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The collapse of a vapour bubble over a material surface has been widely studied over
the past few decades, but a comprehensive and quantitative analysis of the cavitation
dynamics and its effects on solid materials at the mesoscale (nanometre up to micrometre),
which would be of particular interest in applications exploiting cavitation power, is still
lacking. In this work, we adopt a diffuse interface model to describe the microbubble
dynamics, and a dynamic plasticity model for the solid. The former is particularly suited
to studying the rich phenomenology characterising bubble collapse at the mesoscale,
which comprises transitions to supercritical conditions, emission and propagation of shock
waves, generation of liquid microjets and topological transitions, whereas the latter is used
to characterise the permanent plastic deformation caused by the bubble collapse, and has
been augmented to consider inertial effects, to assess whether or not an interaction between
elastic and plastic waves may influence the resulting deformation. Results concerning
the collapse of a microbubble at different liquid overpressures and initial standoff ratios
are discussed, and the elastoplastic wave propagation in the solid, together with plastic
deformation, is studied for different cases, depending on elastic and plastic material
parameters.
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1. Introduction

Bubble collapse near solid boundaries involves high speeds, high energy densities and
very small time and length scales. This intense and fast energy release is the origin of the
destructive potential of bubble cavitation, well known to be detrimental to the material
surface. In fact, apart from the negative effect on hydraulic turbines and other applications
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in power engineering (Stripling & Acosta 1962), cavitation can be exploited in many
contexts, such as industrial cleaning processes (Brems et al. 2013), nanomaterials synthesis
(Xu, Zeiger & Suslick 2013), kidney stones fragmentation in shock wave lithotripsy,
(Zhong 2013), root canal treatment in dentistry (Robinson et al. 2018), ophthalmic
surgery (Vogel et al. 1986) and drug permeability enhancement of overall tissues or cell
membranes (Coussios & Roy 2008; Brennen 2015; Peruzzi et al. 2018; Silvani et al. 2019).
The implosion of small bubbles is relevant also for botany, for example in the spore
dispersal of ferns (Noblin et al. 2012; Scognamiglio et al. 2018) or for the embolism
of plant xylems under drought (Vincent et al. 2012; Ponomarenko et al. 2014). In most
of these applications, the bubbles are relatively small, typically micrometre size. Despite
their size, which may lead one to think that inertial effects are negligible, the damaging
potential of micrometre-sized bubbles is, in fact, unexpectedly large.

From the experimental side, much work accumulated starting from the pioneering
experiments carried out in Lauterborn’s group using millimetre-sized laser-induced
bubbles (Lauterborn & Bolle 1975) that inspired much successive work (Occhicone et al.
2019; Sinibaldi et al. 2019; Bokman et al. 2023). High-speed visualisations showed
complex dynamics where the imploding bubble loses its spherical symmetry, due to the
wall that inhibits the motion of the proximal part of the bubble, at the same time increasing
the speed of the distal part. As a consequence, a strong water jet pierces the bubble,
changing its topology from a spheroid into a toroid, while at the same time a complex
system of compression waves is launched into the liquid. The combined action of the jet
and the shock wave violently stresses the wall material inducing its damage in the form of
pitting.

Different surfaces have been investigated in the past, including rigid walls (Tomita &
Shima 1986; Zhang, Duncan & Chahine 1993; Brujan et al. 2002; Johnsen & Colonius
2009; Gonzalez-Avila, Denner & Ohl 2021; Saini et al. 2022), elastic solids (Brujan
et al. 2001), soft tissues (Kodama & Takayama 1998), porous plates (Andrews, Rivas &
Peters 2023) and free liquid–gas interfaces (Robinson et al. 2001). Plastic deformation has
also been addressed in a number of papers, see e.g. Philipp & Lauterborn (1998), Dular,
Delgosha & Petkovšek (2013) and Dular et al. (2019), where the shape and size of the
indentations were measured accurately.

Concerning numerical simulations, several works that coupled the dynamics of the
fluid–solid system emerged in recent years (Chahine & Hsiao 2015; Cao et al. 2021). In
most of these cases, the focus was on relatively large, macroscopic bubbles, where the
relevant physics is essentially described by the inviscid Euler equation for the only liquid
phase (Johnsen & Colonius 2009; Rasthofer et al. 2019).

With the advent of microtechnologies, experiments are now pushed to the submillimetre
range (Ohl & Ikink 2003; Tho, Manasseh & Ooi 2007; Wu et al. 2021; Pfeiffer et al. 2022;
Gutiérrez-Hernández et al. 2023). Significant effort is currently aimed at understanding
how the material surface is affected by the collapsing bubble, particularly concerning
clinical and biophysical applications (Miller, Pislaru & Greenleaf 2002; Adhikari, Goliaei
& Berkowitz 2016; Mancia et al. 2019; Barney et al. 2020), and industrial cleaning
processes (Zeng et al. 2018; Zeng, An & Ohl 2022; Reese, Ohl & Ohl 2023; Mnich
et al. 2024). It is the purpose of the present paper to discuss the response of the material
surface to the implosion of such small vapour bubbles, where surface tension, viscosity and
phase change are intermingled, calling for a comprehensive model encompassing all the
phenomenologies occurring along bubble collapse (Magaletti, Marino & Casciola 2015;
Magaletti et al. 2016). The bubble is assumed to be already present in the liquid, with no
regard to the nucleation process that led to the bubble formation, see Gallo, Magaletti &
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Casciola (2018, 2021), Gallo et al. (2020, 2023) and Magaletti, Gallo & Casciola (2021)
for details on nucleation in the context of this kind of model. The wall is assumed flat
and the analysis will concern the deformation of the solid, assumed as an elastoplastic
material. Given the small size of the bubble, and the need to simultaneously account for
the liquid compressibility, the dynamic response of the bubble gaseous phase, the phase
change taking place in the vapour and the topology modification occurring during the
collapse, the model of choice is a phase-field method (Anderson, McFadden & Wheeler
1998; Jamet 2001; Magaletti et al. 2013; Hu, Wang & Gomez 2023) described in terms of
mass density and accounting for surface tension through distributed capillary stresses, as
originally introduced by van der Waals (1893, 1979). The solid is basically described by
the linear elasticity equations (Gurtin 1982) on account of the expected small deformation
of the solid. Indeed, the scope of the present paper is limited to relatively stiff materials
which are hardly deformed, leaving for future investigations the case of softer materials,
such as hydrogels (Guvendiren & Burdick 2012; Liu, Toh & Ng 2015; Drozdov & de
Claville Christiansen 2018) or tissues and cell membranes (Bottacchiari et al. 2022). As
we show, despite the relatively large stiffness leading to small deformations, the state of
tension undergone by the solid under the pressure field of the collapsing bubble is rather
large and may easily exceed the yield stress of many materials (Abbondanza, Gallo &
Casciola 2023a).

At variance with most applications of elastoplastic materials in structural engineering,
the load exerted on the solid is highly non-stationary, inducing a complex response where
elastic wave propagation is combined with unsteady plastic deformation (Von Kármán
& Duwez 1950). Moreover, due to the presence of the fluid–solid interface subject to
the bubble pressure load propagating at a fast speed, the system of elastic waves turns
out to be rather rich. As is well known, linear elastic solids support the propagation of
two substantially different kinds of (bulk) waves: longitudinal, or compression, waves,
travelling at the speed cL = √

(K + 4/3G)/ρs, where K and G are the bulk and the shear
moduli, respectively, with ρs the solid mass density; and transversal, or shear, waves
with speed cT = √

G/ρs (Graff 2012). In load-free conditions, the interface propagates
additional waves, confined to a narrow surface layer, studied by Lord Rayleigh (1885) and
Love (1911), respectively. These two kinds of waves have two orthogonal polarisations,
with the Rayleigh waves oscillating in the plane formed by the propagation direction
(parallel to the undeformed surface) and the normal to the surface, whereas Love waves
are shear waves oscillating along the surface and orthogonal to the propagation direction.
An axisymmetric bubble collapse cannot induce Love waves and among the two possible
polarisations of the (bulk) transverse waves, only the one oscillating in the axial plane is
allowed.

The moving load adds even more features to the whole picture. Let us consider, for the
sake of definiteness, the effect on the solid of a strong compression wave in the liquid
on top of the liquid–solid interface. Such a wave will emanate radially from the region
of bubble collapse, such that, under axisymmetry, its trace on the liquid–solid interface
consists of an expanding circumference centred at the bubble’s centre projection onto
the surface. Being the fastest signal travelling in the liquid, outside this circumference
the load applied to the solid vanishes altogether. Different cases may arise, depending
on the relative speed of the liquid compression (load) wave and the longitudinal and the
transverse elastic waves (also the additional parameter given by the speed of the Rayleigh
wave should be taken into account, which is however very close to cT ). Without entering
into detail here, the interaction of the loading wave with the surface produces an elastic
wave locked to external disturbance. Moreover, the interaction of the longitudinal elastic
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(bulk) wave with the liquid–solid surface generates a further wavefront, the so-called
head, or von Schmidt, wave (Von Schmidt 1938). As we show, the amplitude of this
interacting system of wavefronts is eventually modulated by the energy dissipation due
to the plasticisation of the material taking place where the stress overcomes the material
strength. Plasticity is a realm in itself. Here we stick to one of the most popular models,
the so-called rate-independent classical plasticity model (Lubliner 2008).

The outline of the paper is as follows. Section 2 discusses the fluid–structure interaction
and the approximation derived under the assumption of a stiff solid. Section 3 summarises
the diffuse interface model, introducing the capillary distributed stress that complements
the standard Navier–Stokes equations (mass, momentum and energy conservation) and
illustrates the equation of state to account for the phase change. Section 4, for the
convenience of unfamiliar readers, provides an account of the basic concepts of plasticity
theory and elastoplastic waves. Section 5 presents a short description of the numerical
methods adopted in the simulations. The main results concerning the dynamics of the
collapsing bubble are reported in § 6 whereas the solid wall and related elastoplastic waves
are addressed in § 7. Finally, conclusions are drawn in § 8 together with a discussion of
perspectives and future research directions.

2. Fluid–solid interaction

The solid response to a bubble collapse is a typical example of fluid–structure interaction.
Due to the nature of the solid material, it possesses certain peculiarities which are worth
exploiting in the simulation. In fact, fluid and solid are coupled through the boundary
conditions at the interface I which, assuming no overhangs, is described by the equation
z = h(x, y, t), where x, y and z are the three Cartesian coordinates of a point x, with z = 0
the undeformed (planar) interface.

The fluid occupies the domain Ωf = {x ∈ R
3 : z > h(x, y)}, whereas the solid is

confined to the complementary regionΩs = {x ∈ R
3 : z < h(x, y)}. The fluid is described

in terms of the mass density ρ(x, t), the velocity u(x, t) and the energy density E(x, t)
fields which obey the fundamental conservation laws.

The solid is described by the density field ρs(X , t), the displacement field r(X , t)
and the energy density. Under isothermal conditions, the energy evolution is ignored in
favour of the constant temperature assumption, thus rendering the Helmholtz free energy
density f̂S the thermodynamic potential of choice. Here, X is the Lagrangian coordinate
providing the initial position of the solid continuum points such that x = X + r. As is well
known (Gurtin 1982), ρs(X , t) = ρ0(X ), while the displacement field obeys momentum
conservation.

Apart from the initial state, the equations require boundary conditions that can be
specified in terms of the fields or their (generalised) normal derivatives (i.e. traction
vector and heat flux) at the boundary. In the present case, the domains change in time
(free-boundary problem), and one should require the continuity of displacements and
normal derivatives. This information is sufficient to determine the fields at the current
time, in particular the velocity uI = ṙI which allows the interface to be updated according
to the equation ht = ż − (ẋhx + ẏhy).

