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An algebraic theory of hypergroups

J.R. McMullen

The category of groups forms a full subcategory of the category

of hypergroups. This larger category also contains other group

theoretic objects, such as the conjugacy class hypergroup and

character hypergroup of a finite group.

Definitions of hypergroups and hypergroup morphisms are given and

related to double algebras (which are simultaneously algebras and

cogebras, but not Hopf algebras in general). Quotient and orbit

hypergroups are defined. Coefficients are allowed in a more or

less arbitrary field.

These concepts provide a new language in which groups and their

character tables can be fruitfully discussed.

Introduction

It is classical that the characters of a compact abelian group form a

discrete abelian group. In recent years, harmonic analysts have endowed

the dual of even a compact nonabelian group with an algebraic

structure in order to exploit analogies with the abelian case. Thus the

hypergroup has been born, and with its sister the locally compact

topological hypergroup toils daily in the harmonic-analytic vineyard.

Despite their algebraic nature, however, an appropriate algebraic

treatment of discrete hypergroups has not appeared until now, although the

literature is already of significant size, as perusal of the bibliography

of [6] shows (see especially £81, an analytic treatment, and [7] for an

algebraic notion of hypergroup with weaker structure).

In presenting what we feel is such a treatment, there are two
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additional motives. In [I], Brauer introduced the idea of studying

character tables in abstracto, by considering them as square arrays of

complex numbers satisfying certain postulates. It was shown in [2] that

such character tables, though not always having an underlying group, always

have an underlying hypergroup. Hence the hypergroup suggests itself as a

tool for group theorists: this is our first motive. Our second motive is

to illustrate the satisfying way in which hypergroup theory extends group

theory.

Accordingly, we give herein definitions of hypergroups and their

morphisms, and their relation to double algebras (§1). Quotient hyper-

groups (§2), and finally orbit hypergroups (§3) are studied. This

selection of topics is made with algebraic readers in mind. Much of the

treatment allows coefficients in a more or less general ring.

A duality theorem for finite abelian hypergroups over a splitting

field is presented in a companion paper [3], which logically depends only

on §1 of the present paper.

1. Hypergroups and hypergroup algebras

1.0.

Let i? be a fixed commutative ring with identity 1 . Let C be a

subset of R . A hypergroup (H, n, d, 1, -) with coefficients in C is

a set H together with three maps n : H •* C , d : B -*• C\{0} ,

- : H •*• H , called multiplicity, degree, and conjugation, respectively,

together with a distinguished element 1 € B , satisfying the following

axioms:

(Hi) (Associativity) for a, b £ H , n(a, b, x) ? 0 for only

finitely many x € H , and

£ n{a, b, x)n(x, c, f) = £ n(b, c, y)n(a, y, f) ;

(H2) (Identity) for a, b £ H , n(l, a, b) = n(a, 1, b) = 6 ,

(H3) (Reversibility) for a, b 6 H , n{a, b, l) # 0 if and

only if a = b ; and for all a (. B ,

n(a, a, l) = n{a, a, l) ;
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(HU) (Conjugation) n(ay b, c) = n(b, a, c) y d(a) = d{a) ;

(H5) (Degree) d{a)d{b) = £ n(a, fc, x)d(x) ;
xiH

o

(H6) (Division) n(a, a, l) divides <2(a) in R , for each
a € H , and the quotient belongs to C .

Elementary examples of hypergroups are the character hypergroup G of

a compact group G , and conjugacy class hypergroup G of a group G

whose conjugacy classes are finite. These are abetian hypergroups in that

they satisfy the identity

(1) n(a, b, c) = nib, a, c) ,

and their coefficients are nonnegative integers. Every finite group is

also a hypergroup.

It follows from (Hi), (H3), and (HU) that the identity

(2) n(a, b, c)r{c) = n(a, a, b)r(b) = n{c, b, a)r{a)

holds, where r{a) = n(a, a, 1) = n(a, a, l) . This explains the word

"reversible". Notice that if G is a finite group, then for G , r = 1 ,

while for G , r(x) = d(x) for x (. G . Such hypergroups are called

standard and classlike, respectively.

