Prime and Primary Ideals in a Prüfer Order in a Simple Artinian Ring with Finite Dimension over its Center

H. Marubayashi and A. Ueda

Abstract. Let Q be a simple Artinian ring with finite dimension over its center. An order R in Q is said to be Prüfer if any one-sided R-ideal is a progenerator. We study prime and primary ideals of a Prüfer order under the condition that the center is Prüfer. Also we characterize branched and unbranched prime ideals of a Prüfer order.

0 Introduction

Let D be a domain with quotient field F and let Q be a simple Artinian ring with finite dimension over its center F. A subring R with $D=Z(R)$, the center of R, is called an order in Q if $F R=Q$. Then, of course, R is a prime Goldie ring with quotient ring Q. Following [AD], R is a Prüfer order in Q if any one-sided R-ideal is a progenerator.

In this paper, we shall study prime and primary ideals of a Prüfer order R in Q under the condition that $D=Z(R)$ is Prüfer. Particularly we give in Theorem 2.7 a generalization of well-known results about branched and unbranched prime ideals of commutative Prüfer domains (cf. [Gi, Theorem 23.3]). If $D=Z(R)$ is a Prüfer domain, then R is a Prüfer order in Q if and only if R_{m} is a semi-local Bezout order in Q for any maximal ideal m of D (cf. [D3, Theorem 3] and [M2, Theorem 2.5]). In [G2], Gräter has characterized a semi-local Bezout order R as follows; $R=R_{1} \cap \cdots \cap R_{n}$, where R_{1}, \ldots, R_{n} are incomparable Dubrovin valuation rings of Q having the intersection property. By using this property, it is shown in Theorem 1.5 that there exists a bijective correspondence between the set of all primary ideals of R and the set of all primary ideals of $R_{i}, 1 \leq i \leq n$. This theorem will be applied in Section 2 to characterize branched and unbranched prime ideals of a Prüfer order.

We use \subset for proper inclusion and \subseteq for inclusion.

1 The Case of Semi-Local Bezout Orders

In this section, we shall study prime and primary ideals in a semi-local Bezout order in a simple Artinian ring with finite dimension over its center.

First, we shall investigate primary ideals and prime radicals of a prime Goldie ring and its central localization. An element a of a ring R is called strongly nilpotent if every sequence $a_{0}, a_{1}, a_{2}, \ldots$, such that $a_{0}=a, a_{n+1} \in a_{n} R a_{n}$ is ultimately zero. Clearly, every strongly nilpotent element is nilpotent. Let A be an ideal of R. Then we denote by \sqrt{A} the prime radical of A, that is, $\sqrt{A}=\bigcap\{P$: prime ideals of $R \mid P \supseteq A\}$. It is well known that the

[^0]prime radical \sqrt{A} of A is the set of all elements of R which are strongly nilpotent modulo A (cf. [L, p. 56, Proposition 1]). So, we have

Lemma 1.1 Let $R \subseteq S$ be rings and let A^{\prime} be an ideal of S with $A=A^{\prime} \cap R$. Then $\sqrt{A^{\prime}} \cap R \subseteq$ \sqrt{A}.

An ideal A of a ring R is called a right (\sqrt{A})-primary ideal if $x R y \subseteq A$ and $y \notin \sqrt{A}$, then $x \in A$. It is easily shown that an ideal A is right primary if and only if $B C \subseteq A$ implies $B \subseteq A$ or $C \subseteq \sqrt{A}$ for ideals B and C of R. Similarly, a left primary ideal is defined. An ideal A of a ring R is said to be (\sqrt{A})-primary if it is right and left primary.

Lemma 1.2 Let R be a prime Goldie ring, let $\mathcal{S}(\not \supset 0)$ be a multiplicatively closed subset of $Z(R)$ and let A be an ideal of R such that $A \cap \mathcal{S}=\varnothing$. Then
(1) $\sqrt{A} \cap \mathcal{S}=\varnothing$,
(2) if A is one-sided primary, then
(i) $A_{\mathcal{S}} \cap R=A$,
(ii) $\sqrt{A_{\mathcal{S}}}=(\sqrt{A})_{S}$ and
(iii) $\sqrt{A_{\mathcal{S}}} \cap R=\sqrt{A}$.

Proof (1) is clear since any element of \sqrt{A} is nilpotent modulo A.
(2) (i) is obvious. To prove (ii), let P^{\prime} be any prime ideal of $R_{\mathcal{S}}$ such that $A_{\mathcal{S}} \subseteq P^{\prime}$. Then we have $A \subseteq A_{\mathcal{S}} \cap R \subseteq P^{\prime} \cap R$ and $P^{\prime} \cap R$ is a prime ideal of R, because $R_{\mathcal{S}}$ is a central localization. Hence $\sqrt{A} \subseteq P^{\prime} \cap R$ and so $(\sqrt{A})_{\mathcal{S}} \subseteq\left(P^{\prime} \cap R\right)_{\mathcal{S}}=P^{\prime}$, which implies $(\sqrt{A})_{\mathcal{S}} \subseteq \sqrt{A_{\mathcal{S}}}$. To prove the converse inclusion, let $x=a s^{-1} \in \sqrt{A_{\mathcal{S}}}$, where $a \in R$ and $s \in \mathcal{S}$. Then, since $a=x s \in \sqrt{A_{\delta}}, a$ is strongly nilpotent modulo A_{δ}, and so is modulo A, because $A_{\mathcal{S}} \cap R=A$. Thus $a \in \sqrt{A}$ and hence $x \in(\sqrt{A})_{\mathcal{S}}$. (iii) follows from Lemma 1.1 and (ii).