The specificity of the current problem is that the solid is stiff, meaning that its
deformation (hence, also the interface displacement) is small under a finite intensity
load, |r| = O(ε) � 1, where ε is a small parameter. In the simulations described in the
following, this condition is accomplished by having a solid-to-liquid impedance ratio
Zs/Zl > 10.5, such that the solid–liquid interface can be considered rigid. This assumption
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allows linearising the entire system of equations with respect to the solid displacement
while keeping finite all the other relevant quantities, in particular, the fluid velocity u and
the stress distribution in the solid.

Linearisation of the solid’s equations requires the stress tensor to be linearised with
respect to the displacement field. Nevertheless, also in its linearised form, the stress in the
solid is still large, implying that the material may yield under the load. The final result is
a linear elastic model with plasticity occurring where the yield strength of the material is
locally exceeded.

We stress that, from the point of view of the fluid, the system at order zero in ε still
retains its original nonlinearity. To this order, the interface is flat and the no-slip condition
applies in the form uI = 0. In other words, the fluid motion decouples from the solid. As a
consequence, the solid occupies its undeformed domain and experiences the load exerted
by the fluid. Clearly, the solid displacement dictates the deformation of the interface. In
principle, one may want to carry over this procedure to evaluate the effect on the fluid of
the order one interface displacement. Although doable, this would be uninfluential if the
first-order solution for the solid is sufficient.

3. Diffuse interface model of a cavitation bubble

The dynamics of a cavitation bubble close to a solid surface is described by a diffuse
interface model (Jamet et al. 2001; Magaletti et al. 2015) which, overall, involves the
familiar mass, momentum and energy conservation equations,

∂ρ

∂t
+ ∇ · (ρu) = 0, (3.1a)

∂ρu
∂t

+ ∇ · (ρu ⊗ u) = ∇ · T , (3.1b)

∂E
∂t

+ ∇ · (Eu) = ∇ · (T · u)− ∇ · qf , (3.1c)

with T (x, t) the stress tensor and qf (x, t) the energy flux. The specificity comes from the
constitutive equations (Magaletti et al. 2016),

T = −
(

p0 − λ
2
|∇ρ|2 − ρ∇ · (λ∇ρ)

)
I

−λ∇ρ ⊗ ∇ρ + η(∇u + (∇u)T)− η̃(∇ · u)I, (3.2)

qf = λρ∇ρ∇ · u − k∇θ, (3.3)

which, aside from classical effects described by Newton’s law of viscosity and Fourier’s
law of heat conduction, accounts for distributed capillary terms depending on the density
gradient. Moreover, a suitable pressure field is derived from an equation of state able to
describe the thermodynamics of the fluid in the liquid, vapour and supercritical states that
all occur during bubble implosion. In the above equations, the capillary coefficient λ(θ)
is a function of the temperature θ , η is the first dynamic viscosity coefficient, η̃ (often
taken to be η̃ = −2/3η) is the second dynamic viscosity coefficient and k is the thermal
conductivity.

Importantly, this system describes the transition from the high-density liquid to the
low-density vapour, together with the change of the other thermodynamic and kinetic
properties of the fluid. In the case of a vapour bubble in a liquid bulk, the fluid properties
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switch smoothly across a thin interfacial layer, a distributed form of liquid–vapour
interface as originally envisaged by van der Waals (1893). Its thickness is determined by
the fluid thermodynamics,

�lv = (ρl − ρv)

√
λ/2

w0(ρ̄)− w0(ρv)
, (3.4)

where ρ̄ is the fluid density where the density gradient is maximal, |dρ/dx|max =√
2(w0(ρ̄)− w0(ρv))/λ, and it is the seat of the strong density gradients that sum up to

the (equilibrium) surface tension

σ =
∫ +∞

−∞
λ

(
dρ
dx

)2

dx =
∫ ρl

ρv

√
2λ(w0(ρ)− w0(ρv)) dρ, (3.5)

where w0 = f b
f − ρμb

f , with f b
f the fluid (bulk) Helmholtz free energy per unit volume and

μb
f = ∂f b

f /∂ρ the chemical potential, which under equilibrium (saturation) conditions is a
function of the only temperature (μb

f = μb
f eq

).

The system of equations (3.1), complemented with the constitutive relations (3.2)–(3.3),
is closed by prescribing the appropriate thermodynamics potential that holds across the
liquid–vapour transition. Here the van der Waals equation of state for the Helmholtz
free energy is assumed, f b

f /pc = −8/3ρRθR{1 + ln[(1 − ρR/3)/(ρcρRΛ
3/mp)]} − 3ρ2

R,

with the subscript R denoting reduced quantities (e.g. ρR = ρ/ρc), Λ =
√

2π�2/(mpkbθ)

denoting the De Broglie thermal wavelength, mp denoting the atom mass and the subscript
c denoting the critical state. Hence, the pressure is

p0

pc
= ρ2

pc

∂( f b
f /ρ)

∂ρ
= 8ρ

3ρc − ρ

θ

θc
− 3

(
ρ

ρc

)2

. (3.6)

Most of the boundary conditions are standard: in the present case, as discussed in § 2,
no-slip and impermeability conditions and constant temperature hold on the flat solid
wall. A little more information is needed concerning capillarity, which should account
for the solid wettability and requires explicitly calling into play the Helmholtz free energy
functional for a stratified fluid, which reads

F[ρ, θ ] =
∫
Ωf

[ f b
f (ρ, θ)+ λ/2|∇ρ|2] dV +

∫
I

fw(ρ, θ) dS, (3.7)

where fw(ρ, θ) = − cosΘ
∫ ρ
ρv

√
2λ[w0(ρ, θ)− w0(ρv, θ)] dρ + γsv is the solid–fluid

interfacial energy, with Θ Young’s contact angle and γsv the surface energy for vapour
in contact with the solid. In the free energy functional, the square density gradient term
accounts for the excess energy of the interfacial layer and ultimately is the origin of the
distributed capillary stresses. Minimising the free energy with respect to the density field
provides two Euler–Lagrange equations. The first is the equation for equilibrium density,
replaced here by the evolution equations illustrated before, whereas the second provides
the boundary condition for the mass density (Gallo et al. 2021),

λ
∂ρ

∂n
+ ∂fw
∂ρ

= 0. (3.8)

The flow is governed by three dimensionless parameters, the Cahn, Reynolds and
Péclet numbers, taking the place of λ, 1/η and 1/k, respectively, in (3.2) and (3.3),
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and defined as

Cn =
√
λρ2

c

pcR2
0
, Re = R0

√
pcρc

η
, Pe = R0

√
pcρc

k
, (3.9a–c)

with R0 the initial bubble radius.

3.1. Baroclinic vorticity production
The interface and, possibly, the strong compression waves generated by the bubble
implosion, may activate the baroclinic mechanism of vorticity production. As usual, the
vorticity equation follows by taking the curl of the momentum equation (B26), rewritten
here explicitly

∂ρu
∂t

+ ∇ · (ρu ⊗ u) = −∇
(

p0 − λ
2
|∇ρ|2 − ρ∇ · (λ∇ρ)

)
− ∇ · (λ∇ρ ⊗ ∇ρ)+ ∇ · Σ, (3.10)

where Σ is the classical viscous part of the stress tensor. The first two terms on the
right-hand side of (3.10) are manipulated to yield

− ∇
(

p0 − λ
2
|∇ρ|2 − ρ∇ · (λ∇ρ)

)
− ∇ · (λ∇ρ ⊗ ∇ρ)

= −∇p0 + 1
2
∂λ

∂θ
|∇ρ|2∇θ + ρ∇[∇ · (λ∇ρ)]. (3.11)

Expressing p0 in terms of the bulk (fluid) Helmholtz free energy f b
f (ρ, θ) and chemical

potential μb
f = ∂f b

f /∂ρ as p0 = ρμb
f − f b

f , its gradient takes the form

∇p0 = ρ∇μb
f + μb

f ∇ρ −
∂f b

f

∂ρ
∇ρ −

∂f b
f

∂θ
∇θ = ρ∇μb

f + sb
f ∇θ, (3.12)

where the bulk entropy density is sb
f = −∂f b

f /∂θ . Substituting (3.12) in (3.11) and back
into (3.10), we get

∂ρu
∂t

+ ∇ · (ρu ⊗ u) = −ρ∇[μb
f − ∇ · (λ∇ρ)]

+
(

−sb
f + 1

2
∂λ

∂θ
|∇ρ|2

)
∇θ + ∇ · Σ . (3.13)

After noting that the terms in brackets on the right-hand side can be written in terms of
generalised entropy and chemical potential,

sf = −δF
δθ

= sb
f − 1

2
∂λ

∂θ
|∇ρ|2, μf = δF

δρ
= μb

f − ∇ · (λ∇ρ), (3.14a,b)

where the total Helmholtz free energy of the system is F[ρ, θ ] = ∫
V [ f b

f (ρ, θ)+
λ/2|∇ρ|2] dV (van der Waals 1979), and exploiting mass conservation, (3.13) reads

∂u
∂t

+ u · ∇u = Du
Dt

= −∇μf − sf

ρ
∇θ + 1

ρ
∇ · Σ . (3.15)
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Figure 1. Surface tension σ vs temperature θ obtained from (3.5) with the Van der Waals equation of state.
The capillary coefficient is kept constant corresponding to the dimensionless Cahn number Cn = 1.1 × 10−3,
(3.9). In the graph, pc = 22 MPa, θc = 647 K and R0 = 10−6 m are the critical quantities and the reference
radius used.

Applying the curl operator to (3.15), recalling that Du/Dt = ∂u/∂t + ∇(|u|2/2)+ ζ × u,
the vorticity equation follows as

D
Dt

(
ζ

ρ

)
=
(

ζ

ρ
· ∇
)

u − 1
ρ

∇
(

sf

ρ

)
× ∇θ + 1

ρ
∇ ×

(
1
ρ

∇ · Σ

)
, (3.16)

where the first term on the right-hand side describes the stretching and tilting of vorticity,
and the second is a generalised baroclinic term, responsible for vorticity production. It
was shown in Gallo et al. (2018) that a constant capillary coefficient can reproduce the
temperature dependence of the surface tension for a Lennard-Jones fluid; see figure 1
for the Van der Waals case. In these conditions, the baroclinic term appearing in (B27)
simplifies considerably, see § 3.1.

A discussion of the sharp interface limit for the vorticity equation, which recovers
the well-established sharp interface formulations (Magnaudet & Mercier 2020) (see also
(Terrington, Hourigan & Thompson 2020, 2021, 2022) for a detailed analysis of vorticity
generation on interfaces) compared with the diffuse interface form discussed here, is
provided in Appendix B.

4. Elastoplastic dynamics of the substrate

It is a common belief that elastoplastic models may look bewildering to the non-specialist
(Antman & Szymczak 1989). It may then be appropriate to simplify the discussion as
much as possible to focus on key features. We henceforth assume that thermal effects can
be neglected and we shall limit the analysis to materials with a rate-independent response.
The first assumption is well-motivated given the small heat capacity of microbubbles
as compared with the solid. Rate-independency, instead, is in principle questionable,
due to the extremely fast time scales involved in the collapse. Nevertheless, we adopt a
rate-independent model sufficiently rich to account for material hardening and to address
the time-dependent elastoplastic response (Von Kármán & Duwez 1950). In case it
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Collapse of microbubbles over an elastoplastic wall

was required, the model, and the simulations thereof, can be readily extended in several
respects to include thermal effects and rate-dependency, as we explain in Appendix A.

As discussed in § 2, for stiff materials the dynamics can be linearised with respect
to the solid displacement. The formal procedure is highlighted in Appendix A which
also provides a self-contained account of basic nonlinear plasticity elements. Here, as a
necessary preliminary to elastoplastic wave dynamics, we begin the section with a concise
summary of the equations, see Appendix A and (Antman 2005; Lubliner 2008) for further
details.