1.1. REMARKS ON THE AXIOMS

(i) If d{a) = 1 for all a , and if the coefficients are real and

nonnegative, then our notion of a hypergroup coincides with that of a

discrete hypergroup in Spector [4], [5]. We call a hypergroup grouplike

if d{a) = 1 for all a € U . All hypergroups are equivalent in a certain

sense with a grouplike hypergroup, as demonstrated in Proposition 1 below.

(ii) If B is finite and has positive real coefficients then d is

unique. This follows from the orthogonality relations [3, Section 8].

(iii) Every abelian hypergroup has an underlying "canonical hyper-

group" structure (see [7]) when we define the hyperproduct by

(3) a x b = {x € H \ n{a, b, x) * 0} .

However, there exists a canonical hypergroup with no corresponding hyper-

group structure, if we require the coefficients to be integers.

(iv) It follows from the axioms that a = a for a € H and that a
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i s unique.

1.2. NORM OF A HYPERGROUP

This i s defined for a f i n i t e hypergroup by

(k) \\B\\ = I d(a)2r{a)-X

which by (H6) is an element of the coefficient ring. It is analogous to

the order of a group, and coincides with this concept if H is a group.

1.3. GROUP OF SCALARS

Let H be a hypergroup with positive integral coefficients, and let

a € H . Then adapting [2, Lemma 2.it] we see that the conditions

(i) d(a) = 1 ,

(ii) n{a, a, b) = 6., for b 6 H , and

(iii) for each b € ti there exists a unique e £ H such that

n{a, b, x) = 6 for all x € B ,

are all equivalent [note that by (H6), d(a) = 1 implies r(a) = 1 ) . The

set of such 'elements forms a group if we put a.b = c when (iii) holds.

This group is called the group of sealars of H .

Note that the three conditions certainly are not equivalent if the

ceofficients are not assumed to be integral and positive.

1.4. HYPERGROUP ALGEBRAS

Every group may be regarded as a standard classlike hypergroup with

positive integral coefficients (and conversely, by 1.3). Just as a group

gives rise to its group Hopf algebra, a hypergroup gives rise to a "double

algebra", which we now define. It is of great theoretical importance and

implies the duality theorem of [3].

A double algebra over a field k is a k module A with the

following structure (see [9] for terminology on cogebras):

(Al) A is a fe-algebra with unit u : k -*• A ;

(A2) A is a fe-cogebra with counit d • A •*• k ;

(A3) the grouplikes in the cogebra A span A (hence are a
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basis);

(All) u is a cogebra map;

(A5) d is an algebra map;

(A6) there is a mapping S : A -*• A which is a cogebra map, and

an algebra map of A into its opposite algebra A (it

follows that S maps grouplikes to grouplikes and

s(D = 1 ) ;

(A7) let 9 : A •*• k be the unique ?c-linear map such that

8 (x) is the coefficient of 1 when x is written in

terms of grouplikes. Then for grouplikes a, b £ A ,

6 [bS(a)) = 6 [aS(b)) * 0 if and only if a = b (it

follows that 5 = 1 . and that S is unique).

PROPOSITION 1. Let H be a hypergroup with coefficients in a field

k . Let kH be the free k-module with basis H . Define multiplication

on kH by {a, b) •* Y n(a, b, o)c , let u(l) = 1 € H , and let A, d, S
ZH

be the unique k-linear extensions of the maps

A : a •* diaV^a ® a {a € U) ,

(5) d : a -• d{a) (a 6 B) ,

S : a -+a (a £ H) .

Then kH is a double algebra, and {d(a)~ a \ a £ H] is its set of group-

likes .

Conversely, let A be a double algebra, and let #O('O be the set of

grouplikes in A . Then there is a unique hypergroup structure on H (A)

for which A is isomorphic to k[H (A)] both as algebra and cogebra.