Let $\operatorname{Spec}(R)$ be the set of all prime ideals of a ring R and let $\operatorname{Pr}(R)$ be the set of all right primary ideals of R. Then, from Lemma 1.2, we easily obtain the following.
Lemma 1.3 Let R be a prime Goldie ring and let $\mathcal{S}(\not \supset 0)$ be a multiplicatively closed subset of $Z(R)$. Then
(1) The mappings $P \rightarrow P^{\prime}=P_{\mathcal{S}}$ and $P^{\prime} \rightarrow P=P^{\prime} \cap R$ give a bijective correspondence between $\{P \in \operatorname{Spec}(R) \mid P \cap \mathcal{S}=\varnothing\}$ and $\operatorname{Spec}\left(R_{\mathcal{S}}\right)$, where $P \in \operatorname{Spec}(R)$ with $P \cap \mathcal{S}=\varnothing$ and $P^{\prime} \in \operatorname{Spec}\left(R_{S}\right)$.
(2) The mappings $A \rightarrow A^{\prime}=A_{\mathcal{S}}$ and $A^{\prime} \rightarrow A=A^{\prime} \cap R$ give a bijective correspondence between $\{A \in \operatorname{Pr}(R) \mid A \cap \mathcal{S}=\varnothing\}$ and $\operatorname{Pr}\left(R_{\mathcal{S}}\right)$, where $A \in \operatorname{Pr}(R)$ with $A \cap \mathcal{S}=\varnothing$ and $A^{\prime} \in \operatorname{Pr}\left(R_{\mathcal{S}}\right)$.

In the remainder of this section, let Q be a simple Artinian ring with finite dimension over its center F and let R be an order in Q. An order R in Q is said to be Bezout if any one-sided finitely generated R-ideal is principal. We say that R is semi-local if $R / J(R)$ is a semi-simple Artinian ring, where $J(R)$ is the Jacobson radical of R.

If R is a semi-local Bezout order in Q, then, by [G2, Corollary 3.5], we have $R=R_{1} \cap \cdots \cap$ R_{n}, where each R_{i} is a Dubrovin valuation ring of Q and R_{1}, \ldots, R_{n} have the intersection
property, that is, the mapping $S \rightarrow J(S) \cap R$ is a well-defined anti-ordered isomorphism between $\mathcal{B}\left(R_{1}\right) \cup \cdots \cup \mathcal{B}\left(R_{n}\right)$ and $\operatorname{Spec}(R)$, where $S \in \mathcal{B}\left(R_{i}\right)=\left\{S:\right.$ overring of $\left.R_{i}\right\}$ ($1 \leq i \leq n$). Further, by [G2, Theorem 2.6], for any prime ideal P of $R, C(P)=\{c \in R \mid$ [$c+P$] is regular in $R / P\}$ is a regular Ore set of R and R_{P} is a Dubrovin valuation ring of Q such that $J\left(R_{P}\right) \cap R=P$. Then we have the following.
Lemma 1.4 Let $R=R_{1} \cap \cdots \cap R_{n}$ be a semi-local Bezout order in Q. Assume that A and A^{\prime} are right primary ideals of R and R_{i} (for some i) respectively satisfying $A=A^{\prime} \cap R$ and $P=\sqrt{A}=\sqrt{A^{\prime}} \cap R$, and P is a prime ideal of R. Then $A_{P}=A^{\prime}$ and it is a $J\left(R_{P}\right)$-primary ideal of R_{P}.

Proof Set $P^{\prime}=\sqrt{A^{\prime}}$, a prime ideal of R_{i} by [MMU, Lemma 1], and set $S=R_{i P^{\prime}}$. Then it follows from [D2, Section 2, Theorem 1], [MMU, Lemmas 6 and 8] and [G2, Theorem 2.5] that $P^{\prime}=J(S), S=R_{P}$ and A^{\prime} is a $J\left(R_{P}\right)$-primary ideal of S. Hence $A_{P}=\left(A^{\prime} \cap R\right)_{P}=$ $A_{P}^{\prime} \cap R_{P}=A^{\prime} \cap R_{P}=A^{\prime}$.

If $R=R_{1} \cap \cdots \cap R_{n}$ is a semi-local Bezout order in Q, where R_{1}, \ldots, R_{n} are Dubrovin valuation rings of Q having the intersection property, then, by [D2, Section 2, Theorem 1] and the definition of the intersection property, the mapping $P^{\prime} \rightarrow P=P^{\prime} \cap R$ is a welldefined inclusion preserving bijective correspondence between $\operatorname{Spec}\left(R_{1}\right) \cup \cdots \cup \operatorname{Spec}\left(R_{n}\right)$ and $\operatorname{Spec}(R)$. Concerning primary ideals, we have the following.
Theorem 1.5 Let $R=R_{1} \cap \cdots \cap R_{n}$ be a semi-local Bezout order in a simple Artinian ring Q with finite dimension over its center F, where R_{1}, \ldots, R_{n} are incomparable Dubrovin valuation rings of Q having the intersection property. Then the prime radical of any right primary ideal of R is a prime ideal, and the mappings $A^{\prime} \rightarrow A=A^{\prime} \cap R$ and $A \rightarrow A^{\prime}=A_{P}$ give a bijective correspondence between $\operatorname{Pr}\left(R_{1}\right) \cup \cdots \cup \operatorname{Pr}\left(R_{n}\right)$ and $\operatorname{Pr}(R)$ satisfying $\sqrt{A}=\sqrt{A^{\prime}} \cap R$, where $A^{\prime} \in \operatorname{Pr}\left(R_{i}\right)$ for some i and $P=\sqrt{A}$.