Once linearised based on the assumption |r| = O(ε), § 2, the solid displacement field
can be expressed in the Eulerian frame as r = r(x, t) which, to the required accuracy
level, entails ρS(x, t) = ρ0 + O(ε), with ρ0 = const. for a homogeneous material. In the
linearised theory, the (infinitesimal) strain reduces to

ε = (∇xr + ∇xrT)/2 (4.1)

and possesses the peculiar property of being additively split into plastic and elastic parts,
ε = εp + εe. With little surprise, the linearised momentum equation becomes

ρS
∂2r
∂t2

= ∇ · σ , (4.2)

where σ = Ce : εe is the (linearised) Cauchy stress, see Appendix A and, e.g. Gurtin,
Fried & Anand (2010).

We assume the material to be isotropic, implying that the stress–strain relation involving
the elastic tensor Ce is entirely characterised by the Lamé constants, λS and μS. When
the material’s distortional free energy density, f e

dev = σ dev : σ dev/(4μS), is on the verge
of exceeding the critical value f c

dev = σ 2
Y/(6μS) that depends on the yield stress σY , the

material yields, the plastic strain accumulates and the material undergoes hardening. While
all this is happening, the material will still remain in an admissible state, i.e. f e

dev − f c
dev ≤

0. This unilateral constraint acts only under plastic loading, i.e. when the two conditions
(i) distortional free energy reaching the critical level, |σ dev| = √

2/3σY , and (ii) positive
distortional stress power, σ dev : ε̇ > 0, are met.

The elastic strain, needed to evaluate the stress, is known from the total strain after the
evolution equation for the plastic strain,

ε̇p =
{
σ̂ dev ⊗ σ̂ dev : ε̇/D if |σ dev| = √

2/3σY and σ dev : ε̇ > 0
0 otherwise, (4.3)

is solved, where σ̂ dev = σ dev/|σ dev|, D = [1 + KH/(3μS)] and the strain rate is ε̇ =
(∇xṙ + ∇xṙT)/2. The symbol ⊗ denotes the tensor product and KH is the hardening
modulus (Lubliner 1972). The yield stress dictates the hardening. It is constant except
under plastic loading when

σ̇ Y =
√

2/3KH|σ̂ dev : ε̇|/D. (4.4)

Strictly speaking, the system of ((4.2)–(4.4)) suffice to determine the elastoplastic
evolution, once appropriate material parameters, boundary conditions on the fluid–solid
interface and radiation conditions for the outward-propagating waves are prescribed.
The accumulated plastic deformation, αp ∝ ∫ t

0 |ε̇p| dt, is recovered from the yield stress,
αp = (σY − σ 0

Y )/KH . The plastic dissipation differs from zero only under plastic loading
where it is given by

√
2/3σ 0

Y |σ̂ dev : ε̇|/D.
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D. Abbondanza, M. Gallo and C.M. Casciola

Together with the capillary Navier–Stokes equations of § 3, this system is the basis
for the simulations of the elastoplastic response to bubble collapse discussed in the
forthcoming sections. Before proceeding, we take the chance to emphasise that all the
relevant quantities are continuous across the plastic deformation boundary since they
are linear in the distortional stress power that, together with the distortional free energy,
demarcates the different regimes.

The elastoplastic dynamics is governed by the following dimensionless parameters:

c∗
L = cL/

√
pc/ρc, c∗

T = cT/
√

pc/ρc, σ 0∗
Y = σ 0

Y/μS, K∗
H = KH/(3μS), (4.5a–d)

where cL = √
(λS + 2μS)/ρS and cT = √

μS/ρS.

4.1. Elastoplastic waves
Elastoplastic waves may develop within the material as a consequence of the loading
exerted on the solid wall by the collapsing bubble. Considering for the moment the purely
elastic case for which σ e = Ce : ε, the Helmholtz decomposition for the displacement
field r(x, t) = ∇φ + ∇ × A (a vector in the r–z plane by axisymmetry) decouples (4.2)
into two separate equations for the scalar, φ, and the vector potential, A = ψ êz × êr (ψ is
the analogous of the Stokes stream function),

∂2

∂t2
(∇2φ) = c2

L∇2(∇2φ), (4.6)

∂2

∂t2
(∇2A) = c2

T∇2(∇2A), (4.7)

where cL and cT are identified as the longitudinal and transverse wave propagation speeds,
respectively. Equations (4.6) and (4.7) are, in fact, wave equations for the divergence
and (the only non-vanishing component of) the curl of the displacement field (∇2φ =
∇ · r, −∇2A = ∇ × r). These two fields, which in isolation would describe purely
longitudinal and transverse waves, respectively, interact with the wall and the moving load
to generate a complex wave field (figure 2). In fact, the boundary condition on the wall,

σ e
zz = λS

[
1
r
∂

∂r
(rrr)+ ∂rz

∂z

]
+ 2μS

∂rz

∂z
= Tzz(r, t), (4.8a)

σ e
rz = μS

(
∂rr

∂z
+ ∂rz

∂r

)
= Trz(r, t), (4.8b)

where σ e
zz (Tzz) and σ e

rz (Trz) are the normal and shear components of the elastic stress σ e

(fluid stress T , § 3), respectively, once expressed in terms of scalar and vector potential
(rr = ∂φ/∂r − ∂ψ/∂z, rz = ∂φ/∂z + 1/r ∂(rψ)/∂r) couple together the two fields.

The sketch of figure 2 illustrates the elastic wavefronts generated by an axisymmetric
compact pressure load, Tzz = f (r − vDt), Trz = 0, suddenly applied to the wall at time t =
0 which travels radially outwards with velocity vD intermediate between the speed of the
longitudinal and the transversal elastic waves. At t = 0 longitudinal and transversal waves
start being generated and are confined by hemispherical wavefronts whose configuration is
depicted in the sketch at a later time t (blue and red circles, respectively). In the meanwhile,
the disturbance moves and is found at time t somewhere between the traces on the wall of
the longitudinal and transversal fronts. While the load moves, further waves are generated.
Since it moves faster than the transversal wave system and slower than the longitudinal

999 A72-10

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
4.

92
5 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2024.925


Collapse of microbubbles over an elastoplastic wall

r

z

H

DR

T

L

Figure 2. A compact, axisymmetric pressure disturbance is suddenly applied at time t = 0 to the wall at the
origin and spreads radially out. The elastic solid occupies the z < 0 half-space and the sketch concerns the case
with a disturbance velocity intermediate between the faster longitudinal waves and the slower transversal waves.
The disturbance (green), by moving faster than the transverse waves, gives rise to a conical wavefront (green
line, D). The longitudinal waves move faster and are enveloped by their hemispherical wavefront impulsively
generated at time t = 0 (blue line, L). The interaction of the longitudinal wavefront with the unloaded wall
(ahead of the disturbance) causes the head wave (purple line, H). Behind the disturbance, the transversal
wavefront produced at time t = 0, moves slower than the disturbance and is represented by the red line (T),
followed by the Rayleigh wave, just behind, which is confined to the surface layer (yellow line, R).

one, at variance with the latter, the former cannot be radiated ahead of the disturbance.
It remains confined to a cone whose generatrix is shown by the green oblique straight
line tangent to the red circle forming the angle θD = sin−1(cT/vD) with the wall. The
construction is the same as supersonic small disturbance theory in gas dynamics where
one would talk of a Mach cone. Meanwhile, the longitudinal waves propagate ahead,
where the wall is not yet perturbed by the pressure load. However, the field associated
with the longitudinal waves alone cannot satisfy the load-free boundary conditions and,
through the coupling implied by (4.8a), excites the transversal field. The corresponding
wave system, being longitudinal waves supersonic with respect to transversal waves, must
be confined within a second cone. This is called a head (or von Schmidt) (Von Schmidt
1938) wave and is shown by the oblique straight line in purple, which originates at the trace
on the wall of the longitudinal front, is tangent to the red circle, and forms with the wall
the angle θH = sin−1(cT/cL). Longitudinal and transverse systems are not the only free
waves supported in this configuration. Actually, the unloaded wall sustains a third kind
confined to the surface layer, the so-called Rayleigh waves. Their dispersion relationship,
worked out as (2 − c2

R/c
2
T)

2 − 4(1 − c2
R/c

2
L)

1/2(1 − c2
R/c

2
T)

1/2 = 0 (Rayleigh 1885) and,
for ductile metals, approximated by cR = 0.9194cT (Graff 2012), shows that the Rayleigh
wave is slower than all the others and localised in the region highlighted in yellow in
the sketch. Other waves that could exist in principle (namely transverse wave and Love
surface wave with polarisation normal to the axial plane shown in the sketch) are ruled out
by the assumed symmetry of the problem. Once the general principle is laid down, it is
easy to realise what to expect depending on the relative velocity of the load with respect to
characteristic elastic speeds. Three cases are identified, (i) vD < cT , (ii) cL > vD > cT and
(iii) vD > cL, as discussed in a series of beautiful papers in the late 1960s (Gakenheimer &
Miklowitz 1969; Gakenheimer 1971); see also the book (Miklowitz 2012), where analytic
function and integral transform theories are cleverly exploited.
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Let us now turn our attention to the elastoplastic case. For an elastoplastic material,
Appendix A, (4.6) and (4.7) take the form(

∂2

∂t2
− c2

L∇2
)

∇2φ = −2c2
T(∇ ⊗ ∇) : εp, (4.9)

(
∂2

∂t2
− c2

T∇2
)

∇2A = 2c2
T∇ × (∇ · εp), (4.10)

where the plastic deformation, time-dependent in general, εp(x, t), follows by solving
(4.3), where the strain rate in terms of the time derivative of the potentials is ε̇ =
∇ ⊗ ∇φ̇ + [∇ ⊗ (∇ × Ȧ)+ ∇ ⊗ (∇ × Ȧ)T]/2, with φ̇ and Ȧ the corresponding velocity
potentials, v = ṙ = ∇φ̇ + ∇ × Ȧ. Equations (4.9), (4.10) involve wave operators on
the left-hand side and memory terms on the right-hand side which come from the
time-integration of (4.3). Note that the right-hand side of (4.3) is nonlinear in the fields,
given the dependency of σ dev on the solution.

To qualitatively describe the rich phenomenology implied by the elastoplastic model,
we may consider two limiting conditions, one concerning a system remaining in the
elastic range, ε̇p = 0, with preexistent plastic deformation, the other a system undergoing
plastic loading, ε̇p /= 0. In the first case, the plastic strain is time-independent, εp(x),
and the potentials can be split into time-independent and transient components, φ =
φp(x)+ φe

w(x, t), A = Ap(x)+ Ae
w(x, t), where the equations

c2
L∇4φp = 2c2

T(∇ ⊗ ∇) : εp, (4.11)

c2
T∇4Ap = −2c2

T∇ × (∇ · εp), (4.12)

completed with load-free boundary conditions account for the deformation induced in
the solid by the preexistent plastic region with the residual stress given by σR = Ce :
(ε − εp). The transient contributions, φe

w, Ae
w, obey the very same equations and boundary

conditions of the previously considered purely elastic case, implying that the wave
propagation is not altered.

