| Mathemituche Annalen, XLVI., 1895, pp. 167-178.
*• Zeiischriftfiir Math. u. Phys., XLV., 1900, pp. 23-38.
ft Ztitschrift fur Math. u. Phys., XLVI., 1901, pp. 435-453.
JJ Phil. Mag., XXXVI. (6th Ser.), 1919, pp. 596-600.
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The advantages of the method given in Art. 2 below seem to be
the following:—

(1). I t is not necessary to replace either the nucleus or the
function outside the integral by an approximate
expression.

(2). Compared with other methods, this method is much less
laborious.

(3). The computed values are accurate practically up to the
last figure retained, although, if extreme accuracy is
desired, it will be safer to retain one more figure.

(4). The method is applicable whether or not the nugleus
K (x, £) in equation (1) below is a function of x - £.

(5). The method is applicable to integral equations whose
analytical solution cannot be found by the usual
methods, for example to non-linear integral equations.

I wish to express my gratitude to Professor Whittaker for his
kind help and encouragement.

2. The integral equation of the second kind with a
variable upper limit.

Consider the integral equation

4>(x)-f(x)+?K{x, S)i(£)d$t (1)
J«

where f(x) is a continuous function of x in the range a = % = b,
given either numerically or by an analytical expression and
K(x, £) is a real function of x and £, continuous in both the
variables in the range a = £ = »: = 6, given either numerically
or by an analytical expression, and </> (x) is the unknown function
whose values are to be determined in the range a = x = b.
We suppose further that the first few differential coefficients of
f(x) and also those of K(x, £) with respect to x and £ are continuous
in the above ranges. We proceed to find accurately the values of
<j>(x) for x = a, a + w, a + 1w, ... , where w is taken to be so small
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that the intermediate values of <j> (x) may be interpolated with
certainty. I t should also be so small that differences of

K{x, a + rw) </> (o + rw)

above a certain order, say, to fix ideas, the fourth, are negligible.

Now suppose that we have already calculated <f>0, fa, fa,, ...
<£„_,, where <j>r denotes <f> (a + rw), and we are next to calculate
4>n. Let the successive differences of these quantities be taken
according to the following scheme :—

a+(n~o)w

a+(n- i)w

« + (n-3)t«

a + (n~-2)w

a + (n~\)iv </>„_!

The general run of the differences A4</> will suggest a close
guess to the value of A4<£n_,, say (AJ^>n_»), which will lead to
a provisional value of <£„, say (<£„). Let the true value of
&. t>*e (<̂ >n) + V-

We must now evaluate the integral in (1) numerically. A
suitable formula for this is

1 ra+ru
- f(x)dx-f, +/l+/.+ - +/r"i (
10 Ja

^(Ay^+Ay.)

L . - A'/o) - iKhiW**+A%)
(2)
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Neglecting the differences of order higher than the fourth, let
the values of

£+""JT (a+ nw, £)*($)«*£,

computed by formula (2) with the value (<£„) of <£„, be (/„).
Find/n + (/„) - (<£„) and denote it by «.

The true value of the integral is

or (I
where JTn> n stands for K (a + nw, a + nw).

Substituting this in the integral equation (1), we find

Zn,«V, (3)

o r V = l „ ' - •*•••(*)

Hence we have the following theorem:—
Theorem I. If the values of the solution of the integral equation

where K{x, £) and/(x) may be given numerically, have been com-
puted for x = a, a + w, a+ 1w, ... a + (n - 1) w, and are <f>0, fa, <j>t,
... </>„_!, then its value for x = a + nw, viz., <£„, is given by

where fn denotes f (a + nw),

Kr , denotes K (a + rw, a + sw),

(<£„) is any assumed value of <£„,

(/„) = w [M0 + «! + M2 + ... + «„_, + (un) - \ {(wn) + M0}

- ... up to the term involving the rth differences],

* It may be useful to note that if only the differences up to the 2nd, 3rd,
4th, ... order are included in the evaluation of ( /„), this coefficient becomes
3, ?!*. M> HiU, l^Vo". etc., respectively. See Bashforth and Adams,
foe. eit., p. 20. In this work are given tables which greatly facilitate the
calculation of

A8/r-8 + A»fo).
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and c is a numerical constant whose value is -3299, '3156 or '3042,
according as the order r of the highest order difference used in the
evaluation of (In) is 4, 5 or 6.