Proof We define $\varphi: \operatorname{Pr}\left(R_{1}\right) \cup \cdots \cup \operatorname{Pr}\left(R_{n}\right) \rightarrow \operatorname{Pr}(R)$ by $\varphi\left(A^{\prime}\right)=A^{\prime} \cap R$, where $A^{\prime} \in \operatorname{Pr}\left(R_{i}\right)$ for some i. First of all, we have to show that φ is well-defined. To do this, let $A^{\prime} \in \operatorname{Pr}\left(R_{i}\right)$ and let $P^{\prime}=\sqrt{A^{\prime}}$, a prime ideal of R_{i} by [MMU, Lemma 1]. If we set $S=R_{i P^{\prime}}$, then S is a Dubrovin valuation ring of Q with $J(S)=P^{\prime}$ and A^{\prime} is a P^{\prime}-primary ideal of S by [D2, Section 2, Theorem 1] and [MMU, Lemmas 6 and 8]. Thus $P=P^{\prime} \cap R$ is a prime ideal of R and $R_{P}=S$ by [G2, Theorem 2.5]. Set $A=A^{\prime} \cap R$. Then it is clear that $\sqrt{A} \subseteq P$. On the other hand, $P=\sqrt{A^{\prime}} \cap R \subseteq \sqrt{A}$ by Lemma 1.1. Hence $P=\sqrt{A}$, a prime ideal. To prove that A is a right primary ideal of R, suppose that $a R b \subseteq A$ and $b \notin P$. Since R is a PI ring, $R b R \cap C(P) \neq \varnothing$. This implies that $a \in a R_{P}=a(R b R)_{P} \subseteq(a R b R)_{P} \subseteq A_{P}=A^{\prime}$. Thus $a \in A^{\prime} \cap R=A$, proving that A is right primary. Hence φ is well-defined.

To prove that φ is one-to-one, suppose that $A^{\prime} \cap R=A=A_{1}^{\prime} \cap R$, where $A^{\prime} \in \operatorname{Pr}\left(R_{i}\right)$ and $A_{1}^{\prime} \in \operatorname{Pr}\left(R_{j}\right)$ for some i and j. Set $P=\sqrt{A}$. Then, by Lemma 1.4, $A^{\prime}=A_{P}=A_{1}^{\prime}$, proving that φ is one-to-one.

Next, we shall prove that φ is onto by induction on $[Q: F]$. Since the case of $[Q: F]=1$ is clear, we may assume that $[Q: F]>1$ and let A be a right primary ideal of R. Let $D=$ $Z(R)$ and let m_{1}, \ldots, m_{k} be the full set of maximal ideals of D. Since $A=A_{m_{1}} \cap \cdots \cap A_{m_{k}}$, we may assume that $A_{m_{1}} \subset R_{m_{1}}$, that is, $A \cap\left(D \backslash m_{1}\right)=\varnothing$. Then, by Lemma 1.3, $A_{m_{1}}$ is right primary with $A_{m_{1}} \cap R=A$, and $\sqrt{A_{m_{1}}} \cap R=\sqrt{A}$ by Lemma 1.2. There are two cases.

Case 1 In the case $R_{m_{1}}$ is a Dubrovin valuation ring of Q. Then, since $R_{1_{m_{1}}}, \ldots, R_{n m_{1}}$ are linearly ordered by inclusion, $R_{m_{1}}=R_{i m_{1}}$ for some i. By [MMU, Lemma 1], $P^{\prime}=\sqrt{A_{m_{1}}}$ is a prime ideal of $R_{i m_{1}}$. Set $S=\left(R_{i m_{1}}\right)_{P^{\prime}}$, a Dubrovin valuation ring with $J(S)=P^{\prime}$ by [D2, Section 2, Theorem 1], and $A_{m_{1}}$ is a $J(S)$-primary ideal of $R_{i m_{1}}$ which is an ideal of S by [MMU, Lemma 6]. Hence $A_{m_{1}} \in \operatorname{Pr}\left(R_{i}\right)$ by [MMU, Lemma 6] and $A=A_{m_{1}} \cap R$ by Lemma 1.3. $P=\sqrt{A}$ is a prime ideal of R, because $\sqrt{A}=\sqrt{A_{m_{1}}} \cap R=J(S) \cap R$ by Lemma 1.2 and the intersection property.

Case 2 In the case $R_{m_{1}}$ is not a Dubrovin valuation ring. Then $R_{m_{1}}=R_{1 m_{1}} \cap \cdots \cap R_{n m_{1}}=$ $R_{1 m_{1}} \cap \cdots \cap R_{l_{m_{1}}}$, where $R_{1 m_{1}}, \ldots, R_{l_{m_{1}}}$ are incomparable and $Z\left(R_{m_{1}}\right)=D_{m_{1}}$ is a valuation ring. By [G1, p. 835, Case 2], there exists a Dubrovin valuation ring S of Q integral over $W=Z(S)$ such that
(a) $S \supseteq R_{1 m_{1}}, \ldots, R_{l_{m_{1}}}$ and
(b) $[Q: F]>[\bar{S}: Z(\bar{S})]$, where $\bar{S}=S / J(S)$.