The second case can be addressed in the same spirit, after assuming, for the purpose of
the present analysis, the plastic strain field εp(x, t) to be known. Now the splittings read
φ = φp(x, t)+ φe

w(x, t) and A = Ap(x, t)+ Ae
w(x, t), where the elastic wave components

behave as before and take care of the load at the interface, whereas the potentials φp and
Ap obey the forced wave equations(

∂2

∂t2
− c2

L∇2
)

∇2φp = −2c2
T(∇ ⊗ ∇) : εp, (4.13)

(
∂2

∂t2
− c2

T∇2
)

∇2Ap = 2c2
T∇ × (∇ · εp), (4.14)

with load-free boundary conditions. The nature of the solutions to the above equations
depends on the behaviour of the plastic strain field. In fact, it is known that, under suitable
conditions, elastoplastic waves can develop (Antman & Szymczak 1989; Lubliner 2008).
In this case, the potentials inherit the propagative nature of the plastic strain field plus a
system of purely elastic waves. Combining the partial solutions together, we arrive at a
displacement field that possesses wave characteristics, in part purely elastic and in part
associated with the envisaged elastoplastic propagation.
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Collapse of microbubbles over an elastoplastic wall

5. Numerical methods

The Navier–Stokes equations with capillarity (3.1) with constitutive equations (3.2),
(3.3), and the elastoplasticity equations (4.2), (4.3) are solved adopting the finite-element
method, implemented using the deal.II library (Arndt et al. 2023).

Concerning the fluid, an auxiliary field g = ∇2ρ is added to take into account
higher-order derivatives in the stress tensor (3.2). Piecewise linear shape functions have
been selected for the spatial discretisation, and the fluid domain Ωf is subdivided in two
regions with different spatial resolution. A finer grid is adopted around the bubble initial
position and in proximity to the wall, extending radially to follow the propagation of the
shock wave at the wall, whereas a coarser grid is used far from the bubble. The grid size
in the former region is Δ = 20R0/211, with R0 the initial bubble radius (20R0 being the
domain extension in both directions), whereas in the latter the grid size is Δ = 20R0/26.
To properly resolve the gradients at the interface, at the shock wave fronts, and near the
solid wall an automatic grid refinement based on the Kelly error estimator (Kelly et al.
1983; Ainsworth & Oden 2011) is employed, using the density gradients as indicator
and setting the minimum allowed grid size to Δ = 20R0/215. For time discretisation,
the second-order Crank–Nicolson scheme is adopted, with timestep �t in the range
10−5–10−3 tref , depending on the collapse dynamics. System nonlinearities are treated
with a Newton–Raphson iterative method.

Regarding the elastoplastic solid, the domain Ωs (here the extension is reduced to 10R0
in both directions, exploiting an absorbing layer to prevent spurious reflections, to focus on
the local wave structure) is discretised with a uniform grid with grid size Δ = 10R0/211.
The second-order Newmark-beta method (Newmark 1959) is used for time discretisation
with parameters β = 0.49 and γ = 0.9, and timestep �t ≤ 0.9Δ/max(cL, vD), with cL
and vD the longitudinal waves speed and the distrurbance speed at the wall, respectively.
The nonlinearities arising due to plasticity effects are treated with the Newton–Raphson
iterative method, and the local plastic equilibrium is ensured with a classical return
mapping algorithm (Simo & Taylor 1985; Simo & Hughes 2006). As anticipated, viscous
layers are used to dampen outward-propagating waves and avoid spurious reflections at the
artificial boundaries.

The code was validated against finite-difference codes already used in a previous work
(Magaletti et al. 2016), and a convergence analysis has been carried out to ensure the
results are grid-independent, by increasing the maximum resolution of the fluid grid in the
interfacial region setting Δ = 20R0/216.

Additional details regarding the numerical methods are provided in the see
supplementary material available at https://doi.org/10.1017/jfm.2024.925.

6. Bubble dynamics

In experiments on single bubbles, the bubble is usually generated by a spark or laser
(Lauterborn & Bolle 1975; Sinibaldi et al. 2019), that is, it is formed due to intense
electric fields that induce the dielectrics breakdown in the form of hot plasma. This
leads to the localised vaporisation of the water and ultimately initiates the bubble. After
its formation, the bubble expands up to a maximum radius, collapses back, rebounds
and is finally reabsorbed. Although the energy deposition process can be simulated
(Abbondanza, Gallo & Casciola 2023b), the cases analysed here consider instead a
preexisting bubble of a given radius and let it collapse as a result of an overpressure in the
liquid.
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6.1. Simulation set-up
All the simulations are performed using cylindrical coordinates r, θ and z, in the
truncated domain Ωf = [0, R] × [0, 2π] × [0, H], assuming axisymmetry. On the solid
wall, located at z = 0, the boundary conditions prescribe

u = 0, qf · êz = 0, −λ∂ρ
∂z

+ ∂fw
∂ρ

= 0 on z = 0, (6.1a–c)

with −êz the outward normal at the adiabatic wall, where no-slip is assumed and the last
equation determines the contact angle (3.8). The remaining part of the domain boundary
is assumed sufficiently far from the bubble to allow the boundary conditions,

u = 0, qf · n̂ = 0,
∂ρ

∂n
= 0 on z = H or r = R. (6.2a–c)

The initial conditions are

ρ(r, z, 0) = ρeq
v + 1

2

(
1 + tanh

(√
r2 + (z − Zc)2 − R0

�

)
(ρl − ρeq

v )

)
, (6.3)

u(r, z, 0) = 0, (6.4)

θ(r, z, 0) = θ0, (6.5)

with ρeq
v and ρl the initial vapour and liquid density, respectively. The initial condition

describes a still vapour bubble of radius R0, at the external liquid temperature θ0, with
the centre on the symmetry axis and standoff distance Zc with respect to the wall, see the
sketch in figure 3(a). Here � � �LV , (3.4), is the initial width of the liquid–vapour interface.
As is well known (Debenedetti 2021), a bubble in an unbound domain cannot exist in a
stable equilibrium state. In fact, the thermal, mechanical and chemical equilibria,

θ = θ0, peq
v (ρ

eq
v , θ0)− peq

l (ρ
eq
l , θ0) = 2σ

R0
, μb

f (ρ
eq
l , θ0) = μb

f (ρ
eq
v , θ0), (6.6a–c)

lead to a critical bubble that would either spontaneously shrink (be reabsorbed into the
liquid) or expand. Starting from the unstable state described by (6.6), the increase of the
liquid density to ρl > ρ

eq
l invariably leads to collapse of the bubble.

Figure 4 shows the equilibrium liquid pressure at temperature θ0 as a function of the
bubble radius. It is substantially independent of the bubble size as soon as the bubble
radius is 10 µm or larger. According to the Rayleigh–Plesset dynamics (Brennen 2014), in
free space, the collapse time of a vapour bubble of radius R0 is approximately given by

Tc(R0) = R0

√
3ρl

2( pl − peq
v )

∫ 1

0
dx

√
x3

1 − x3 + α(1 − x2)
, (6.7)

where x = R/R0, α(R0) = 3σ/[R0( pl − peq
v )], pl = peq

l (1 + β) and ρl = ρl(θ0, pl), with
β = ( pl − peq

l )/p
eq
l the overpressure parameter quantifying the liquid pressure increase

over the equilibrium value given by (6.6). The approximation consists of assuming that
the liquid state, that is pressure and density, is not affected by the bubble collapse
and the vapour pressure remains at the equilibrium value. It is worth stressing that the
above prediction accounts for the presence of surface tension which becomes significant
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Figure 3. (a) Initial two-dimensional cylindrical configuration in the fluid domain. The bubble is initially
located on the axis, at height Zc. The pressure in the liquid is pL, whereas the pressure in the bubble is pV .
(b) Initial overpressure conditions in the liquid represented on a normalised p–ρ plane, with the corresponding
van der Waals equation of state at the initial temperature of the system. Colours correspond to the three
different conditions explored, increasing overpressure from red to blue. The saturation pressure, very similar
to the equilibrium pressure in these conditions, is represented with a dashed line. Here pc = 22 MPa and
ρc = 322 kg m−3 are the critical pressure and density.
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Figure 4. (a) Equilibrium liquid pressure, peq
l , blue symbols, vs initial bubble radius R0. Inset: bubble collapse

velocity Vc vs R0 for different overpressure parameter β and two values of the standoff distance parameter
(s = 1.2 and 1.5, solid and dashed lines, respectively). (b) Collapse time (left axis) and collapse velocity (right
axis) vs β for two standoff distances, for the case with R0 = 1 µm. The (partially superimposed in twos)
symbols denote the conditions for the six simulations analysed in the following. The corresponding collapse
times for s = 1.2 are TW

c /tref = 2.17, 1.77 and 1.53 for β = 28.5, 42.8 and 58.0, respectively. The three figures
change to TW

c /tref = 2.10, 1.72 and 1.48 for s = 1.5.

for microbubbles. From the collapse time, one may define a typical collapse speed,
Vc = R0/Tc that is also found to be substantially independent of the bubble radius above
R0 = 10 µm (figure 4). With respect to this, one may assume 10 µm as the size below
which the vapour cavity can be considered a microbubble.

For future convenience, we anticipate that the collapse time for a bubble close to a
solid surface may be obtained by multiplying (6.7) by the factor 1 + 0.205/s, Tw

c (R0, s) =
Tc(R0)(1 + 0.205/s) where s = Zc/R0 (Rattray 1951; Plesset & Chapman 1971).

Dealing with microbubbles, in the simulations, the initial radius and equilibrium
temperature are set to R0 = 1 µm and θ0 = 0.5 θc, whereas the equilibrium densities
follow from (6.6) which, for a van der Waals fluid (3.6), provide ρeq

v ≈ ρsat
v = 0.022 ρc
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t/T wc = 1.58t/T wc = 1.36t/T wc = 1.24t/T wc = 1.13

t/T wc = 1.02t/T wc = 0.96t/T wc = 0.85t/T wc = 0

(a) (b)

Figure 5. (a) Bubble topology during the collapse (β = 42.8, s = 1.2). Snapshots are taken at different times,
and the solid line is the critical density isocontour. (b) Early bubble deformation stage modelled by potential
flow theory and method of images.

and ρeq
l = 2.458ρc. For such a bubble, the vapour is practically at saturation conditions,

whereas the liquid is slightly metastable. Six configurations were examined with Re =
83.5, Cn = 1.1 × 10−3 and Pe = 14.9 at changing the overpressure, β ≈ 28.5, 42.8 and
58.0, and the standoff distance s = 1.2 and 1.5; see figure 3(b).

In the following, all quantities are made dimensionless with respect to the reference
values θc = 647 K, pc = 22 MPa, ρc = 322 kg m−3, vref = √

pc/ρc m s−1 and tref =
R0/vref s.

6.2. Bubble topology, liquid jet and shock waves
It is known that although a bubble in free space could, in principle, keep the spherical
symmetry while shrinking, strong instabilities arise that prevent achieving perfectly
symmetric collapse (Brenner, Hilgenfeldt & Lohse 2002). In fact, the solid wall breaks
the spherical symmetry from the collapse outset, leading to a fast liquid jet that pierces
the bubble, as confirmed by several experimental and numerical works (Lauterborn &
Bolle 1975; Johnsen & Colonius 2009; Magaletti et al. 2016; Zeng et al. 2018; Lechner
et al. 2020; Saade, Lohse & Fuster 2023), and produces the rearrangement from spherical
to toroidal topology; see figures 5 and 6 where the bubble shape is conventionally
identified by the critical density isocontour. As discussed later, during the collapse,
the fluid locally overcomes the critical temperature, whereas the density progressively
becomes supercritical. The two simulations at different standoff distance confirm (Philipp
& Lauterborn 1998) that this parameter strongly influences the collapse. Indeed, the
topology change, which is hardly achieved for s = 1.5, see figure 6(a), is apparent in
figure 5(a) for s = 1.2.