It is easy to see that r] need not be a small quantity in order
that 4>n

 m a y be found correctly. In fact we may put (<£„) = 0 and
then find 17, that is, <f>n, from (4). The procedure outlined above,
however, saves a great deal of unnecessary labour, for with (<£„)
put equal to zero, the differences will all be large numbers, the 4th
difference in this case being - (<£„._! + A$n_2 + A2<£B_3 + A3 >̂,,_4). There
is another point which should be mentioned here. We need not, if
we prefer it, form a table of differences of <j> to find an approximate
value of <f>n. For, for the numerical evaluation of the integral
fa+nvi

I K (a + nw, £) <f> (£) d£, we shall have to form a table of the
Ja

differences of the integrand, which will enable us to find an
approximate value of Kn „ <£„. The table of differences of <f>, how-
ever, serves as a useful check against accidental errors being made
in the work, and, moreover, such a table is useful for interpolating
intermediate values of <f>.

Equation (3) shows that the true value of (<£„), viz. (<£„) + '/,
differs from /„ + (/„) merely by ^g wKn „ rj, i.e. an error in the
assumed value of <j>n gives rise to a much smaller error in the value
of <£„ calculated from the integral equation (1) by using this
assumed value for the evaluation of the integral occurring in it.
In some cases -£g^wKnnr] may be negligible and then we shall
have simply

<*>„=/« + (4).
but in many cases at least -s^-swKnne and v? K\ ne will be
negligible, and then we can write

*«=•/. + C O +

It is interesting to notice that -q produces no error in the
calculated value of <£„ if Kn „ is zero. If, on the other hand, Kn „ is
very large, we must take w sufficiently small to secure that the
divisor 1 - ^y^ wKn „ shall not unduly magnify the error of the
omitted decimals in (/„).
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3. Initial values of the solution.

It remains now to see how a few initial values of <f> are to be
calculated in order to start the solution. Obviously 4>o=fo- To
find the other values of <f>, we choose a value of w, say ws, where
w1 is so small that w[ is negligible. Suppose that

<£ (a + w-,) = / (a + Wi) + ??!.

Then, applying the Trapezoidal rule for the evaluation of integrals
to (1), we obtain a linear equation to find i/,, which gives

^w1{K(a + wu a)f(a) + K(a + wu a + w,) f (a + w,)}
Vl l ^ K i a + w a + W) K)

Having thus calculated <£ (a + w )̂, we assume that

<f> (a + Iw^) = <j> (a + wt) + {<£ (a + u>,) - <j> (a)}

Applying this time Simpson's rule for evaluating the integral in
(1), we again get a linear equation which gives ij, and thus
<f> (a + 1w^) is found. If now (2to,)5 is negligible, we next calculate
4> (a + iw^ instead of <j> (a + 3u)y), Simpson's rule being again
applied. If however (2w1)

i is not negligible, we must proceed
more slowly ; <j> (a + 3w>,) must also be calculated, and this time we
may employ the Three-Eighths rule, or formula (2).* In this way
we calculate ^(a + rtoj) for increasing values of r, always using the
longest practicable interval between the successive ordinates to be
summed and the best method of approximating to the integral as
far as the materials in hand permit. In this way we shall soon
have a sufficient number of known values of <f> to employ the
method given in Art. 2.

4. An illustrative example.

As an example of the method, let us solve the integral equation

whose analytical solution can be seen to be <j> (x) = .

* It must be borne in mind that the generalised Simpson's rule is less exact
than formula (2) when we have calculated 4>(a), <p{a + w), <p(a + 2w) and
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We notice that the successive derivatives of the nucleus
rapidly increase, and the equation, therefore, is not one which will
show the method of the present paper at its best.

Supposing that we wish to retain seven places of decimals, we
choose wx to be -005. Application of (6) gives us the correct value
of <£(-005). By four successive applications of Simpson's rule we
find 4>(-01), <£(-02), <£(-04)and <£( 08). By applying the Three-Eighths
rule we find <£(12). With the help of (2), we now find <£(-16),
<£(-20), <£(-24), ... <£(-40). Since we have now a sufficient number
of values of <j> to obtain differences up to the fifth order when the
interval w is 08, and since actual computation shows that the
fourth and fifth differences are fairly small (omission of the fifth
differences is found to affect the value of <£('48) by less than half
a unit in the eighth decimal place), we increase w to -08 and thus
calculate <£('48) by using the values of <j> (£) for £ = 0, -08, -16, -24,
•32 and -40 only.