The proof is a trivial consequence of the axioms. •

1.5. MORPHISMS

A morphism A -*->- B between two double algebras over the same field
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k i s a fc-linear map which i s an algebra map, a cogebra map, and such that

5 o $ = $ o 5 . A morphism necessarily preserves grouplikes. A morphism

H •—•-»• J between two hypergroups H and J with coefficients in k i s a

morphism kH —-*-»• kJ of the corresponding double algebras. By isomorphism

we mean a morphism possessing an inverse morphism.

If i? £ k i s a subring of k then f i s a R-morphism i f

<f>(i?#) c iW (that i s if <K#) c/W ) . A weak R-morphism i s an algebra map

<j> : i?# •+• RJ preserving the counit and S .

Note tha t i f <J> : H •*• J is an i?-morphism of hypergroups, then $(a)

i s an i?-multiple of an element of J , for each a € H .

PROPOSITION 2. (i) Let A = kH be a double algebra. Let H^A)

be the set of c l ass l ike elements of A ^ that is, those of the form

d(a)r(a)~ a (a € H) . Then HJ.A) is independent of the original hyper-

group H , and under its induced hypergroup structure H (A) is a olass-

like hypergroup.

(ii) Let A = kH be a double algebra, where H has positive real

coefficients. Let H (A) denote the set of standard elements of A ,

namely those of the form r(a) a (a € H) , where r(a) denotes the

positive square root. Then H (A) is independent of the original hyper-

group H , and under its induced hypergroup structure H (A) is a standard

hypergroup.

Proof. I t i s easy to see that H (A) and H (A) may be defined in

terms of the grouplike hypergroup H (A) . The re s t follows. D

COROLLARY. If H is a hypergroup with coefficients in a field k ,

then there is a classlike hypergroup with coefficients in k which is

k-isomorphic with H . If k contains the field F and H has positive

real coefficients, then there is also a standard hypergroup with these

properties. D

We s t ress here tha t a morphism Q : B •*• j of hypergroups - even an

isomorphism - i s not necessari ly a set- theoret ic mapping of B into J ,
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save as indicated in the following proposition.

PROPOSITION 3. Let <J> : A •*• B be a morphism of double algebras.

Then <f> maps grouplikes to grouplikes, and alasslikes to classlikes. If

x € A is standard, then there exists a standard y € B such that

<f>(x) = d(x)d(y)~1(y) . If $ is inject ive, and x € A is standard, then

<fr(x) is standard. D

1.6. EXAMPLES OF MORPHISMS

(i) (l) is a hypergroup in a unique way and so k ~ kil) is a

double algebra (in fact, a Hopf algebra). If H is any hypergroup then

the unit and counit d : kH •* k and u : k •* kH are morphisms.

(ii) Let <t> : G^ -*• Gp be a continuous group homomorphism of compact

groups. For i = 1, 2 , G. can be identified with an algebra of

functions on G. . Put $(/) = / o § . Then $ is a weak TL -morphism

from G- to G , and is a TL -morphism precisely when (j> is surjective.

This exhibits as a functor from the opposite category of the

category of compact groups and continuous group homomorphisms to the

category of standard abelian hypergroups with positive integral

coefficients and weak Z -morphisms.

1.7. SUBHYPERGROUPS

Let B be a hypergroup. A subset J of H is a subhypergroup if

a, b € J and a $ J imply n{a, b, a) = 0 and S(J) c J . The subset J

then inherits a hypergroup structure from B in the obvious way, and kJ

is a subalgebra of kH which is simultaneously a subcogebra.

Conversely, if B^_kB is a subalgebra and subcogebra of kH , then

it is easily seen that if x € B and x = £ a(a)a then for all a 6 H
a<iB

either a(a) = 0 or a € B . Thus B is the linear span of some subset

J of H , which must be a subhypergroup since B is a subalgebra.

If G is a group, then J <£_ G is a subhypergroup if and only if it

is a subgroup.

It is certainly clear that if 4> : H -*• K is a morphism, then there is

a subhypergroup J of K with inclusion morphism i , and a morphism
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commutes, and \p(kH) = kJ .