During the early stages of the collapse, while shrinking, the bubble becomes
egg-shaped. As shown in figures 5(b) and 6(b), this behaviour is largely explained by the
blockage effect of the wall that, in essence, can be described using potential flow theory
combined with the method of images (Plesset & Chapman 1971). The evolution of bubble
volume, as identified by the critical density contour, is reported in figure 7 which shows
that the first collapse time almost perfectly coincides with the estimate Tw

c .
Figure 8 illustrates the events occurring during the early collapse stage and reports

density and temperature isocontours with superimposed velocity field (arrows) and the
critical density and temperature isolevels (solid lines). The process is initiated by the
asymmetric velocity distribution generated by the blockage of the solid wall that leads
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t/T wc = 1.98t/T wc = 1.75t/T wc = 1.51t/T wc = 1.28

t/T wc = 1.05t/T wc = 0.93t/T wc = 0.82t/T wc = 0

(a) (b)

Figure 6. Bubble topology evolution (β = 42.8, s = 1.5) and early bubble deformation stage modelled by
potential flow theory and method of images, as in figure 5.

0

0

0.2

0.4

0.6

0.8

1.0

0.5 1.0 1.5 2.0

t/T wc

V/
V 0

2.5

β = 58.0
β = 42.8
β = 28.5

Figure 7. Bubble volume vs time for different overpressure β and standoff distance s (solid and dashed lines
correspond to s = 1.2 and 1.5, respectively).

to faster speed on the bubble distal part. The temperature progressively increases until,
in figure 8(c), the vapour becomes supercritical, hence incondensable, in the bubble core.
Due to the velocity difference between the distal and proximal parts of the bubble, the
bubble overall translates toward the wall. It turns out that in the reference frame of the
bubble centre-of-figure, the relative velocity compressing the bubble is larger on the sides
than on the top and bottom. As a consequence, while the bubble shrinks, its overall shape
is turned from an initial sphere into an ovoid with the major axis normal to the wall.

Figure 9 displays the pseudo-Schlieren field (the exponential of the density gradient
magnitude that is the better-suited observable to identify the bubble boundary) at a
sequence of selected instants along the collapse process for the case with β = 58.0 and
s = 1.2. Note that the time intervals between frames are not equispaced, with a much
smaller time interval in the region between the end of the first collapse and the beginning
of the first rebound where the bubble volume plateaus to zero in a small time interval
around t/Tw

c = 1, hardly visible on the scale of figure 7. During the first phase, left
column, the bubble volume shrinks, and a compression wave propagates inside the bubble
towards the wall. The wavefront separates the bubble interior into two parts, with the lower
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(b)(a)

2.5 × 100 4.8 × 10–1 0.8 1.0 × 100 4.8 × 10–1 0.8 1.0 × 100 4.8×10–1 0.8 1.0 ×100

ρ θ θ θ
2.2 ×10–21.01.5 2.5 × 100

ρ ρ
2.2 ×10–21.0 1.5 2.5 ×1002.2 ×10–2 1.0 1.5

(c)

Figure 8. Early stages of the bubble collapse. Density and temperature are depicted as coloured isocontour
lines in the left and right half of each panel, respectively, t/Tw

c = 0, 0.59 and 0.79 for panels (a), (b) and (c),
respectively. The velocity field is shown by the vectors. The solid line in panel (c) is the critical temperature
isoline, and the fields are expressed dimensionless with respect to the critical values ρc = 322 kg m−3 and
θc = 647 K.

part relatively still (t/Tw
c = 0.93). Noticeably, the volume enclosed by the critical density

isocontour shrinks much faster than the region enveloped by the sharp density gradients
that in fact represent the boundary demarcating the region of lower density, inside, from the
higher density, outside. This difference should be kept in mind while interpreting the result
on the bubble volume. While the wave propagates, it starts interacting with the exterior
fluid through the density interface (t/Tw

c = 0.95). In fact, the pressure wave propagating
in the bubble interior is refracted at the density interface exciting the exterior wave and the
wave reflected towards the interior; see e.g. Henderson (1989) for a related case of shock
wave refraction across a sharp density interface and Ranjan, Oakley & Bonazza (2011) for
a comprehensive analysis on shock–bubble interactions. The vectors clearly indicate that
all the configurations in the left column of the figure correspond to liquid moving towards
the bubble, consistently with an implosive phase of the dynamics.

The series of events taking place when the incident wave reaches the bottom of the
bubble is provided in detail in figure 10, for the same case with β = 58.0 and s = 1.2.
While the wave is refracted across the density interface at the bottom of the bubble, the
reflected wave focuses on the axis (t/Tw

c = 0.962). This leads to a further reflection that
produces the spherical wave emerging from the bottom interface and expanding within
the bubble. Simultaneously, the refracted wave in the bubble exterior is also focused on
the axis to generate the spherical compression wave expanding under the bubble interface
(t/Tw

c = 0.97). This wave is responsible for the liquid velocity diverging from the bubble,
initiating the rebound phase apparent in the centre column of figure 9 (t/Tw

c = 1.0–1.25).
During this phase, a jet pierces the bubble changing its topology from spheroidal to
toroidal to eventually impinge the wall, as shown in the right column of the figure.

During the collapse, the volume enclosed by the critical density shrinks to zero, but
a region of incondensable fluid survives. Figure 11 shows the evolution of the volume
where θ ≥ θc compared with that where ρ ≤ ρc. Around the collapse time, the region of
supercritical temperature encloses that where the density is subcritical. It turns out that,
for most of the evolution, the critical density isoline is a good representative of the bubble.
However, when the fluid gets supercritical, this correspondence is lost, confirming that the
results are more precisely represented in terms of the numerical Schlieren, which better
corresponds to optics experiments.
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t/T wc = 0.93 t/T wc = 0.99 t/T wc = 1.77

t/T wc = 1.91t/T wc = 1.00

t/T wc = 1.05 t/T wc = 2.10

t/T wc = 2.50t/T wc = 1.25t/T wc = 0.97

t/T wc = 0.95

t/T wc = 0.96

t/T wc = 0.85 t/T wc = 0.98 t/T wc = 1.38

Figure 9. Collapse of a vapour bubble near a solid wall, β = 58.0, s = 1.2. Schlieren-like representation of
the density gradients with the superimposed velocity field. The red solid line is the density iso-contour ρ = ρc
used to evaluate the bubble volume in figure 7.
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Figure 10. Schlieren-like representation of the density gradients, showing the density interface across the
bubble boundary and the primary shock wave propagating inside the bubble with refracted and reflected shock
waves, β = 58.0, s = 1.2. From left to right: t/Tw

c = 0.950, 0.959, 0.962 and 0.965.

0

0.2

0.4

0.6

0.8

1.0

V/
V 0

ρc isoline
θc or ρc isoline

θc isoline

0 0.5 1.0 1.5 2.0 2.5

t/T wc
Figure 11. History of the volume enclosed by the critical density isoline (solid line, volume where ρ ≤ ρc)
and by the temperature isoline (dash-dotted line, volume where θ ≥ θc). The dashed line is the volume of the
region where either ρ ≤ ρc or θ ≥ θc. Here β = 58.0, s = 1.2.

6.3. Bubble vorticity
The change in the bubble topology from spherical to toroidal is accompanied by the
formation of a jet and circulatory motions clearly seen in the vector velocity fields in
figure 9. They are the clear signature of vorticity that is generated during the collapse
phase. For the present van der Waals equation of state, the baroclinic vorticity generation
term derived from the capillary Navier–Stokes equation in § 3.1 is given by

B = − 1
ρ

∇
(

sf

ρ

)
× ∇θ = − 1

ρ

∂sb
f /ρ

∂ρ
∇ρ × ∇θ = 8

ρ2(3 − ρ)
∇ρ × ∇θ, (6.8)

where the expression in the middle exploits a constant capillary coefficient. We recall
that the above expression is dimensionless, with the corresponding dimensional quantity
obtained after multiplying by pc/(ρ

2
c R2

0). Many physical mechanisms may contribute
to vorticity generation as described in the context of a sharp interface model; see e.g.
Magnaudet & Mercier (2020); Terrington et al. (2022) for a detailed discussion and
Appendix B for the derivation of the sharp interface limit from the present formulation).
For constant viscosity, all of them are included in the diffuse interface form of the
baroclinic term.
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(b)(a)

Figure 12. Vorticity production and transport, t/Tw
c = 0.94, β = 58.0 and s = 1.2. (a) Isolines of the

baroclinic term B, (6.8) (blue negative, green positive). The two vector fields, with arrows coloured according
to the intensity from red to white, correspond to

√
8/ρ2(3 − ρ)∇ρ and

√
8/ρ2(3 − ρ)∇θ . In the inset, the

region of strongest baroclinic production. (b) Vorticity (flood) with superimposed B-isolines and fluid relative
velocity with respect to the bubble centre of mass (arrows).

Figure 12(a) shows spatial distribution of B at a particular instant, for the case with
β = 58.0 and s = 1.2. It is expressed as the vector product of the two vector fields,√

8/ρ2(3 − ρ)∇ρ and
√

8/ρ2(3 − ρ)∇θ , shown as arrows in the figure. Apparently,
where |B| is large the two local vectors are large (intensity is coloured from red to white)
and form a finite angle with each other (see the inset). Elsewhere, either the fields have
small intensity, or they are perfectly parallel/antiparallel. By comparing with figure 9,
the region of intense baroclinic vorticity production occurs where the compression wave
propagating within the bubble interacts with the bubble interface and its intense density
gradients (t/Tw

c = 0.95, 0.96). Although this may not be the general interpretation (indeed
vorticity is generated also assuming the liquid is incompressible), the analysis of our data
shows that, in the present specific conditions, the main vorticity production mechanism is
associated with the interaction of pressure waves and interfacial density gradients.

Figure 12(b) shows the corresponding vorticity (flood), with the superimposed
B-isolines and velocity field in the reference frame translating with the (instantaneous)
bubble centre mass velocity. The vorticity generated by the baroclinic term is transported
by the fluid velocity and is advected upwards with respect to the translating bubble. The
eddying motion associated with the generated vorticity is apparent from the (relative)
velocity field. Figure 13 shows different snapshots along the bubble evolution, depicting
the same quantities as in figure 12(b). The vorticity survives up to the last frames shown in
the figure, despite the considerable diffusion due to viscosity, 1/ρ∇ × (1/ρ∇ · Σ). This
is due to the competing effect of stretching, which tends to intensify the vorticity through
the stretching term (ζ/ρ) · ∇u, related to the increase of the toroid radius since, when
approaching the wall, the ring vortex expands radially. As the vortex approaches the wall,
secondary vorticity with opposite sign forms right at the wall due to the no-slip condition.

6.4. Wall pressure
The pressure waves emitted during collapse propagate with the liquid speed of sound
c =

√
40θ/(3 − ρ)2 − 6ρ (see Zhao et al. 2011) and impact the solid surface as shown
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t/T wc = 1.05

t/T wc = 1.25

t/T wc = 1.38

t/T wc = 0.97t/T wc = 0.933

t/T wc = 0.94 t/T wc = 0.98

t/T wc = 1.77

t/T wc = 0.986t/T wc = 0.946

t/T wc = 0.95

t/T wc = 1.00t/T wc = 0.85

t/T wc = 0.93 t/T wc = 0.96

Figure 13. Collapse of a vapour bubble near a solid wall, β = 58.0, s = 1.2, see figure 9. Vorticity (flood),
baroclinic vorticity production (solid lines) and relative velocity (vectors), see figure 12(b).

in figure 14, transferring energy to it. The wave front is oriented obliquely with respect
to the solid surface, hence its trace generates a disturbance that moves on the wall faster
than c, with a velocity vD that decreases asymptotically to c, as the front becomes normal
to the surface, see figure 15 for a qualitative comparison at different β values, where
the density gradient intensity increase is apparent for larger β, and figure 16, showing
vD as a function of the radial coordinate. Simple geometric considerations based on the
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(b)(a)

1 6 10 14 18 22 26 31

Pressure Pressure

3 10 18 26 34 42 50 57

Figure 14. Snapshots of the first time the pressure wave hits the wall: (a) β = 28.5, s = 1.2, t/Tw
c = 1.01;

(b) β = 58.0, s = 1.2, t/Tw
c = 0.98. Schlieren-like visualisation of the density gradients, dimensionless

pressure field (flood, pc = 22 MPa), and absolute velocity vectors.