To illustrate the process of computation, suppose that values
of </>(£) for £ = 0, '08, -16, ... 2-00, have already been computed and
that we want to compute <f> (2-08). We form a table of the function
^ ( 2 08, £) <f> (£) for £ = 0, -08, 16, ... 2-00, and form the successive
differences for six values of this function at the beginning and six
or seven at the end. The latter part of the table is reproduced
below.

£ A'(2-08, £)<£(£) A A2 A3 A* A8

1-52

1-60

1-68

1-76

1-84

1-92

2-00

•2543753

•2598753

•2665245

•2744840

•2839618

•2952291

•3086420

55000

66492

79595

94778

112673

134129

(160295)

11492

13103

15183

17895

21456

(26166)

1611

2080

2712

3561

(4710)

469

632

849

(1149)

163

217

(300)

2-08 (-3246715)
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From the fact that AB is increasing we put down 300 as an
approximate value of the next fifth difference. This gives 1149 as
the value of the next A4 and so on, leading to -3246715 as an
approximate value of 7iT(208, 2-08)<£(208). Since Z(2-08, 2-08) = 1,
this is also the approximate value of $ (2 08). By an application
of the formula (2) we now find (/) to be -5514360, and since
/(2-08) = - -2267608, we find e to be 37. Then (5) gives the value
of <£(2-08) as -3246753, which is correct to the last place.

5. Comparison with other methods.

The heaviest part of the work consists in the various multiplica-
tions in order to tabulate K (x, £) <j> (£), x remaining fixed for
one integration, but varying from one integration to another.
The work can be much shortened by using a larger Value
of the interval w. Thus in the above example we could have
used w =-16 instead of 08 as we did, only in this case it would
have been necessary to retain differences up to the ninth order.
However, with a machine like the "Millionaire" for performing the
multiplications, and an adding and listing machine (like a type-
writer with the adding mechanism attached or a Burroughs adding
and listing machine) to print the results of the multiplications and
to add them automatically, combined with Bashforth's table giving
tho values of •££$ (Ayr_3- A%), ... , computations are quickly made.

The method given above appears to be a tedious and slow one,
but this is partly due to the fact that we are working with seven
decimal figures. If we desire, say, only two-place accuracy, we can
find values of <j> (£) from £ = 0 to, say, £ = 6 very quickly. Thus
with to =-25 and an application of the Trapezoidal rule, we find
<j> ('25), then two successive applications of Simpson's rule give
<f> (-5) and <j>(\-0) and ten more steps give the remaining values of
<j>, at intervals of half a unit, all correct to 2 decimal places.

This compares very favourably indeed with all the other methods.
For, in order to use a method which requires an approximate
representation of the nucleus by a polynomial, the first thing to do

is to find this polynomial, but to represent the nucleus for
1 T X

0 % x S 6 correctly even only to 2 decimals, we shall have to use a
polynomial of something like the sixth degree, a cubic being seen
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to give an error of 8 units in the second decimal place for some
values of x. This will necessitate the solution of an algebraic
equation of the sixth degree with coefficients involving two or three
figures each and finally either a dozen numerical integrations or

1 2
the representation of log, (1 + x), supposed to be given

numerically, by some approximate expression and the tabulation
of the function, consisting of at least six terms, obtained as the
result of the integration. Similarly, in view of the work required
to represent a function, given numerically, by exponentials, a
method using such a representation will be equally laborious. The
solution in terms of iterated functions will be still more troublesome
to compute. For seven-place accuracy these methods will naturally
be far more tedious.

6. Solution by a power-series.

The method of solving integral equations indicated by the

following theorem will sometimes be found useful.

Theorem II. The solution of the integral equation

4>(x)-f(x) + P*>-£)*(f)rf£ (8)
Jo

where the nucleus K (x) and the function f (X) are both supposed to

be expansible in the Taylor's series *

and y(*)-/ .+/*+/«| l+/»3^+-i (9)

is given by
x3

+ &

* Of oourse / j , / a , ..., </>j, <t>%> ••• do no t now bave the same meaning
as in A r t . 2.
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where <j>0, <f>t, <f>%, ... are to be calculated successively from, the

equations

1 =fl + ^ 0 <£l + -^'l </>0 , .(11)

Equations (11) are obtained by differentiating (8) repeatedly
and then putting x = 0.