1.8. DOUBLE ALGEBRAS WHICH ARE BIGEBRAS

The fo l lowing i s now easy t o prove.

THEOREM 1. Let H be a hypevgroup with positive integral

aoeffioients. Let A = 0)# be the rational double algebra of H (see

Proposition i). Then the following are equivalent:

(i) A is a Hopf algebra and S is its antipode;

(ii) A is a Hopf algebra;

(Hi) A is a bigebra;

(iv) A is an algebra map;

(v) M is a cogebra map;

(vi) S * I = I * S = ud where * denotes convolution in

hom*U, A) ;

(vii) elements of H are invertible in A •

(viii) ^0(^) is a group. •

2. Quotient hypergroups

2.1. QUOTIENTS

Let A be a double algebra. Then a double ideal In A is a k

submodule V of A which is

(1) an ideal,

(2) a coideal (see [9, p. l8ff]), and

(3) invariant under S .

The kernel of the counit d is the largest coideal, and since it is
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also an ideal invariant under S i t is the largest double ideal. We plan

to establish a correspondence between double ideals in kH of a certain

type and completely normal subhypergroups of H .

PROPOSITION 4. Let kH be a double algebra, let V ckH be a

double ideal, and let ir : kH -*• kH/V = E be the natural k-linear map.

(a) There is a unique structure of algebra and cogebra on E such

that TT is a morphism of both algebras and cogebras, and a unique mapping

S -. E •*• E with S o IT = T\ o S . With these structures, E satisfies all

axioms for a double algebra except (AT)-

(b) If f : kH •*• D is any map into a k-module D which has the

above three structures and if f respects these structures then ker / is

a double ideal.

(c) If V c ker / then there is a unique k-module morphism f*

such that the diagram

commutes.

The proof is trivial. E

PROPOSITION 5. Let H be a hypergroup with positive real

coefficients contained in the field k . Let V be a double ideal in the

double algebra kH . Let TS •. kH ->• kH/V = E be the quotient map. Let J

be the set

J = {a € H | -n(a) = d(a) .1} .

Thus J is a subhypergroup of H . Also, E is a double algebra, that is

satisfies axiom (AT), if and only if J satisfies the following condition:

(a) for all a, b d H ,

(*) T n(a, b, z)d(z) = Y. n(b, a, z)d{z) .
ziJ

If J is finite, then (a) is equivalent to:
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(b) for all a d H ,

where E,T = £ d(z)r{z)~1z i

Proof. Obviously J cj . Suppose n(a, b, a) # 0 with a, b € J .

Then we have v(ab) = v(a)v(b) , which is a multiple of 1 € E , while

•n(ab) = y n(a, b, a')-n(o') , so that n(a, b, a) t 0 entails that ir(e)
c'lH

is a multiple of 1 . Thus J is a subhypergroup of H .

It is a simple exercise to show that if J is finite then (a) and (b)

are equivalent.

Now, as the grouplikes in E are the elements d(.x) ir(x) , where x

is a grouplike in kH , (A7) for E is equivalent to axiom (H3) for

elements ^(a) , namely, to the assertions that for a, b € H ,

n[i\(a), TT(2>), l) = n[-n(b), ir(a), l) and that this expression takes the

value 0 if and only if ir(a) / f(i>) . The first assertion is equivalent

to (*). The proof will be complete if we prove that the second assertion

always holds.

Now observe that n(ir(a), ir(i), l) = £ n(a, b, z)d{z) = r(b)a ,

J
where a is the coefficient of b in a£j . Also, n[E,j) = IRII-1 » so

that irfaCj) = IklMa) • If n{n(a), v(b), l) + 0 then a + 0 , and hence

by the linear independence of grouplikes, ir(b) = ir(a) . Conversely

n(ir(a), Tr(a), l) = w(ir(a), u(a), l)

= I n(a, a, s)d(2) 2: M(«, a, l ) > 0 . D

We shall call a subhypergroup prenorml, if it satisfies condition (a)

of Proposition 5. If K is a double ideal in kU , the subhypergroup

defined in Proposition 5 is said to be associated with K . The ideal V

is generated as a fe-module by the elements d{a')a - d(a)a' where

a, a' * U and d(a)-n(a') = d(a'Ma) .