By [G1, Lemma 6.4], we have the following two cases:
(i) In the case $A_{m_{1}} \supseteq J(S)$. If $A_{m_{1}}=J(S)$, then $A_{m_{1}} \in \operatorname{Pr}\left(R_{i}\right), 1 \leq i \leq l$. Thus we may assume that $A_{m_{1}} \supset J(S)$. Since $\widetilde{R_{1 m_{1}}}, \ldots, \widetilde{R_{n m_{1}}}$ have the intersection property by [G1, Proposition 6.3] where $\widetilde{R_{i m_{1}}}=R_{i m_{1}} / J(S)$, there exists an $\tilde{A}^{\prime} \in \operatorname{Pr}\left(\widetilde{R_{i m_{1}}}\right)$ for some i with $\widetilde{A_{m_{1}}}=\tilde{A}^{\prime} \cap \widetilde{R_{m_{1}}}$ and $\sqrt{\widetilde{A_{m_{1}}}}=\sqrt{\tilde{A}^{\prime}} \cap \widetilde{R_{m_{1}}}$ by induction hypothesis. It follows from [MMU, Lemmas 6 and 8] that there exists an overring \tilde{T} of $\widetilde{R_{i m_{1}}}$ such that \tilde{A}^{\prime} is a $J(\tilde{T})$-primary ideal of \tilde{T}. By [D2, Section 1, Proposition 2], there exists a Dubrovin valuation ring T of Q such that $S \supseteq T \supseteq R_{i m_{1}}$ with $\tilde{T}=T / J(S)$. Let A^{\prime} be the inverse image of \tilde{A}^{\prime} in T. Then A^{\prime} is a $J(T)$-primary ideal of T since $J(\tilde{T})=J(T) / J(S)$. Hence $A^{\prime} \in \operatorname{Pr}\left(R_{i}\right)$ by [MMU, Lemma 6]. It is easy to see that $A_{m_{1}}=A^{\prime} \cap R_{m_{1}}$ and $\sqrt{A_{m_{1}}}=J(T) \cap R_{m_{1}}$, because $\widetilde{\sqrt{A_{m_{1}}}}=\sqrt{\widetilde{A_{m_{1}}}}=J(\tilde{T}) \cap \widetilde{R_{m_{1}}}=\widetilde{J(T)} \cap \widetilde{R_{m_{1}}}$. Therefore, by Lemmas 1.2 and 1.3, we have $A=A_{m_{1}} \cap R=A^{\prime} \cap R_{m_{1}} \cap R=A^{\prime} \cap R$ and $\sqrt{A}=\sqrt{A_{m_{1}}} \cap R=J(T) \cap R$, a prime ideal of R by [G2, Theorem 2.5].
(ii) In the case $J(S) \supset A_{m_{1}}$. Since $\sqrt{A_{m_{1}}}$ is a semi-prime ideal of $R_{m_{1}}$ and $J(S) \supseteq \sqrt{A_{m_{1}}}$, $\sqrt{A_{m_{1}}}$ is an ideal of S by [G1, Lemma 6.4]. We claim that $A_{m_{1}}$ is also an ideal of S. Before proving this claim, we note that $S=\left(R_{m_{1}}\right)_{p}$, where $p=J(W)$. It is clear that $S \supseteq\left(R_{m_{1}}\right)_{p}$ and $Z\left(\left(R_{m_{1}}\right)_{p}\right)=\left(D_{m_{1}}\right)_{p}=W$. Thus $\left(R_{m_{1}}\right)_{p}$ is a Bezout W-order and hence $S=\left(R_{m_{1}}\right)_{p}$ by [M1, Theorem 3.4]. Thus, to prove the claim, it is enough to show that $c^{-1} A_{m_{1}} \subseteq A_{m_{1}}$ for any $c \in D_{m_{1}} \backslash p$. Since $c^{-1} A_{m_{1}} \subseteq S \cdot J(S)=J(S) \subseteq R_{m_{1}}, c^{-1} A_{m_{1}}$ is an ideal of $R_{m_{1}}$. Now $A_{m_{1}}=c \cdot c^{-1} A_{m_{1}}$ and $c \notin \sqrt{A_{m_{1}}}$ imply that $c^{-1} A_{m_{1}} \subseteq A_{m_{1}}$. In particular, $A_{m_{1}}=\left(A_{m_{1}}\right)_{p}$. Hence, by Lemma 1.3, $A_{m_{1}}$ is a primary ideal of $S=\left(R_{m_{1}}\right)_{p}$. Set $P^{\prime}=\sqrt{A_{m_{1}}}$, a prime ideal of S by [MMU, Lemma 1], and set $T=S_{P^{\prime}}$. Then $J(T)=\sqrt{A_{m_{1}}}$ by [D2, Section 2, Theorem 1] and thus, by Lemma 1.2, $\sqrt{A}=\sqrt{A_{m_{1}}} \cap R=J(T) \cap R$, a prime ideal of R by [G2, Theorem 2.5]. Since $T \supseteq S \supseteq R_{i m_{1}} \supseteq R_{i}(i=1, \ldots, l)$, it is clear from [MMU, Lemma 6] that $A_{m_{1}} \in \operatorname{Pr}\left(R_{i}\right)$ and $A=A_{m_{1}} \cap R$. Thus φ is onto. We have also proved that $P=\sqrt{A}$ is a prime ideal of R for any $A \in \operatorname{Pr}(R)$.

To completes the proof, it only remains to show that $A^{\prime}=A_{P}$ for any $A \in \operatorname{Pr}(R)$ and for any $A^{\prime} \in \operatorname{Pr}\left(R_{i}\right)$ with $A^{\prime} \cap R=A$, where $P=\sqrt{A}$. However, this always holds by Lemma 1.4, completing the proof.

We conclude this section with the following results deriving from Lemma 1.4 and Theorem 1.5.

Corollary 1.6 Let A be a right primary ideal of a semi-local Bezout order R in Q with $P=$ \sqrt{A}. Then A_{P} is a $J\left(R_{P}\right)$-primary ideal of R_{P} with $A=A_{P} \cap R$.

Corollary 1.7 Let A be an ideal of a semi-local Bezout order R in Q. Then A is right primary if and only if A is left primary. In this case, $A_{P}={ }_{P} A$ holds, where $P=\sqrt{A}$.