It is easy to see that, under the supposition made above that
f(x) is expansible in a Taylor's series, this result is equivalent to
the following theorem given by Professor Whittaker * :—

The solution of the integral equation

<t> (*) + T <*> («) * ( * - « ) ds =f (x),
Jo

where the nucleus K (X) is supposed to be expansible in a Taylor's
series

K (x) = K0 + K, x + K., — + K 3 — + . . . ,

is x) =/(*)- [K(x-s)f(s)ds, (12)
J 0

where K (x) = K0- K0 1 0

K, Ko 1

0 ^ + - ( 1 3 )

For, solving equations (11), we get

where, for brevity, ar has been written for

Ka - 1 0 ... 0
Ko 0

Kr

* Loc. cit.
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Substituting the values of K(x-s) and /(«) from (13) and
(9) in (12), multiplying out and integrating term by term, and
remembering that

we find, after making the necessary changes of notation,

x2

) +

x
-s + ... + ar_,/0) —

(x) =/(») + «o/o S + K / i , j

—

which is the same as (10) by virtue of (14).
The solution in the form given in Theorem II. will generally

be found more convenient, because no integration has to be
performed and because it does not necessitate the evaluation of
determinants.

The application of Theorem II. to equation (7) gives, when

We can generalise Theorem II. as follows:—

Theorem III . The solution of the integral equation

Jo
where the nucleus K (x, £) is supposed to be expansible in a Taylor's
series

J7 iri2xf + Knf) + ... ,

andj (x) is supposed to be expansible in a Taylor's series,

is given by
x2 x3

<f> (x) = <f>0 + fa x + <pi^-. + 4'i^r, + • • • >
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where fa =/ , ,

fa =J\ + -̂ 00 >̂0 I

fa = y 2 + (2Z 1 0 + z 0 1 ) <£0 + *r00 </>,,

*, = / 3 + (3tf20 + 3ATn + A'O5) fa + (SKW + 2Km) fa

and generally

in which the summation 2 is to be extended over all positive integral
values of p and q, including 0, such that

r-p-q - 1 ^O.

The proof of this theorem is similar to that of Theorem II.

7. Non-linear integral equations and equations with an
infinite nucleus.

The method of Art. 2 is applicable, not only to the linear
integral equation (1), but also to the more general integral equation

where <£(a) is the unknown function, -whose values are to be
determined for values of xta, and F(x,y),/(x), g(x) and
K(x, y, z) are known functions, such that a*/(a?) S x, a< g (x) 5 x,
provided that certain conditions regarding the. continuity of the
functions F, K,/and g and certain of their differential coefficients
are satisfied, and we are justified in assuming that a continuous
solution exists. The procedure will be obvious from the following
theorem regarding a simpler type of the non-linear integral equa-
tion, for which it is known that a solution exists under suitable
conditions.*

* See Vergerio, Annali di Matematica, XXXI., 1922, pp. 81-119.
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Theorem IV. If the values of the solution of the integral
equation

*(x) =/(*) +

Aave 6«en computed for x — a, a + w, ... a + (n - 1) w, and are

<£o> <£i> $2! ••• <£n-i> then its value for x — a + nw, viz. <£„, is given by

where the symbols have the same meaning as in Theorem 1., except
that now

(<£„) is a value of <f>n, extrapolated from a table of differences

of <f>, so near to <f>n that squares and higher powers of

4>n — (<!>*) tna>y be neglected,

and k — the value of ——-— at x = (<f>n) .dx

The proof is similar to that of Theorem I. The initial values
may be calculated almost exactly as before, the necessary changes
being obvious, or they may be derived from the power series
obtained by the method of Art. 6.

An interesting application can be made to the solution of the
integral equation with an infinite nucleus of the type

where G(x, £) satisfies the same conditions as K (x, £) did in
equation (1) and p and q are integers. Making a change of
variables, (15) can be written as

X '& (x, x -

which can be solved numerically like equation (1).

8. An analogue of the formula of Kutta.

The methods investigated by Runge and others for the solution
of differential equations give corresponding methods for the solution
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of integral equations, but these methods are not so good as the
method of Art. 2. A single example will suffice. Kutta's
symmetrical formula, correct to the 4th order in w, gives the
following result.

Theorem V. If the values of the solution of the integral equation
(1) haiie been computed for x = a, a + w, a + 1w, ... a + (n- \)w, then
its value for x — a + nw may be computed from

9»=/n+ 2,
r=0

fa+(n-l)w
or *--/• +J K(a + nw,

where

i>r+A:-^.\w,
O J

AT = Kn_ r+1 {<f,r + A;" - A ; + A ; }«;,

and the other symbols have the same meaning as in Theorem I.

The second form of the formula is more convenient than the
first, but it cannot be satisfactorily employed for small values of n.

https://doi.org/10.1017/S0013091500036129 Published online by Cambridge University Press

https://doi.org/10.1017/S0013091500036129