PROPOSITION 6. Let k, H, V, * , and J be as in Proposition 5, and
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suppose that J is prenormal. Then the following are equivalent for

sa, b € B :

(i) d(aMb) = d(b)-a(a) ;

(ii) n(n(a), KF), l) * 0 ;

(iii) there exists z € J such that n{b, z, a) t 0 ;

(iv) there exists z (. J such that n(a, b, z) t 0 ;

and if J is finite, these are equivalent to

(v) the coefficient of b in aE,j is nonzero;

(vi) the coefficient of a in b£,j is nonzero. D

The conditions (iii) and (iv) are plainly equivalent whatever the

prenormal subhypergroup J of H . Let us write a ~ b when these

conditions hold. It is elementary to show that ~ is an equivalence

relation. A ~-class we call a coset modulo J .

Proposition 5 can toe stated in the following form.

PROPOSITION 5'. If H is a hypergroup with positive real

coefficients in a field k and if kH -^-* kL is a hypergroup morphism

surjective as a k-linear map (that is, as a cogebra map) then the largest

subcogebra kJ >^-* kH for which the diagram

(t)

commutes is actually a subalgebra as well, so that J is a (prenormal)
subhypergroup and further, any commutative diagram
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where a and a' are morphisms can be completed oommutatively as shown.

In particular, all morphisms have kernels. "

The dual problem is the following. If kJ >—* kH is a prenormal

subhypergroup, what conditions on J ensure that it is a kernel, that is,

that there is a morphism with domain kH such that (t) commutes? We call

the prenormal subhypergroup J normal if this is the case. The

equivalence of this to the following conditions is routine to check

l(3)-(6) assuming J is finite, (7), (8) assuming h abelian):

(l) for all a, b, a i H , the element

£ n(a, b, o^diOdiar^br1

c '~e

of k depends only on the cosets modulo J to which a

and b belong;

(2) the /c-linear span V of the set {dia^a-dib)'2^ \ a ~ b]
is an ideal in kH ;

(3) for a l l a € H , dia^aZj = d{?-j)d{Z,aj)~\aj , where

a '~a

(It) V is the annihilator of , ;
d

(5) a ~ b *=* (iCa)"1^^ = d(b)~XbZj (note that as d(^)~1Ce/ is

idempotent, a '—*• d\Kj \a&j i-s always a ring homomorphism ;

(6) the set \d(a)~ a£,j | a t H> is fe-linearly independent;

(7) J = A = (a € H | Vp € A, p(a) = d(a)} for some set A of

algebra maps kH -*• k ;
I I

(8) J = J~~ .

The following is an extension of the well-known property of abelian

groups.

PROPOSITION 7. Let H be an abelian hypergroup with positive real

coefficients in a splitting field k whose grouplike dual H* also has
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positive coefficients (refer to [3, paragraph \k, proposition]). Then

every subhypergroup of H is normal.

Proof. It is proved in [3] that the category A of abelian hyper-

groups (equivalently, of commutative double algebras) with real

coefficients and morphisms is self dual, that is to say that D : H -*• H*

(equivalently, kH -*• {kH)* J and defined in the obvious way on morphisms

is a functor from this category to its opposite category, and the

isomorphisms #„ : H •*• H** constitute an equivalence of the identity

functor on A with D

The hypergroups with positive real coefficients contained in a fixed

splitting field k c (I , and whose duals have positive real coefficients

form a full subcategory A, of A , and DA = (A ) o p .

Let us call a morphism H • L of hypergroups surjective or

injective according to whether it is surjective or injective on the under-

lying sets of grouplikes (equivalently, on the k modules kH and kL ).

If A is a semisimple commutative algebra over a splitting field k

and if A c A is a fe-subalgebra, then every algebra map p : A •*• k

extends to an algebra map p : A •*• k . Consequently, a morphism H -^+ L

in A, is injective if and only if its dual L* • H* is surjective.