Proof Let A be right primary and assume that $a R b \subseteq A$ for $a \in R \backslash P$ and $b \in R$. Then ${ }_{P}(R a R)={ }_{P} R=R_{P}$. Hence $b \in R_{P} b={ }_{P}(R a R) b=R_{P} R a R b \subseteq R_{P} A \subseteq R_{P} A_{P}=A_{P}$ since A_{P} is an ideal of R_{P}, and so $b \in A_{P} \cap R=A$ by Corollary 1.6. Therefore, A is left primary. The converse is proved similarly. Because A_{P} and ${ }_{P} A$ are both ideals of R_{P}, we have $A_{P}={ }_{P} A$.

2 Prime and Primary Ideals of a Prüfer Order

Throughout this section, let R be a Prüfer order in a simple Artinian ring Q with finite dimension over its center F and suppose that $Z(R)$ is Prüfer. Then we note that R_{M} exists and is a Dubrovin valuation ring for any maximal ideal M of R by [D3, Theorem 3]. In this section, we shall study primary ideals of R and characterize branched and unbranched prime ideals of R.

Lemma 2.1 Let A be an ideal of R. Then A is right primary if and only if it is left primary. In this case, \sqrt{A} is prime.

Proof Assume that A is right primary. Then for any maximal ideal m of D with $A \cap(D \backslash$ $m)=\varnothing, A_{m}$ is right primary by Lemma 1.3, so A_{m} is left primary by Corollary 1.7. Hence, by the left version of Lemma 1.3, $A=A_{m} \cap R$ is left primary. The converse is proved similarly. Further, $\sqrt{A_{m}}$ is prime by Theorem 1.5, and so $\sqrt{A}=\sqrt{A_{m}} \cap R$ is also prime by Lemmas 1.2 and 1.3.

Lemma 2.2 Let A be an ideal of R with $P=\sqrt{A}$ prime. Suppose that A_{M} is an ideal of R_{M} and is P_{M}-primary for every maximal ideal M of R. Then A is P-primary.

Proof Assume that $x R y \subseteq A$, where $x \in R$ and $y \in R \backslash P$. Let M be any maximal ideal of R. If $P \nsubseteq M$, then $P \cap C(M) \neq \varnothing$ and so $A \cap C(M) \neq \varnothing$. Hence $A_{M}=R_{M} \ni x$. If $P \subseteq M$, then $C(M) \subseteq C(P)$ and $R_{M} \subseteq R_{P}$ by [MM2, Lemmas 1 and 2]. So P_{M} is a prime ideal of R_{M}. Since R_{M} is a Dubrovin valuation ring and $R_{P}=\left(R_{M}\right)_{P_{M}}, A_{M}$ is an ideal of R_{P} by the assumption and [MMU, Lemma 6]. Hence we obtain that $A_{M}=A_{P}$. Now $R y R \cap C(P) \neq \varnothing$ because R is a PI ring, and so we have $(R y R)_{P}=R_{P}$. It follows that $x \in x R_{P}=x R(R y R)_{P} \subseteq(x R y R)_{P} \subseteq A_{P}=A_{M}$. Thus $x \in \bigcap A_{M}=A$ by [M2, Lemma 2.4], and so A is P-primary.

Lemma 2.3 Let A be a P-primary ideal of R. Then $A_{M}={ }_{M} A$ for any maximal ideal M of R. Further, if M is a maximal ideal of R with $P \subseteq M$, then A_{M} is a P_{M}-primary ideal of R_{M}.

Proof Let A be a P-primary ideal of R and let M be a maximal ideal of R. If $P \nsubseteq M$, then $A \nsubseteq M$. So $A \cap C(M) \neq \varnothing$ and we have $A_{M}=R_{M}={ }_{M} A$. Next assume that $P \subseteq M$ and set $m=M \cap D$, a maximal ideal of D. By [M2, Theorem 2.5] and [M1, Lemma 2.4], R_{m} is a semi-local Bezout order. Thus, by Lemma 1.3, we may assume that R is a semi-local Bezout order with D a valuation ring. By Lemma 1.4, Theorem 1.5 and Corollary 1.7, A_{P} is P^{\prime}-primary and ${ }_{P} A=A_{P}$, where $P^{\prime}=J\left(R_{P}\right)$. Set $p=D \cap P$. Then $R_{P}=\left(R_{M}\right)_{P_{M}}=\left(R_{M}\right)_{p}$ by [D2, Section 2, Theorem 1] (note that $Z\left(R_{M}\right)=D=Z(R)$). Thus we have $A_{P}=\left(A_{M}\right)_{P_{M}}=\left(A_{M}\right)_{p}$. Now we show that $A_{P} \cap R_{M}=\left(A_{M}\right)_{p} \cap R_{M}=A_{M}$. To show this, let $x \in\left(A_{M}\right)_{p} \cap R_{M}$. Then $x d \in A_{M}$ for some $d \in D \backslash p$. By the Ore condition, there exists $c \in C(M)$ such that $x c \in R$ and $x d c \in A$. Then $A \supseteq x d c R=x c R d$ and $d \notin P$ imply $x c \in A$, and $x \in A_{M}$ follows. In a similar way, we have ${ }_{P} A \cap R_{P}={ }_{M} A$ and hence ${ }_{M} A={ }_{P} A \cap R_{M}=A_{P} \cap R_{M}=A_{M}$. Further, by Lemma 1.3, A_{M} is a P_{M}-primary ideal of R_{M}, because A_{P} is P^{\prime}-primary.

Lemma 2.4 Let A_{1} and A_{2} be P-primary ideals of R. Then $A_{1} A_{2}$ is also a P-primary ideal.