(b)(a)

Figure 15. Schlieren-like visualisation of the shock wave travelling in the liquid: (a) β = 28.5, s = 1.2
(t/Tw

c = 0.97, 1.01, 1.02, 1.06); (b) β = 58.0, s = 1.2 (t/Tw
c = 0.95, 0.98, 0.99, 1.05).

assumption of spherical propagation lead to vD(r) =
√

1 + Z2
c/r

2
D. The load distribution

transmitted to the solid is a function of the initial conditions, in terms of overpressure β
and relative distance to the wall s, see figure 17, where the wall load envelope is represented
for different overpressures (a) and distances (b). The normal stress

Tzz = −p0(ρ, θ)+ Cn
2

[(
∂ρ

∂r

)2

−
(
∂ρ

∂z

)2
]

+ ρ Cn
r

[
∂

∂r

(
r
∂ρ

∂r

)
+ r

∂2ρ

∂z2

]

− 2
3Re

∇ · u + 2
Re
∂uz

∂z
, (6.9)
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Figure 16. Propagation velocity of the load at the wall as a function of the radial distance from the axis
of symmetry (R0 = 1 µm). The velocity at the impact is very high due to the wave front orientation, and
progressively converges to the speed of sound in the liquid c. The coloured arrows correspond to the transverse
(c∗

T ) and longitudinal (c∗
L) wave speeds in the solid for three different scenarios analysed in the simulations.
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Figure 17. Envelopes of the maximum normal stresses Tzz transmitted to the solid surface during loading
(pc = 22 MPa, R0 = 1 µm). (a) The envelope amplitude is proportional to the overpressure parameter β. In
the inset, five different load profiles are shown in red, for β = 58.0 and s = 1.2. (b) The shape of the envelopes
is influenced by the initial distance of the bubble centre to the solid. As the distance decreases, the impact
becomes more concentrated and the maximum pressure increases. In the inset, five different load profiles are
shown in red, for β = 42.8 and s = 1.2.

is by far the largest contribution to the stress transmitted to the material (Tzz � Trz) and is
responsible for subsequent plastic deformations.

7. Wave propagation in the solid

The solid simulations are performed assuming axisymmetry, with cylindrical coordinates
r, θ and z in the domain Ωs = [0, R] × [0, 2π] × [−Hs, 0]. The boundary conditions on

999 A72-24

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
4.

92
5 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2024.925


Collapse of microbubbles over an elastoplastic wall

the solid wall z = 0 prescribe continuity of stresses

σ êz = Tzzêz, (7.1)

where Tzz comes from the fluid simulation (6.9). The remaining parts of the domain
boundary at z = −Hs and r = R consist of viscous absorbing layers to dampen outward
going waves (Hughes 2012). Initially the material is assumed to be completely undeformed
and still, r(x, 0) = 0, v(x, 0) = 0.

For the moment, we restrict our analysis to a perfectly plastic material, i.e. with KH = 0.
In such conditions, the elastic behaviour of the material is fully determined once the two
Lamé parameters are prescribed (or, alternatively, one of them plus Poisson’s ratio ν),
and the plastic behaviour is characterised by the constant yield stress σY(χ) = σ 0

Y . All the
results presented in this section are obtained taking Tzz(r, t) data from the fluid simulation
with β = 42.8 and s = 1.2.

As stated in § 2, the solid dynamics is assumed not to influence the fluid dynamics,
hence the coupling is obtained by just providing the appropriate Tzz history to the solid
boundary. This assumption is motivated by the high solid/fluid impedance ratio Zs/Zf =√

2ρSμS(1 − ν)/(1 − 2ν)/ρlcl. A thorough analysis on the effects of the impedance
ratio on the bubble dynamics has been recently presented in Cao et al. (2021) (see also
Brekhovskikh & Godin (2012) for a more general discussion on impedances and waves in
layered media) where three different regimes, Zs/Zf ≈ 1, >1 or <1 have been identified.
The overall fluid dynamics may change a lot, in particular for what concerns the shock
wave reflection, with the results approaching those of the interaction with a rigid wall
in the limit Zs/Zf → ∞. In the results presented here, we limit our attention to solid
materials such that Zs/Zf ≥ 10.5, thus resembling the interaction with a rigid wall, making
it unnecessary to fully couple the two systems.

As a consequence of the fluid shock wave impact, elastoplastic waves develop within
the material, as introduced in § 4.1. By varying the solid material properties at fixed
Tzz(r, t) history, three different behaviours of the elastoplastic material are observed and
analysed here, corresponding to the arrows in figure 16, which identify the transverse
and longitudinal waves speed (c∗

T < c∗
L < c green, c∗

T < c < c∗
L red and c < c∗

T < c∗
L

blue). The intermediate red case (c∗
T = 5.42, c∗

L = 10.83, ν = 0.33), referred here as
the transonic case, following the naming convention adopted in solid mechanics, is
reported in figure 18 (compare with the sketch in figure 2 for a reference) whose columns
include the Von Mises equivalent stress

√
3/2|σ dev|, the divergence and the curl of the

displacement field, respectively. In the elastic reference solution (first row of figure 18)
the whole complex system of waves outlined in § 4.1 is apparent in the first column. The
hemispherical wavefronts located at r ≈ 8 and r ≈ 4 enclose longitudinal and transversal
waves, respectively, that are decoupled and individually represented in the second and
third columns in the form of the divergence and curl fields. The fluid disturbance, located
at r ≈ 6, generates the transonic elastic conical wave that connects to the transverse
wavefront, first column. The head or Von Schmidt conical wavefront, of weaker intensity,
generated at the solid boundary in correspondence with the longitudinal wavefront, is
noticeable in the first column. Finally, the Rayleigh waves are visible in the narrow zone
located under the solid surface at r ≈ 4, in columns 2 and 3. The plastic solutions, second
and third rows of figure 18, σ 0

Y = 1 × 10−2 and 5 × 10−3, respectively, appear to be similar
to the elastic solution in the wave propagation, but different in a subsuperficial zone below
the bubble (R0 = 1), where the stress intensity is higher and the divergence and curl fields
are non-negligible, meaning that some non-elastic mechanism is at play. By comparing
the intensities in the three figures it is clear how, in the plastic materials, some of the
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Figure 18. Von Mises stress, divergence and curl of the displacement field organised by columns, at
dimensionless time t/TW

c = 1.39 (unit length corresponding to 1 µm). Cases organised by rows: (1) elastic
case, (2) plastic case with σ 0

Y = 1 × 10−2, (3) plastic case with σ 0
Y = 5 × 10−3, (4) row 2–row 1 and

(5) row 3–row 1. The nonlinearity of the dynamic elastoplastic problem affects not only the subsuperficial
area corresponding to the bubble position, but also the propagation of the elastic wave front.
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Figure 19. Plastic strain norm |εp| propagation in time for the transonic plastic case with σ 0
Y = 5 × 10−3. The

elastoplastic wave propagating in the solid is apparent. From left to right, dimensionless times t/Tw
c = 0.99,

1.01, 1.04, 1.08, 1.10 and 1.61.

energy transmitted to the solid is dissipated by permanently deforming the narrow zone
below the bubble, thus resulting in weaker energies transported by the elastic waves. The
difference between the elastic and the corresponding plastic solutions is presented in the
third and fourth rows. This visualisation highlights how not only the subsuperficial zone
below the bubble is influenced by plasticity, but also the propagation of the elastic waves,
whose wavefront is less pronounced. This effect is also more evident in the second plastic
case, with a smaller yield stress σ 0

Y , thus attaining larger plastic deformations. This fact
was already introduced in § 4.1, where the nonlinearity of the problem was discussed and
the possibility of a permanent plastic deformation having an influence on the underlying
elastic dynamics was assessed.

The resulting plastic deformation, that evolves according to (4.3), is shown in the
sequence of figure 19 for the case with σ 0

Y = 5 × 10−3 (similar results are obtained for
σ 0

Y = 1 × 10−2). The hemispherical front of plastic deformation clearly expands during
time, up until a point where the energy transmitted by the fluid shock wave is below the
distortional energy needed to plastically deform the material. As a result, a finite region is
permanently deformed in those places where the stresses were maximal.

A different qualitative picture can be obtained by varying cL and cT in such a way
that the wave propagation on the solid surface is completely supersonic or subsonic with
respect to the wave speeds in the solid, green and blue arrows in figure 16, respectively. In
the former case, figure 20 (see panel a for the elastic reference solution), since c > cL, a
new conical wavefront emerges, originating at the solid–liquid interface in correspondence
with the moving load (r ≈ 8) and connecting to the hemispherical wavefront of the
longitudinal waves (r = z ≈ 3.5). In these conditions, the Von Schmidt wavefront and
the Rayleigh waves are invisible. Looking at the elastoplastic solutions in figure 20(b–d),
ordered for decreasing σ 0

Y , it should be noted how the maximum attained stress in the
material obviously decreases and the wavefronts become progressively more diffused, and
interact with each other giving rise to different structures. Significant differences are also
found in the subsuperficial region below the bubble, where the material is permanently
deformed. The resulting plastic deformation is shown in figure 21 for the same three cases
ordered by decreasing σ 0

Y , where it is clearly visible how the region interested by plasticity
spreads and attains larger deformations for decreasing σ 0

Y .
Finally, the subsonic case (blue arrows in figure 16) is shown in figure 22, where the

Von Mises stress for the purely elastic (a) and the plastic (b) cases is reported. The
main difference with previous cases is the absence of conical wavefronts induced by
the fluid disturbance, the only one being the already mentioned Von Schmidt conical
wavefront generated at the solid–fluid interface. The only discrepancy between the elastic
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Figure 20. Von Mises stress at t/Tw
c = 1.50 for the supersonic case and for three different yield stresses:

(a) elastic, (b) plastic, σ 0
Y = 5 × 10−3, (c) σ 0

Y = 2.5 × 10−3 and (d) σ 0
Y = 1 × 10−3.

and plastic solutions is in the region enclosed by the transversal wavefront (r < 3), where
the disturbance excites the solid material. Comparing this case with the previous cases, it
is interesting to note how the plastically deformed region is particularly significant and
spreads more in the radial direction. This is a direct effect of the load being applied,
over time, in roughly the same region where the transversal and Rayleigh waves are
located.

7.1. Plastic dissipation in the solid
The dissipation in the solid material due to plasticity can be evaluated using the relation
D(r, z, t) = √

2/3σ 0
Y |ε̇p(r, z, t)|, which, by recalling that αp(t) = √

2/3
∫ t

0 |ε̇p(r, z, τ )| dτ ,
can be integrated over time and space to obtain the energy dissipated as permanent plastic
deformation in the material,

ED =
∫ t

0

∫
V
D(r, z, τ ) dV dτ = σ 0

Y

∫
V
αp(r, z, t)2πr dr dz. (7.2)

On the other hand, the energy transferred to the solid by the fluid load on the wall is

Ewall =
∫ t

0
Pwall(τ ) dτ =

∫ t

0

∫ R

0
Tzz(r, 0)v(r, 0)2πr dr dτ. (7.3)
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Figure 21. Permanent plastic deformation norm |εp| for the supersonic case in figure 20: (a) σ 0
Y = 5 × 10−3,
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Figure 22. Von Mises stress for the subsonic case at t/Tw
c = 1.13: (a) elastic and (b) plastic with σ 0

Y = 8 ×
10−3. The load excites the solid roughly at the Rayleigh wave location over time, thus resulting in a permanent
plastic deformation norm |εp| that spreads also radially, as shown in panel (c).