Combining these facts with Proposition 5' we obtain Proposition 7. E

The hypotheses of Proposition 7 are satisfied by G and G if G

is a finite group. The category A is also closed under subhypergroups

and morphic images.

The cokernel arising from a subhypergroup J c H (if H t A, ) we

will denote by H/J , and call the quotient hypergroup of H by J . Note

that {H/J)* is isomorphic with the subhypergroup J of H* .

2.2. COEFFICIENTS OF A QUOTIENT HYPERGROUP

Let H be a hypergroup with positive integral coefficients, and let

J be a normal finite subhypergroup of H . Plainly, each coset of J is

then finite. Let V be the double ideal with which J is associated, and
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•n the quotient map 0)# •* §H/V = E .

For a € H , define a.j - d[aj)d(a)~ Tt(a) , where

d[aj) = g.c.d.W(x) | x € H, x ~ a} .

Let H/J be the hypergroup {(Zj \ a € H} , whose double algebra is E

Put

PROPOSITION 8. The following statements are true:

(i) n{aj, bj, Oj)

T n(a, b, a')d(a') ;T
a '~o

(U) r{aj) = nfcJt aJt l) j

(Hi) \\U\\ = ||J||||///J|| ;

(iv) n[a.j, bj, oj] S.TL , d[aj) € ^ i if IÎ H ^ s a divisor

of \\djW for all aj € H/J , then H/J has its

coefficients in TL

Proof. Statement (i) i s t r i v i a l . Mult iplying i t by ( ) (u)

and summing over the cose t s of a and b we ob ta in the symmetric

express ion

n[aj, bj, Cj)

a ~a b ~o c ~e

whence

n(aJ> bJ> ̂ AojfWcjW'1 = n[oJt bJt aJdiajfWpJ-1 ,

and putting b = a and c = 1 , and using ||l^|| = 1|̂ || , we obtain (ii).

Relation (Hi) is obtained directly from (ii), and there remains the
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proof of (iv). Now it is plain that n[cij, bj, Oj) > 0 for all

a, b, e I H , and that d[a.j) € (l, 2, 3, ...) by its definition.

Let a € H , and let {a , ..., a } be the coset of a . Then by the

definition of d[aj] , there are integers k , ..., k such that

"t—JL

Therefore

k •B
j belongs to the ring Tr(Z#) . I t follows that

i s an integer for a l l a, b, o € H . D

showing that

n[<Zj, bj, Oj

2.3. ||«T|| NEED NOT DIVIDE ||fl||

Consider the hypergroup

H = < i , a, b •. d{a) = 1, d(b) = 5, a2 = 1, ab = ba = &, b2 = 5+5a+3Z>> .

I t i s class l ike abelian with integral coefficients, with norm \\H\\ = 7 .

The subhypergroup <̂  = { l , a) has norm ||^|| = 2 . The quotient H/J. is

given by

= ( l ,

of course, \\H/J\\ = 7/2 , so that H/J does not have coefficients in TL .

However, i f H i s an abelian hypergroup with integral coefficients,

and some form of the dual of H also has integral coefficients (for

example, H* H* , or H* J then every subhypergroup <J c H has norm

dividing ||#|| . The reason i s , of course, tha t \\H/J\\ = \\{H/J)*\\ = Jjc7""
Lj| ,

I
where J , the annihilator of J in H* , is a subhypergroup of H* . By

hypothesis i t s norm is an integer.

3 . Orbit hypergroups

Throughout this section, hypergroups are assumed for convenience to
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have positive integral coefficients, although this is essential only in

those paragraphs which deal with quotient hypergroups.

3.1.

An automorphism of a hypergroup H is an isomorphism of H onto H

(see 1.5). The automorphisms of H form a group aut(ff) . If H and H'

are isomorphic, then so are aut(ff) and aut(fi') .

3.2.

PROPOSITION 9. Let H* be any dual of the dbelian hypergroup H .