Proof It is clear that $\sqrt{A_{1} A_{2}}=P$. Let M be any maximal ideal of R. If $P \nsubseteq M$, then $A_{1} A_{2} \nsubseteq M$ and so $\left(A_{1} A_{2}\right)_{M}=R_{M}={ }_{M}\left(A_{1} A_{2}\right)$. If $P \subseteq M$, then, by Lemma 2.3, we have $\left(A_{1} A_{2}\right)_{M}=A_{1} A_{2} \cdot R_{M}=A_{1} R_{M} \cdot A_{2} R_{M}=R_{M} A_{1} \cdot R_{M} A_{1}=R_{M}\left(A_{1} A_{2}\right)={ }_{M}\left(A_{1} A_{2}\right)$, an ideal of R_{M}. By Lemma 2.3, $A_{1 M}$ and $A_{2 M}$ are P_{M}-primary ideals of a Dubrovin valuation ring R_{M}. This implies that $\left(A_{1} A_{2}\right)_{M}=A_{1 M} \cdot A_{2 M}$ is a P_{M}-primary ideal of R_{M} by [MMU, Corollary 7]. Therefore $A_{1} A_{2}$ is P-primary by Lemma 2.2.
Lemma 2.5 Let P be a prime ideal of R and let $P^{\prime}=P_{P}$. Then the mappings

$$
P_{1} \rightarrow P_{1}^{\prime}=P_{1 P} \quad \text { and } \quad P_{1}^{\prime} \rightarrow P_{1}=P_{1}^{\prime} \cap R
$$

give a bijective correspondence between the set $\left\{P_{1} \in \operatorname{Spec}(R) \mid P_{1} \subseteq P\right\}$ and the set $\left\{P_{1}^{\prime} \in\right.$ $\left.\operatorname{Spec}\left(R_{P}\right) \mid P_{1}^{\prime} \subseteq P^{\prime}\right\}$. In particular, the set $\left\{P_{1} \in \operatorname{Spec}(R) \mid P_{1} \subseteq P\right\}$ is linearly ordered by inclusion.

Proof If P is a prime ideal of R such that $P_{1} \subseteq P$, then $C(P) \subseteq C\left(P_{1}\right)$ by [MMU, Lemma 1]. Hence $P_{1 P} \cap R=P_{1}$ and $P_{1 P}$ is a prime ideal of R_{P}. Conversely, let $P_{1}^{\prime}\left(\subseteq P^{\prime}\right)$ be a prime ideal of R_{P}. Then there exists a Dubrovin valuation $\operatorname{ring} S\left(\supseteq R_{P}\right)$ with $J(S)=P_{1}^{\prime}$ by [D2, Theorem 1, Section 2], and so $P_{1}:=P_{1}^{\prime} \cap R(\subseteq P)$ is a prime ideal of R such that $P_{1}^{\prime}=P_{1 P}$ by [M2, Proposition 2.7]. The last statement follows from [D1, Section 2, Theorem 4].

A prime ideal P of R is said to be branched if there exists a P-primary ideal A of R such that $A \neq P$. Otherwise, P is called an unbranched prime ideal.

Lemma 2.6 Let P be a prime ideal of R. Then
(1) P is branched if and only if P_{P} is branched.
(2) P is idempotent if and only if P_{P} is idempotent.

Proof As in the proof of Lemma 2.3, we may assume that R is semi-local Bezout. Then (1) follows from Theorem 1.5 and Corollary 1.6.
(2) If P is idempotent, then it is clear that P_{P} is idempotent. The converse follows from Corollary 1.6 and Lemma 2.4.

Now we are going to prove the main theorem of this paper concerning branched and unbranched prime ideals of a Prüfer order which extend our earlier results in the case of Dubrovin valuation rings.

Theorem 2.7 Let R be a Prüfer order in a simple Artinian ring Q with finite dimension over its center F. Suppose that the center of R is a Prüfer domain. Let P be a prime ideal of R.
(1) If P is branched and $P \neq P^{2}$, then
(i) $\left\{P^{k} \mid k>0\right\}$ is the full set of P-primary ideals of R, and
(ii) $P_{0}=\bigcap_{n=1}^{\infty} P^{n}$ is a prime ideal and there are no prime ideals P_{1} such that $P_{0} \subset$ $P_{1} \subset P$.
(2) If P is branched and $P=P^{2}$, then
(i) for any P-primary ideal $A(\neq P)$,

$$
P_{0}=\bigcap_{n=1}^{\infty} A^{n}=\bigcap\left\{A_{\lambda} \mid A_{\lambda}: P \text {-primary ideal }\right\}
$$

(ii) P_{0} is a prime ideal of R, and
(iii) there are no prime ideals P_{1} with $P_{0} \subset P_{1} \subset P$.
(3) The following are equivalent:
(i) P is branched.
(ii) There exists an ideal C of R with $\sqrt{C}=P$ and $C \neq P$.
(iii) There exists $x \in R$ such that P is a minimal prime ideal over $R x R$.
(iv) $P \neq \bigcup\left\{P_{\lambda} \mid P_{\lambda} \in \operatorname{Spec}(R)\right.$ with $\left.P_{\lambda} \subset P\right\}$.
(v) There is a prime ideal P_{0} of R such that $P_{0} \subset P$ and there are no prime ideals P_{1} with $P_{0} \subset P_{1} \subset P$.
(4) P is unbranched if and only if $P=\bigcup\left\{P_{\lambda} \mid P_{\lambda} \in \operatorname{Spec}(R)\right.$ with $\left.P_{\lambda} \subset P\right\}$.