The evolution of the power and energy transmitted to the wall, and the percentage of energy
that is dissipated in plastic deformation are shown in figure 23 for five different plastic
cases. As expected, at fixed elastic parameters, the materials with lower σ 0

Y dissipate more.

8. Conclusions and perspectives

The collapse of a vapour microbubble over an elastoplastic solid wall, caused by an
external high-pressure liquid, has been investigated by adopting a diffuse interface model
for the fluid and a dynamic elastoplastic model for the solid. At the same time, inertial
effects, typical of the macroscale, remain crucial at these scales. In particular, jet formation
and topological transitions are observed for microbubble collapse triggered by an initial
overpressure in the liquid. A complex system of shock waves, emerging from the bubble
interior during collapse, is reflected and refracted at the bubble interface, and then
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Figure 23. (a–c) Power transmitted to the solid wall, energy transmitted to the solid wall (with total energy
dissipated in plastic deformation in the inset) and percentage of energy dissipated in plastic deformation vs
dimensionless time, for five different plastic materials. The time scale is shifted by Tw

c to start at collapse time.
The two cases labelled with (a) are for the transonic case (red arrows in figure 16), whereas (b) refers to three
supersonic cases (green arrows in figure 16).

propagates in the liquid to later impact the solid wall and transfer energy to it. We have
shown that the interaction of the fluid shock wave with the bubble interface produces
baroclinic vorticity, inducing the typical circulatory motion associated with microjetting.

The fluid stress on the elastoplastic wall transfers energy to the solid. Part of this energy
is transported outwards by elastic waves, part is dissipated by plasticity in the permanent
deformation of the material. The radiated waves consist of longitudinal, transversal,
Rayleigh and conical head waves. In the meanwhile, plastic deformation occurs in the
form of expanding plasticity waves. The permanent deformation of the solid accumulates
in a subsuperficial region below the bubble, which extends to at least half of the initial
bubble volume in the solid. The two wave components are coupled and, depending on
conditions, elastic propagation can be influenced by the plastic deformation. It is found
that the permanent deformation is particularly significant in the case of a disturbance
moving close to the velocity of Rayleigh and transverse (shear) waves (vD � cR � cT ).
This sounds natural after noting that the adopted plasticity criterion (Von Mises) neglects
volumetric deformations and plasticity occurs when distortional (shear) energy exceeds
the critical thresholds.

Throughout the paper, we assumed axisymmetry of the collapse and elastoplastic wave
propagation. Reuter, Deiter & Ohl (2022) recently showed that the non-axisymmetric
self-focusing mechanism may contribute significantly to erosion for single-bubble
cavitation, in particular in extreme vicinity of metallic surfaces. These recent experimental
findings call for three-dimensional non-axisymmetric simulations, which, given the
significant computational demand, are reserved for future work, together with the possible
extension to real fluids (Benilov 2020; Magaletti et al. 2021) and to binary mixtures (Liu,
Amberg & Do-Quang 2016; Mukherjee & Gomez 2022; Benilov 2023).

As a final comment concerning the plasticity model, we focused here on perfectly plastic
materials with hardening modulus KH = 0. Hardening, KH > 0, would only affect the
behaviour in the plastic regime, requiring an increasingly larger threshold to be exceeded
to plastically deform the material, without changing the overall qualitative picture. The
model can be further extended to account for rate-dependency and damage effects, also
generalising the yield criterion to describe non-metal (e.g. soft) materials.

Supplementary material. Supplementary material is available at https://doi.org/10.1017/jfm.2024.925.
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Appendix A. Elastoplasticity modelling

The purpose of the present appendix is to briefly recapitulate basic notions of continuum
mechanics and plasticity theory and introduce the plasticity model used in the simulations.
Mainly, this appendix is added to the main text for the convenience of readers not
acquainted with this class of theories. Most of the material is classical and can be found
in the specialised literature, even though a few elements of novelty may be found in
our attempt to provide a concise, but self-contained treatment. A review of nonlinear
plasticity theory may be found, for example, in Antman & Szymczak (1989) and Antman
(2005), whereas the linearised model we actually employ and rederive from the nonlinear
theory is described in Lubliner (2008). The formulation we use belongs to the class of
rate-independent, isothermal plasticity models with isotropic hardening, even though it can
be readily extended in several respects, e.g. by considering thermal effects and including
rate-dependency.

A.1. Plasticity model
The configuration of a body is defined in terms of the map from the reference
configuration (Lagrangian variables) to the current one, x = χ(X , t) = X + r(X , t)
(Eulerian variables), where r is the displacement. The deformation gradient F = ∂x/∂X
and the (nonlinear) strain E = (F T · F − I)/2 are central elements of the theory (Gurtin
1982). Classically, momentum conservation in Lagrangian variables reads

ρ0r̈ = ∇X · (F · S)+ ρ0f 0, (A1)

where ρ0 is the (possibly space-dependent) constant-in-time mass density in the
Lagrangian description, f 0 is the body force per unit mass and the (symmetric) second
Piola–Kirchhoff stress tensor is S = JF−1ΣSF−T , with ΣS the solid’s Cauchy stress, J =
|F | the Jacobian determinant and the superscripts T and −1 denote matrix transposition
and inversion, respectively (Gurtin et al. 2010).

It is well known that, when the elastoplastic solid undergoes deformation, the
displacement cannot be split into elastic and plastic components. However, the deformation
gradient can always be multiplicatively decomposed as the product of elastic and plastic
parts, F = F e · F p, allowing the introduction of the plastic strain Ep = (F T

p · F p − I)/2
(Lubliner 2008).

We assume the plastic strain and an additional scalar object, αp, as internal variables
defining the plastic state. The Helmholtz free energy (per unit reference volume) in a
(locally) relaxed state where F e = 0 is taken to depend on the internal variable αp, such
that, under loading, it takes the form f̂ = f̂ (E − Ep;αp), providing the stress tensor as
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S = ∂ f̂ (E − Ep;αp)/∂E. In the unloaded material, S = 0 and the stress should, in
general, behave linearly in the strain difference when E � Ep,

f̂ = f̂ 0(αp)+ 1
2(E − Ep) : Ce(αp) : (E − Ep)+ O(|E − Ep|3), (A2)

where the (fourth-order) elastic tensor is Ce(αp).

The Clausius–Duhem inequality, S : Ė − ˙̂f ≥ 0, expresses the second principle of
thermodynamics and defines the positive-definite dissipation function (Gurtin et al. 2010)

D = S : Ėp + χα̇p ≥ 0, (A3)

where the hardening variable χ = −∂ f̂ /∂αp is conjugate to αp. For the model used in the
simulations, the physical interpretation of both variables will become clear at the end of
the next appendix, where the formulation is specified in every detail.

A crucial ingredient in plasticity theory is the yield function, expressed here in terms of
S and χ , that defines the admissible states by the inequality

Φ = Φ(S, χ) ≤ 0. (A4)

Material plasticisation occurs only on the yield surface during plastic loading, i.e. for
Φ = 0 and ∂Φ/∂S : Ṡ > 0, requiring the state to remain on the yield surface, Φ̇ = Ṡ :
∂Φ/∂S + χ̇∂Φ/∂χ = 0 (Lubliner 2008).

We shall assume a maximum dissipation principle (Mises 1928; Taylor 1947; Simo &
Hughes 2006), namely the stress S and the dual internal variable χ to be realised should
maximise the dissipation (A3) for given Ėp and α̇p given the constraint (A4),

Ėp = ∂D
∂S

= γ
∂Φ

∂S
, α̇p = ∂D

∂χ
= γ

∂Φ

∂χ
, (A5a,b)

where γ is the (Lagrange) plastic multiplier different from zero only during plastic loading.
The equations of Ep and αp are then completely defined after γ is evaluated explicitly by
requiring the state to remain on the yield surface under plastic loading. Taking Ṡ and χ̇
from their definitions in terms of free energy and substituting into the equation Φ̇ = 0, a
bit of algebra leads to the cumbersome but eventually simple expression

γ = Ė :

[
∂

∂E

(
∂ f̂
∂E

)
:
∂Φ

∂S
− ∂

∂E

(
∂ f̂
∂αp

)
∂Φ

∂χ

]
1
D
, (A6)

where the denominator is

D =
[
∂Φ

∂S
:
∂

∂E

(
∂ f̂
∂E

)
− ∂Φ

∂χ

∂

∂αp

(
∂ f̂
∂E

)]
:
∂Φ

∂S

+
[
−∂Φ
∂S

:
∂

∂E

(
∂ f̂
∂αp

)
+ ∂Φ

∂χ

∂

∂αp

(
∂ f̂
∂αp

)]
∂Φ

∂χ
. (A7)

Substitution into (A5) yields

Ėp = MEp : Ė, α̇p = Mαp : Ė (A8a,b)

for suitable tensors MEp and Mαp whose explicit form is easily evaluated. Concerning
stress, from its definition as the partial derivative of the free energy with respect to the

999 A72-32

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
4.

92
5 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2024.925


Collapse of microbubbles over an elastoplastic wall

strain, its time derivative is readily arranged as

Ṡ =
[
∂

∂E

(
∂ f̂
∂E

)
− MS

]
: Ė, (A9)

where the explicit expression of MS is straightforwardly worked out using the second
equation in (A8).

A.2. Linearisation of the plasticity model
The above model can be readily linearised under the assumption of small elastoplastic
displacements, |r| = O(ε) together with its derivatives. It readily follows that r(X , t) =
r(x, t)+ O(ε2), r̈(X , t) = ∂2r(x, t)/∂t2 + O(ε2) and E(X , t) = ε(x, t)+ O(ε2), with ε =
(∇xr + ∇xrT)/2 the infinitesimal strain.

From the assumption of small displacements, one also finds |Gp| = |Ge| = O(ε),
where Gp/e = I − F p/e, which immediately leads to the additive decomposition of the
(infinitesimal) strain in terms of plastic and elastic contributions, ε = εp + εe where
εp/e = (Gp/e + GT

p/e)/2.
Concerning mass, one readily finds ρ(x, t) = ρ0(x)+ O(ε), whereas momentum

conservation eventually becomes

ρ0
∂2r
∂t2

= ∇x · σ + ρ0f , (A10)

once the asymptotic identity of Cauchy and second Piola–Kirchhoff stresses, σ = ΣS +
O(ε2) = S + O(ε2), is realised.

The Helmholtz free energy, in its quadratic approximation for small strains (A2), reads

f̂ = f̂ 0(αp)+ 1
2(ε − εp) : Ce(αp) : (ε − εp)+ O(ε3), (A11)

where the fourth-order elastic tensor Ce, the second derivative of the free energy with
respect to strain, expresses the stress as σ = Ce(αp) : εe + O(ε2). For future reference,
we note that ∂/∂αp(∂ f̂ /∂E) = O(ε). In the simulations described in the main text,
f̂ 0(αp) = 1/2KHα

2
p where KH is the hardening modulus and the elastic tensor takes the

usual isotropic form in terms of the two sole Lamé coefficients, the shear modulus μS(αp)
and λS(αp) = K − 2/3μS where K(αp) is the bulk modulus, respectively (Gurtin 1982).

