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DIRECT SUMS OF INDECOMPOSABLE INJECTIVE MODULES

SANG CHEOL LEE AND DONG SOO LEE

This paper proves that every direct summand N of a direct sum of indecomposable
injective submodules of a module is the sum of a direct sum of indecomposable
injective submodules and a sum of indecomposable injective submodules of

In this paper, we shall always assume that every ring R has an identity element.
By a module, we shall always mean a unitary left .R-module.

LEMMA 1. Let M be an R-module and suppose that {Mi}i€I and {Ni}i€i are
families of submodules of M such that ^ ®Mi = ^N{ in M. Suppose further that

i€l i€l

Mi D Ni for each i € / . Then Mi = Ni for each i € / .

PROOF: If Mj D Nj for some j € / , then £ ©Mj D £ ©JVj =J2Ni, contradic-
tion. ieI ieI i 6 / D

Recall that the singular submodule Z(M) of an .R-module M is denned by

Z(M) = {m € M | annfi (m) is essential in R}.

Recall further that the module M is called singular if M = Z(M), and nonsingular if
Z(M)=0.

It is fairly well known that for any prime p in the ring Z of integers, the Z-module
G = Z(p°°) ©Z(p°°) has the property that not every submodule has a unique injective
envelope in G. It is well-known that if there is an injective envelope of a submodule,
within a given nonsingular module, then it is unique. (In fact, this follows from [3,
Propositions 4.9, 3.28(b), 3.26] and [2, Lemma 2.1].) This can be further generalised
as follows:

LEMMA 2 . If there is an injective envelope E(N) of a submodule N, within a
given R-module M, then for every injective envelope E'(N) of N, within M,

E'{N) + Z{M) = E(N) + Z{M).
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PROOF: It is well-known [2, Proposition 1.11] or [3, Proposition 4.9] that there
exists an isomorphism / from E(N) onto E'(N) such that f\N = id^. To show that
E(N) + Z(M) = E'(N) + Z{M) in M, it suffices to prove that for every e e E(N)\N,
ann/j(e — /(e)) is essential in R.

Let 3 be a non-zero left ideal in R. Since N is essential in E(N), it follows
that E(N)/N is singular. This implies that ann# (e + N) is essential in R, so that
3 fl annji (e + N) ^ 0. Take a non-zero element i in 3D ann^ (e + N). Then ie € N.

Since / | JV = id-N, it follows that i belongs to 3 f" lann#(e - / (e ) ) , so that D n a n n # ( e -
/ (e) ) 7̂  0. Hence, ann/j(e — /(e)) is essential in iZ, as required. D

If M is a nonsingular .R-module which is a sum of indecomposable injective sub-
modules, then it is a direct sum of indecomposable injective submodules. The general-
isation of this will be discussed.

PROPOSITION 3 . Let M be an R-module which can be expressed in the form
M = 52 Mi + Z(M), where the Mi's are indecomposable injective submodules of M.

Then there exists a subset J of I such that M = J2 ©M,- + Z{M).
j€J

PROOF: Consider the family {Mj} i g / . By Zorn's lemma, the collection of sub-

families {Mk}k&K {K C / ) of the family {Mi}i£I such that the sum ^Z M/fc is direct,

has a maximal member, say {Mj}j€J (J C / ) . Let C = J2 ®Mj + Z(M). In order

to show the proposition, it is sufficient to prove that M = C.

Suppose that M / C. Then there exists i € / such that Mj is not contained in
C. By the maximality of {MJ}J^J, we have Mi D J2 ®Mj ^ 0. We can now pick out

a finite collection {MjltMj2,... ,MjT} of members of {MJ}J^J such that

Since Mjx © • • • © Mjr is injective, Mi n (M,^ © • • • © Mjr) has an injective envelope
which is a submodule of Mjx © • • • ©M J r (see [5, Proposition 2.22]). Further, Mj is an
injective envelope for Mi n (Mjt ffi • • • © M;-r). Therefore, according to Lemma 2,

MiCMi + Z(M) C Mh © • • • © MJT + Z{M) C C.

This is a contradiction. Hence, M = C. D

Let A be any indecomposable injective .R-module and let B be any non-zero sub-
module of A. Then A is an injective envelope for B. In particular, B is essential in
A. Hence, the residue class .R-module A/B is singular. This shows that the homomor-
phic image of an indecomposable injective .R-module A is either an indecomposable
injective .R-module (which is isomorphic to A) or a singular .R-module.
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Every homomorphic image N of a sum of indecomposable injective submodules of
an R-module is the sum of a direct sum of indecomposable injective submodules which
are not singular and Z(N). More precisely, we proceed to the following:

THEOREM 4 . Let M and N be R-modules and let {Mi}i€i be a family of

indecomposable injective submodules of M. Then for every epimorphism f :

N, there is a subset J of I such that t€

in which each f{Mj) is indecomposable injective but not singular.