Proof As noted in the proof of Lemma 2.3, we may assume that R is semi-local Bezout.
(1) (i) By Lemma 2.6, $P \neq P^{2}$ if and only if $P_{P} \neq P_{P}^{2}$. Thus $\left\{P_{P}{ }^{k} \mid k>0\right\}$ is the full set of P_{P}-primary ideals of R_{P} by [MMU, Theorem 12]. It follows from Corollary 1.6 and Lemma 2.4 that $\left\{P^{k} \mid k>0\right\}$ is the full set of P-primary ideals of R. (ii) is clear from Lemma 2.5 and [MMU, Theorem 12].
(2) (i) Let A be a P-primary ideal of R with $A \neq P$. By Corollary 1.6, $A_{P} \neq P_{P}$. Also, by Corollary 1.6 and Theorem 1.5, $\left\{A_{\lambda P} \mid A_{\lambda}: P\right.$-primary ideal of $\left.R\right\}$ is the full set of P_{P}-primary ideals of R_{P}. Hence $\bigcap_{\lambda} A_{\lambda P}=\bigcap_{n=1}^{\infty} A_{P}{ }^{n}$ by [MMU, Theorem 12]. So we have $\bigcap_{\lambda} A_{\lambda}=\left(\bigcap_{\lambda} A_{\lambda P}\right) \cap R=\left(\bigcap_{n=1}^{\infty} A_{P}{ }^{n}\right) \cap R=\bigcap_{n=1}^{\infty} A^{n}=A_{0}$ by Lemma 2.4 and Theorem 1.5. (ii) By [MMU, Theorem 12], $\bigcap_{n=1}^{\infty} A_{P}{ }^{n}$ is a prime ideal of R_{P} and so A_{0} is a prime ideal of R by Lemma 2.5. (iii) follows immediately from [MMU, Theorem 12] and Lemma 2.5.
(3) (i) \Rightarrow (ii) is clear from definition.
(ii) \Rightarrow (iii): Let C be an ideal of R such that $C \subset P$ and $\sqrt{C}=P$. Then there exists a maximal ideal M of R such that $C_{M} \subset P_{M}$ by [G2, Proposition 3.1]. It follows that $P \subseteq M$, because $C_{N}=R_{N}=P_{N}$ for any maximal ideal N of R with $P \nsubseteq N$. Take any element $a \in P \backslash C$ with $a \notin C_{M}$ and $c_{N} \in C \cap C(N)$ for any maximal ideal N of R with $P \nsubseteq N$. Set $I=R a R+\sum R c_{N} R(\subseteq P)$. Then $I=R b R$ for any $b \in I$ such that $b R=a R+\sum c_{N} R$ (note that we assume R is semi-local Bezout). To prove that $\sqrt{I}=P$, let P_{1} be any prime ideal of R with $P_{1} \supseteq I$ and let M_{1} be a maximal ideal of R containing P_{1}. If $M_{1} \nsupseteq P$, then $R_{M_{1}}=I_{M_{1}} \subseteq P_{1 M_{1}} \subset R_{M_{1}}$, a contradiction. If $M_{1} \supseteq P$, then either $P_{1} \supseteq P$ or $P \supseteq P_{1}$ by Lemma 2.5. If $P \supseteq P_{1}$, then $P_{M} \supseteq P_{1 M} \supseteq I_{M} \supset C_{M}$ by [D1, Section 2. Corollary to Lemma 2] and so $P \supseteq P_{1} \supseteq C$. Hence $P=P_{1}$, proving that $P=\sqrt{I}$, that is, P is the minimal prime ideal over I.
(iii) \Rightarrow (iv): Let a be an element of R such that P is the minimal prime ideal over $R a R$. Then $a \notin \bigcup\left\{P_{\lambda} \mid P_{\lambda} \in \operatorname{Spec}(R)\right.$ with $\left.P_{\lambda} \subset P\right\}$. Hence $P \neq \bigcup\left\{P_{\lambda} \mid P_{\lambda} \in \operatorname{Spec}(R)\right.$ with $\left.P_{\lambda} \subset P\right\}$.
(iv) \Rightarrow (v) and (v) \Rightarrow (i) follow from [MMU, Theorem 12], Lemmas 2.5 and 2.6.
(4) follows from (3).

Let R be a Prüfer order in a simple Artinian ring with finite dimension over its center. If R is integral over its center $Z(R)$, then $Z(R)$ is a Prüfer domain by [MM1, Theorem 1.3] and so Theorem 2.7 is valid for such Prüfer orders. But there exists a Prüfer order with $Z(R)$ not Prüfer (e.g. [G2, Section 3 Example 1]). In the case when $Z(R)$ is not Prüfer, we do not know whether Theorem 2.7 still holds or not.

Next we give some examples of Prüfer orders.
Example 1 Let \tilde{Q} be the field of all algebraic numbers, let \tilde{Z} be the ring of all algebraic integers, and let $D=\tilde{Z}_{S}$, where $S=\left\{2^{n} \mid n=0,1,2,3, \ldots\right\}$. Let σ be the automorphism of \tilde{Q} defined by $\sigma(a+b i)=a-b i$ and let $G=\langle\sigma\rangle$ be the cyclic group generated by σ. Now let $R=D * G$ be the skew group ring of G over D. If p is a prime ideal of D, then we set $p^{\sigma}=\{\sigma(a) \mid a \in p\}$ and $p_{0}=p \cap p^{\sigma}$. Then we have $D * G=\bigcap_{p_{0}}(D * G)_{p_{0}}=\bigcap_{p_{0}}\left(D_{p_{0}} * G\right)$, where $p_{0}=p \cap p^{\sigma}$ and p runs over all prime ideals of D. It is checked that $D_{p_{0}}$ satisfies the conditions of [MY, Theorem 3.5], and so $D_{p_{0}} * G$ is a Dubrovin valuation ring. Hence, for any finitely generated right R-ideal I, we have $I^{-1} I=\bigcap_{p_{0}}\left(I^{-1} I\right)_{p_{0}}=\bigcap_{p_{0}}\left(I_{p_{0}}\right)^{-1} I_{p_{0}}=$ $\bigcap_{p_{0}}\left(D_{p_{0}} * G\right)=R$. Also, we have $I I^{-1}=O_{l}(I)$. Similarly, we have $J^{-1} J=O_{r}(J)$ and $J J^{-1}=R$ for any finitely generated left R-ideal J. Thus $R=D * G$ is a Prüfer order.