Then the mapping <(>->•(<(>*) ~y is a group isomorphism of aut(#) with

aut(#*) (((f)*)"1 has the effect of carrying the element p € H* to the

element p ° <j>~ ) . D

3.3.

Let G be a group. A G-hypergroup H is a hypergroup upon which G

acts on the lef t by means of automorphisms. We say H is trivial if the

action of G on H is t r i v i a l . If H and H' are G-hypergroups, then

a G-morphism § : H •+• H' i s a morphism of hypergroups rendering the

diagram

H

commutative for each g t G . Clearly, if H is a G-hypergroup, then G

acts naturally on RH for any ring R o Z as a group of algebra and

cogebra morphisms, each of which respects the operator 5 .

We may also define a weak QL , G)-morphism to be a weak TL -morphism

rendering (3-1) commutative.

3.4.

In the following, tiX denotes the cardinality of the set X .

PROPOSITION 10. Let H be a G-hypergroup, and suppose that the

orbits of H under G are f in i te . Let G\H denote the set of orbit sums

https://doi.org/10.1017/S0004972700009072 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972700009072


Hypergroups 51

in TLE of the form

[a] = I a1 (a <L H) .
a'tG.a

Then {[a] : a € H} is linearly independent in Q)# and under the ring
multiplication in TLH we have

(3.2) [a][b] = I f I I n ( a \ b\ o))[o]

[c]ZG\H VeG.a b'dG.b >

and also

(3.3) d([a]) = ff[a)d(a) .
Then G\H is a hypergroup with coefficients in TL } and

(3.5) l|G\fl|| = IIfill if H is finite.

Proof. Relation (3.2) is obtained directly, (3.3) is obvious. Now [l]

occurs in [a][b] in the decomposition (3.2) if and only if for some

9i' g2 € G ' we have n(gia' gj}' -O * ° ; that is gia = gi> • This

means that [a] = [b] , and so (7\# is a hypergroup. Finally, (3.h) is

computed directly from the relation r([a]) = n([a], [a], l) . D

3.5.

We shall call G\H the orbit hypergroup of H under G . Clearly,

for any ring i? 3 2 , R(G\H) is the set of fixed points of the double

algebra RH under the action of G .

If <(> : H -»• H' is a G-morphism (respectively weak GZ , <7)-morphism)

then (j)(G\5) is fixed elementwise by the action of G on H' , and it is

easy to see that we thus obtain a morphism (respectively weak QL , G)-

morphism)

ff\<j> : G\H •* G\H' .

THEOREM 2. The mappings H *-*• G\H t $ i—* G\<f> constitute a functor
from the category of orbit-finite G-hypergroups and G-morphisms
[respectively weak QL , G)-morphisms) to the category of trivial G-hyper-
groups and hypergroup morphisms (respectively weak TL*-morphisms). D
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3.6.

The following i s immediate from Proposition 10.

PROPOSITION 11. If H is olasslike with positive integral

coefficients, then so is G\H . •

3.7. ORBITS IN STAGES

Let H be a G-hypergroup, and l e t ty : G •* G be a group

homomorphism. Then putting g .x = ty[gS) -x [x £ H, g € G ) makes H

into a G -hypergroup. If <HG,) i s normal in G , then putting

g-[a] = [ga] [g d G, a 6 H) makes G \H into a G-hypergroup, on which

ty[G.J acts t r i v i a l l y . Thus G \B may be regarded as a (<?/ijJ(G))-hyper-

group, and we have a natural isomorphism between G\H, [G/Gj)\{G \H) , and

3.8. REMARKS

(i) Let G be a group, and let it act on itself by conjugation.

Then G\G is by definition the conjugacy class hypergroup G . Relation

(3.5) recovers the class equation for G .

(ii) If N is a normal subgroup of G and (. : N •+ G is the

inclusion mapping, then G\L : G\N -*• G\G maps G\N isomorphically onto a

subhypergroup of G , namely, to the hypergroup of all ff-classes which are

contained in N .