PROOF: Let {Mj}je/ be a family of submodules of an .R-module M. Let Ni =

for each i G / . Then N = £ iV*. Hence,
• 6 /

Now, assume that each Mj is indecomposable injective. Then, since iV< is the
homomorphic image of Mi, it follows from the argument immediately following the
proof of Proposition 3 that each Ni is either indecomposable injective or singular. It
may be assumed that every singular submodule of TV is contained in Z(N). Thus, we
may assume that each Â  is indecomposable injective but not singular.

Therefore, by Proposition 3, there is a subset J of J such that

and each Nj is indecomposable injective but not singular, as required. D

Theorem 4 provides us with the natural generalisation of a theorem of Harada [4,
(8.2.7)].

If R is a nonsingular ring, then the factor R-module M/Z{M) is nonsingular (see
[3, Proposition 3.29].) However, we cannot say in general that the factor il-module
M/Z(M) is nonsingular.

Let R be a ring and let M be an .R-module. Since Z(M/Z(M)) is a submodule of
the factor .R-module M/Z(M), it follows from the one-to-one correspondence theorem
for modules that there exists a unique submodule G of M containing Z(M) such that

G/Z(M) = Z(M/Z(M)).
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Then G is called the Goldie torsion submodule (or second singular submodule) of M
and is denoted by Z2(M) (see [7]).

We should mention three well known facts. The first is that

M/Z{M)
Z2(M)/Z(M)

The second is that Z2(M)/Z(M) is the singular submodule of the factor ^-module
M/Z(M). The third is that the factor .R-module M/Z2(M) is nonsingular. Clearly,
Z2(Z2(M)) = Z2(M).

THEOREM 5 . Let M and N be R-modules and let { M J } J € J be a family of

indecomposable injective submodules of M. Then for every epimorphism f : 53 -Wt ~*

N, there are subsets K,J of I with K C J such that

where each f(Mk) is indecomposable injective and nonsingular;

s ( V^ \
Z2(N) = I > ©/(M,) I + Z(N)

\ ^^ I
yj€J^K '

where each f(Mj) is indecomposable injective, not singular but Z2(f(Mj)) ^ 0.

PROOF: By Theorem 4, there is a subset J of / such that

(1) N = feelfi) +

where Nj = f(Mj) and Nj is indecomposable injective but not singular. Then since
Z2{N) contains Z(N), it follows that

N = N + Z2(N)= fa ®NJ) + ZW + Z^N) = fe ®Ni

Let K be the set of all j € J with Z2(Nj) = 0. Then

(2) N

Let j be any element of J\K. Since Nj is indecomposable injective and Z2(Nj) / 0,
Nj/Z2(Nj) is both singular and nonsingular. This implies that Nj = Z2(Nj). Hence,

i= E ®z2(Nj) C Z2(N).
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Further, by making a direct computation, we can see that

fe ®N>) n Z2(N) c J2 ®z2(Nk) = o.
Nfcgif ' k€K

Therefore, it follows from (2) that

(3) N

Here, notice that each A^ is nonsingular, because N/Z2(N) is nonsingular so that
is nonsingular.

From (1) and (3), we have

© Z2(N) =

Therefore, by Lemma 1 or by the modularity, we get

The remainder of the proof is obvious. D

COROLLARY 6. Let M be an R-module which is a direct sum of indecomposable
injective submodules. Then for every direct summand N of M, N/Z2(N) is a direct
sum of indecomposable injective submodules. D

Theorem 5 says that if M is a module which is a direct sum of indecomposable
injective submodules, then every direct summand N of M is a direct sum of a direct
sum of indecomposable injective submodules and Z2(N). This implies that Z2(N) is
a direct summand of a direct sum of indecomposable injective modules.

We turn our attention to the decomposition of Z2(N) into indecomposable injective
submodules when Z2 (N) ^ 0. More generally, we proceed to the following:

LEMMA 7 . Let X, Y, Z be submodules of an R-module such that X ffi Y =
X © Z. Then there exists an isomorphism tp from Y onto Z such that for every
submodule BofY and for every submodule C of Z, tp(B) nC={X®B)nC.

PROOF: Let IT : X (BZ —¥ Z be the canonical projection. Then for any submodule
B' of X @ Z, Tr(fi') = (X + B') n Z. If X © Y = X © Z, then the composite map
up : Y ^% X®Y — X ® Z -—* Z is an isomorphism. Now, let B be any submodule of
Y and let C be any submodule of Z. Then

ip(B) nc = n(B) nc = (X®B)nznC=(x@B)nc,
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as required. D

Compare the following theorem with Azumaya's Decomposition Theorem [1, The-

orem 12.6].

THEOREM 8 . Let M be an R-module which is a direct sum of indecomposable
injective submodules Mi, i € I. Then every non-zero direct summand of M has an
indecomposable injective direct summand isomorphic to one of the Mi.