To completely define the model, the yield function needs being specified, and is here
taken to be of the Von Mises form (Mises 1913),

Φ(σ , χ) = f e
dev(σ )− f c

dev[σY(χ)]. (A12)

Here f e
dev = σ dev : σ dev/(4μS) is the distortional contribution to the elastic free energy,

with σ dev = σ − 1/3 tr(σ )I the deviatoric stress. We use f c
dev = [σY(χ)]2/(6μS) to

denote its critical value after which the material yields. Finally, σY(χ) = σ 0
Y − χ is the

(state-dependent, uniaxial) yield stress with value σY(0) = σ 0
Y before plasticisation where

χ = 0. In other words, the hardening variable is physically identified with (minus) the
difference of current and pristine yield stress, −χ = σY − σ 0

Y > 0.
The tensors in (A8) are identically zero unless the material is under plastic loading.

On the other hand, since, based on the yield function (A12) ∂Φ/∂σ = σ dev/(2μS),
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∂Φ/∂χ = σY/(3μS), their explicit, linearised expressions under plastic loading, to
accuracy O(ε), read

MLin
Ep

= ∂Φ

∂σ
: Ce(αp)⊗ ∂Φ

∂σ

1
DLin = σ dev : Ce(αp)⊗ σ dev

4μ2
SDLin

, (A13a)

MLin
αp

= Ce(αp) :
∂Φ

∂σ

∂Φ

∂χ

1
DLin = σYCe(αp) : σ dev

6μ2
SDLin

, (A13b)

where DLin = ∂Φ/∂σ : Ce(αp) : ∂Φ/∂σ + ∂Φ/∂χ f̂
′′
0∂Φ/∂χ , leading to the evolution

equations

ε̇p = MLin
Ep

: ε̇, α̇p = MLin
αp

: ε̇. (A14a,b)

Finally, (A9), the linearised stress evolution equation under plastic loading, is

MLin
S =

[
Ce(αp) :

∂Φ

∂σ

]
⊗
[
∂Φ

∂σ
: Ce(αp)

1
DLin

]
, (A15)

where ⊗ is the tensor product of the two tensors within square brackets.
From (A14), it is an easy, though laborious, matter to identify the physical meaning

of the internal variable αp as (proportional to) the accumulated plastic strain αp(t) =√
2/3

∫ t
0 |ε̇p| dt and to recast its evolution equation into an equivalent form for the yield

stress, after exploiting the chain of identities σ̇ Y = −χ̇ = KHα̇p. Moreover, the condition
for plastic loading is readily found equivalent to |σ dev| = √

2/3σY together with σ dev :
ε̇ > 0.

Using the explicit form of the derivatives ∂Φ/∂σ , ∂Φ/∂χ and realising that ∂Φ/∂σ :
Ce(αp) = σ dev one eventually obtains the model compendium given in the main text (see
§ 4).

Appendix B. The sharp limit of the diffuse interface equations

The purpose of the present appendix is to show how the traditional equations of the sharp
interface model are exactly recovered from the present diffuse interface description. The
starting point is the diffuse interface form of the momentum equation

∂ρu
∂t

+ ∇ · (ρu ⊗ u) = ∇ · (T rev + Σ), (B1)

with the reversible component of the stress tensor given by

T rev = −
(

p0 − λ
2
|∇ρ|2 − ρ∇ · (λ∇ρ)

)
I − λ∇ρ ⊗ ∇ρ, (B2)

and
Σ = η(∇u + (∇u)T)− η̃(∇ · u)I (B3)

the standard Newtonian part. The divergence of the reversible part of the stress tensor can
be rearranged as

∇ · T rev = −∇p̂ + ∇ · K , (B4)

with a suitably modified pressure p̂ = p0 + λ/2|∇ρ|2 − ρ∇ · (λ∇ρ) and a symmetric
second-order tensor K = λ|∇ρ|2I − λ∇ρ ⊗ ∇ρ.
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In the diffuse interface model, the interfacial layer has a small, but finite thickness
�lv , (3.4). To recover the sharp interface description we have to assume that the ratio of
interface thickness and external scale ε = �lv/R0 tends to zero. In the following, spatial
distances are made dimensionless with the outer scale R0 such that the interfacial layer
more or less extends in the range −ε/2 ≤ n ≤ ε/2.

We describe a neighbourhood of the interface using a local system of curvilinear
coordinates, with n the coordinate in the normal direction and ξ1/2 tangential coordinates,
such that r = gαξ

α + nn = rπ + nn, ∇ = gα∂/∂ξα + n∂/∂n = ∇π + n ∂/∂n, with gα =
∂r/∂ξα the covariant base vectors (α = 1, 2) and gβ the corresponding contravariant base
elements on the tangent plane.

The inner region of the field, corresponding to the interfacial layer, is better described
using the inner variable ν = n/ε, such that, in the spirit of matched asymptotic expansion,
−∞ ≤ ν ≤ ∞. The gradient operator reads ∇ = n/ε∂/∂ν + ∇π in the inner variable, e.g.

∇ρ = n
1
ε

∂ρ

∂ν
+ ∇πρ, (B5)

K = λ
ε

(
1
ε

(
∂ρ

∂ν

)2

(I − n ⊗ n)+ ∂ρ

∂ν
(n ⊗ ∇πρ+ ∇πρ ⊗ n)+ ε(|∇πρ|2I −∇πρ ⊗ ∇πρ)

)
,

(B6)

p̂ = p0 + λ

2ε

(
1
ε

(
∂ρ

∂ν

)2

+ ε|∇πρ|2
)

− λ
ε
ρ

(
1
ε

∂2ρ

∂ν2 + ∂ρ

∂ν
∇π · n + ε∇2

πρ

)
. (B7)

The surface tension (3.5) reads

σ =
∫ +∞

−∞
λ

(
∂ρ

∂n

)2

dn = λ
ε

∫ +∞

−∞

(
∂ρ

∂ν

)2

dν, (B8)

which shows that, in the limit of vanishing interfacial thickness, the ratio γ = λ/ε and the
integral

∫
(∂ρ/∂ν)2 dν both remain finite and positive.

In the sharp interface limit, the forces exchanged across the two sides of the interface
appear as concentrated effects, with intensity given by the integral across the interfacial
layer of ∇ · T rev . Straightforward calculations show that

∇ · K = n · 1
ε
γ
∂

∂ν

(
1
ε

(
∂ρ

∂ν

)2

(I − n ⊗ n)+ ∂ρ

∂ν
(n ⊗ ∇πρ + ∇πρ ⊗ n)

+ ε(|∇πρ|2I + ∇πρ ⊗ ∇πρ)
)

+ ∇π · γ
(

1
ε

(
∂ρ

∂ν

)2

(I − n ⊗ n)

+ ∂ρ

∂ν
(n ⊗ ∇πρ + ∇πρ ⊗ n)+ ε(|∇πρ|2I + ∇πρ ⊗ ∇πρ)

)
, (B9)

that is,

∇ · K = γ

ε
n · ∂

∂ν

(
∂ρ

∂ν
(n ⊗ ∇πρ + ∇πρ ⊗ n)

)

+ γ

ε
∇π ·

((
∂ρ

∂ν

)2

(I − n ⊗ n)

)
+ O(1). (B10)
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After a few manipulations, one finds∫
∇ · K dn

= γ

∫ ∞

−∞
dν,

(
∂

∂ν

(
∂ρ

∂ν
∇πρ

)
+ ∂ρ

∂ν
n · ∇π ∂ρ

∂ν
n + ∇π

(
∂ρ

∂ν

)2

− κ

(
∂ρ

∂ν

)2

n

)

= ∇π
∫ ∞

−∞
dν γ

(
∂ρ

∂ν

)2

− nκ
∫ ∞

−∞
dν γ

(
∂ρ

∂ν

)2

= ∇πσ − κσn, (B11)

that is, ∫
∇ · K dn = ∇πσ − κσn, (B12)

with κ = ∇π · n the mean curvature of the sharp interface.
Concerning the integral of the modified pressure gradient

∇p̂ = 1
ε

n
∂ p̂
∂ν

+ ∇π p̂, (B13)

one obtains∫
∇p̂ dn = n

∫ ∞

−∞
∂ p̂
∂ν

dν + ε∇π
∫ ∞

−∞
p̂ dν = n[p̂]∞−∞ + ε∇π

∫ ∞

−∞
p̂ dν. (B14)

Writing p̂ in terms of derivatives with respect to n, as appropriate for the external solution,
we find

[p̂]∞−∞ = [p0]∞−∞ + ε

[
γ

2

((
∂ρ

∂n

)2

+ |∇πρ|2
)

− γρ

(
∂2ρ

∂n2 + ∂ρ

∂n
∇π · n + ∇2

πρ

)]∞

−∞
,

(B15)
that is,

[p̂]∞−∞ = [p0]∞−∞. (B16)

Concerning the surface gradient, to leading order,

ε∇π
∫ ∞

−∞
dν

(
p0 + γ

2ε

(
∂ρ

∂ν

)2

− γρ
1
ε

∂2ρ

∂ν2

)
. (B17)

Assuming local thermodynamic equilibrium across the interface, from the uniformity of
the (generalised) chemical potential (Magaletti et al. 2016, 2021),

μf = μb
f − λ∇2ρ = μf

b
eq, (B18)

using the thin layer approximation ∇2ρ = 1/ε2∂2ρ/∂ν2, it follows

λ

ε

∂2ρ

∂ν2 = ε(μb
f − μf

b
eq). (B19)

After multiplying by 1/ε∂ρ/∂ν,

λ

ε2
∂ρ

∂ν

∂2ρ

∂ν2 = (μb
f − μf

b
eq)
∂ρ

∂ν
, (B20)
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and realising that the left-hand side is λ/(2ε2)∂/∂ν((∂ρ/∂ν)2), rearranging the right-hand
side as

(μb
f − μf

b
eq)
∂ρ

∂ν
= ∂

∂ν
( f b

f − μf
b
eqρ) = ∂w0

∂ν
, (B21)

where w0 = f b
f − μf

b
eqρ, integration yields

λ

2ε2

(
∂ρ

∂ν

)2

= w0 − w̄0, (B22)

where w̄0 is a suitable integration constant to be identified. Inserting (B19) and (B22) in
(B17) leads to

∇π
∫ ∞

−∞
dν

(
εp0 + γ

2

(
∂ρ

∂ν

)2

− γρ
∂2ρ

∂ν2

)

= ε∇π
∫ ∞

−∞
dν ( p0 + (w0 − w̄0)− ρ(μb

f − μf
b
eq)) = O(ε). (B23)

Combining together the partial results, one finally obtains∫
∇p̂ dn = [p0]∞−∞n. (B24)

In conclusion, in the sharp interface limit,∫
∇ · T rev dn = −[p0]∞−∞n + ∇πσ − κσn. (B25)

Thus, the interfacial layer, as seen by the external solution, appears as the locus of a
concentrated force, leading to the well-known sharp interface form of the momentum
conservation equation

∂ρu
∂t

+ ∇ · (ρu ⊗ u) = ∇ · T visc − ∇p0 + ∇πσδ(n)− κδ(n)σn. (B26)

It is worth stressing that this result was reported in a slightly different derivation in
Anderson et al. (1998). From the above equation, neglecting the Marangoni term ∇πσ ,
the evolution of vorticity is found to be described by the equation (Magnaudet & Mercier
2020)

D
Dt

(
ζ

ρ

)
=
(

ζ

ρ
· ∇
)

u + 1
ρ3 ∇p0 × ∇ρ − 1

ρ
∇
(
σκ

ρ

)

× δ(n)n + 1
ρ

∇ ×
(

1
ρ

∇ · Σ

)
. (B27)

It should be stressed, however, that some of the terms appearing in the vorticity
equation above cancel out exactly when obtaining the vorticity equation in the diffuse
interface context. The reason is that the effect of capillarity can be expressed in terms
of the gradient of the (generalised) chemical potential, ∇ · T rev = −ρ∇μf − sf ∇θ∇, as
shown in § 3.1, an aspect discussed also in a recent paper by Chen, Wang & Liu (2024).
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