(iii) G\N and G\N are isomorphic by (i) and 3.7-

3.9. THE DUAL OF AN ORBIT HYPERGROUP

Let be a finite G-hypergroup with coefficients in a splitting

field k , of characteristic not dividing ffG . Then k(G\H*) is the

subalgebra of kH* consisting of those linear functionals on kH that are

fixed under the action of G given by

(0,p)(aO = P O T 1 . * ) , x ikH , p e kH* •,

see Proposition 9 above. If p (. k(G\H*) , then p has a restriction to

k(G\H) 6 kH which we denote K(p) .
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THEOREM 3. The napping < is a hypergroup isomorphism of k(G\H*)

onto k(G\H)* .

Proof. We first show that K is surjective. Let n € k(.G\H)* .

Then n is a linear functional on k(G\H) c kH , and so has an extension

D* to all of kH . Put p = (#G)"1 £ g.n* • Then p € kH* and is

plainly fixed by G , so p € k(G\H*) . If x 6 fc(G\#) , then x € fcfl and

C fixes x . Hence

p(x) =

Thus <(p) = n .

Now we show K is injective. Suppose p € k(G\H*) and <(p) = 0 ;

that is, that p(x) = 0 whenever x € kH is fixed by G . Let x £ kH .

Then

1 1 g.p\(y) =
gZG >

= o ,

since the argument is fixed by G . Hence p = 0 .

As an algebra, k(G\H*) is a subalgebra of kH* . Accordingly, if

p , p e k{G\H*) and x £ kH is group like, then

(piP2) (xQ) = pl(x)p2(x0) . Now a typical grouplike in k{G\H) has the

form x = (#G)~ £ 9-xo » w n e r e x
0
 i s grouplike in kH . Thus we

gZG

easily see that

This shows that K is an algebra map.

It is plain that K respects the conjugation on k(G\H*) . We have

now but to show that K is a cogebra map, that is, if y i G\H* is group-

like, then K ( Y ) is grouplike in (G\H)* .

Now Y € k(G\H*) being grouplike signifies that for some grouplike

T € kH* , Y = (#G)~ E ff.T . Now K ( T ) is the restriction of T to
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k(G\H) , and K(Y) = (0G)"1 £ K(?-T) • The statement that T € kH* is

grouplike entails that T : kH •*• k is an algebra map. Consequently, if

x, y € k{G\H) , since an/ € k(G\H) is fixed by # , we obtain

I i[g-\x, y))
giG

X T(X)T(J/)
gdG

while similarly K(Y)(*) = T(X) and K(Y)(J/) = T(J/) . Thus

K(Y) : k(G\H) •+ k is an algebra map, so is grouplike in k(.G\H)* . This

completes the proof. E

3.10. ORBIT HYPERGROUPS AND QUOTIENT HYPERGROUPS

Let H be an orbit finite ff-hypergroup with positive integral

coefficients. Let J S H be a normal G-invariant subhypergroup of H .

Then plainly the action of G respects cosets, and hence the double ideal

V with which J is associated is ff-invariant. Therefore H/J becomes a

G-hypergroup under the quotient action of G on $H/V , and the quotient

map IT : Q# •*• QH/V is a ff-morphism. That is to say Tr : H -*• H/J is a

G-morphism. The following proposition is now easily proved.

PROPOSITION 12. G V is a normal subhypergroup of G\H , and the

hypergroups

G\(H/J) and (G\B)/(G\J)

are isomorphic. D

The following related result is a consequence of Clifford's Theorem on

restriction of characters to a normal subgroup, and is an analogue of [7,

Theorem 2.7].

PROPOSITION 13. Let G be a finite group, N a normal subgroup of

G , G the character hypergroup of G , N the character group of N .

Let G act on N , hence on N , by conjugation. Let J be the set of

characters X € G which are constant on cosets of N . Then J is a

normal subhypergroup of G .
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Let res(G, tf) be the set of restrictions to N of characters of

G y with pointwise multiplication. Then res(G, N) is a hypergroup, and

indeed the three hypergroups

res(G, N), G\tf, G/J

are isomorphic. Q
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