Example 2 (cf. [G2, Section 3]) Let F be a commutative field and let K be a finite cyclic Galois extension of F with Galois group $\langle\sigma\rangle$ and $n=|\langle\sigma\rangle|$. Let V be a valuation ring of F whose maximal ideal p is branched and idempotent (e.g. [H, Example 31]) and let W be the integral closure of V in K, which is a semilocal Bezout domain. Consider the division ring $D=K((x, \sigma))$ of all twisted Laurent series where multiplication is defined by $x k=\sigma(k) x$ for all $k \in K$. Then $F\left(\left(x^{n}, \sigma^{n}\right)\right)\left(=F\left(\left(x^{n}\right)\right)\right)$ is the center of D and D is finite dimensional over its center. Now let $B=\left\{k_{0}+k_{1} x+\cdots \mid k_{i} \in K\right\}$. Then B is an invariant valuation ring of D, that is, for any non-zero element $d \in D$, either $d \in B$ or $d^{-1} \in B$ holds and we have $d B d^{-1}=B$. $x B$ is the unique maximal ideal of B. Further $C=\left\{f_{0}+f_{n} x^{n}+f_{2 n} x^{2 n}+\cdots \mid\right.$ $\left.f_{i} \in F\right\}$ is the center of B and $C=B \cap F\left(\left(x^{n}\right)\right)$. Then $R=W+x B$ is a Prüfer (actually

Bezout) order in D and $S=V+x^{n} C$ is the center of R which is a valuation ring. If m is a maximal ideal of W, then $m+x B$ is a branched and idempotent prime ideal of R by [MMU, Corollary 13] and Lemma 2.6 because $(m+x B)_{(m+x B)} \cap S=\left(m_{m}+x B\right) \cap S=p+x^{n} C$, which is a branched and idempotent prime ideal of S. If we take V to be a valuation ring whose maximal ideal is unbranched (e.g. [H, Example 36]), then we can construct an unbranched prime ideal in a similar way.

We close this paper with the following.
Proposition 2.8 Let A_{1} and A_{2} be primary ideals of a Prüfer order R. Then

$$
A_{1}+A_{2}=R \quad \text { or } \quad A_{1} \supseteq A_{2} \quad \text { or } \quad A_{1} \subseteq A_{2} .
$$

Proof Assume that $R \supset A_{1}+A_{2}$. Then these exists a maximal ideal M of R such that $M \supseteq A_{1}+A_{2}$. Let $P_{i}=\sqrt{A_{i}}(i=1,2)$. Then $A_{i M}$ is a $P_{i M}$-primary ideal of R_{M} by Lemma 2.3. So, by [D1, Theorem 4, Section 2], we have $A_{1 M} \supseteq A_{2 M}$ or $A_{1 M} \subseteq A_{2 M}$. Now, by [MM2, Lemma 1] and Theorem 1.5, $A_{i}=A_{i P_{i}} \cap R \supseteq A_{i M} \cap R \supseteq A_{i}$, so $A_{i}=A_{i M} \cap R$. Hence we have either $A_{1} \supseteq A_{2}$ or $A_{1} \subseteq A_{2}$.

References

[AD]	76
[D1]	N. I. Dubrovin, Noncommutative valuation rings. Trans. Moscow Math. Soc. 45(1984), 273-287.
[D2]	\qquad , Noncommutative valuation ring in simple finite-dimensional algebras over a field. Math. USSRSb. (2) 51(1985), 493-505.
[D3]	Noncommutative Prüfer rings. Math. USSR-Sb. 74(1993), 1-8.
[Gi]	R. Gilmer, Multiplicative Ideal Theory. Marcel Dekker Inc., New York, 1972.
[G1]	J. Gräter, The defectsatz for central simple algebras. Trans. Amer. Math. Soc. (2) 330(1992), 823-843
[G2]	\qquad , Prime PI rings in which finitely generated right ideals are principal. Math. Forum 4(1992), 447-463.
[H]	H. C. Hutchins, Examples of Commutative Rings. Polygonal Publishing House, 1981.
[L]	J. Lambek, Lectures on rings and modules. Chelsea Publishing Company, New York, 1986.
[MMU	H. Marubayashi, H. Miyamoto and A. Ueda, Prime ideals in noncommutative valuation rings in finite dimensional central simple algebras. Proc. Japan Acad. Ser. A Math. Sci. (2) 69(1993), 35-40.
[MM1]	H. Marubayashi, H. Miyamoto, A. Ueda and Y. Zhao, Semi-hereditary orders in a simple Artinian ring. Comm. Algebra (13) 22(1994), 5209-5230.
[MM2]	\qquad , On semi-local Bezout orders and strongly Prüfer orders in a central simple algebra. Math. Japon. (2) 43(1996), 377-382.
[MY]	H. Marubayashi and Z. Yi, Dubrovin valuation properties of skew group rings and crossed products. Comm. Algebra, to appear.
[M1]	P. J. Morandi, Maximal orders over valuation ring. J. Algebra 152(1992), 313-341.
[M2]	——, Noncommutative Prüfer rings satisfying a polynomial identity. J. Algebra 161(1993), 324-341

Department of Mathematics
Naruto University of Education
Naruto, Tokushima 772-8502
Japan

Department of Mathematics
Shimane University
Matsue, Shimane 690-8504
Japan

[^0]: Received by the editors October 8, 1996; revised September 23, 1998.
 AMS subject classification: Primary: 16H05; secondary: 16L30.
 (C)Canadian Mathematical Society 1999.