P R O O F : Let {Mi}i^i be a family of indecomposable injective submodules of an
.R-module M such that M = JZffiMj. Let AT be a direct summand of M. Then

there is a submodule N' of M such that M = N ffi N'. If AT is non-zero, then there

exists a finite subset J of / such that I 22 ®Mj m W / 0. Consider the family
\j€J J

T of all finite subsets F of / such that I 22 ©-W/ I H A7 ^ 0, and consider the set
\/€F /

5 = {|F| | F € .T7}, where \F\ denotes the number of elements of F. Then 5 is a
non-empty subset of the set N of natural numbers. By the well-ordering property of
integers, S has the least element I. Then I = |F,| for some finite subset F* of I with

22 ®Mf\ n N ^ 0 . Write F , = {ii,... ,k}.
feF. J

Assume that 1 = 1. Then (Mh nN)n (Mh nN') = 0, Mh n AT ^ 0, and Afjj
is indecomposable injective. So, M^ n N' = 0. Hence, by [6, Lemma 2.10], Mix ffi A

7'
is a direct summand of M. In fact, there exists a submodule N\ of N such that
M = Mi^ ®N'@Ni, that is, N' © Mix © A^ = A77 ffi N. By Lemma 7, there exists an
isomorphism ip from Mi1 ©A î onto A/̂ . Hence (p(Mj1)ffi<p(Ar1) = ^(M^ ffi A î) = AT so
that Af has an indecomposable injective direct summand < (̂Mi1) which is isomorphic
to Mit.

Assume now that / > 1. Then by the minimality of /, we must have
[M^ ffi • • • ffi Mi{_Y) ("I N = 0. According to [6, Lemma 2.10], Mix © • • • © Mit-1 ffi N
is a direct summand of M. In fact, there exists a submodule N{ of N' such that
M = Mix © • • • ffi Mi,_j ffi N © N[. Write M as follows:

= Mh © • • • © M i
i,_1

By Lemma 7, there exists an isomorphism <p from 22 ©Mj onto Â  ©

such that ip(Mil) ON = (Mix ffi • • • ffi Mit_x ffi Mit) D N. Note that

n AM n f^(Mj,) n N[J = o.
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According to the construction of I,

<p(Mit) n AT = (Mh e • • • eMit) n N = ( ^ © M , ) n N ^o .

Mi( = ^(Mij) implies that <p(Mit) is indecomposable injective. Hence, as in the case
I = 1, we can prove that N has an indecomposable injective direct summand which is
isomorphic to <p(Mit) and hence to M^ . D

REMARK. The word "isomorphic" in Theorem 8 cannot be replaced by the word
"equal". An example of this is given in the following example.

EXAMPLE 9. Let R = Z be the ring of integers and let N be the set of non-negative
integers. Let V be a vector space over the field Z/2Z with a countable basis Vi, i 6 N.
Let M be the injective envelope of the Z-module V. Then M — ^2 ©Mj, where each

Mi is an indecomposable injective Z-module whose socle is the submodule with two
elements Ziij. Let iV be an injective envelope in M of the submodule generated by
the countable set Vi — Vj+i, i & N, and N' be an injective envelope in M of the
submodule generated by vQ. Clearly M = N ® N'. Note that N = Z2(N) £ 0. Then

K = {i 6 N | Z2(Mi) ^ 0} = N.

Now N = Z2{N) ^ 0 has an indecomposable injective direct summand N\ which is
isomorphic to Mkx for some k\ € N. For instance, take as N\ the injective envelope
in M of the submodule generated by VQ - v\. This N\ is isomorphic to Mkx for any
fci € N. Let N[ be a submodule of N = Z2{N) such that

For instance, take as N[ the injective envelope in M of the submodule generated by
the countable set v, — vi+i, i > 1. From this we cannot deduce that

Otherwise, the elements v^ in the socle of Mkl would belong to Af. But this would
imply that all the elements t\ are in N, that is, N = M, contradiction.

To investigate the Goldie torsion submodule of an indecomposable injective module,
we need to introduce the notion of a module with (Cn) .

Let M be an .R-module and let N be a submodule of M . By Zorn's lemma, the
collection of submodules L of M such that N f~1 L — 0 has a maximal member. A
complement of N in M is a submodule K of M maximal with respect to the property
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N n K — 0. A submodule K of M is called a complement in M if there exists a
submodule N of M such that A" is a complement of N in M. A module M is a
CS-module or satisfies (Ci) if every complement in M is a direct summand of M. A
module M is said to satisfy (Cn) if every submodule of M has a complement in M
which is a direct summand of M.

If an .R-module M satisfies (Ci), then it satisfies (Cn) . For example, every
injective .R-module satisfies (Ci) and hence it satisfies (Cn) . In fact, let M be an
injective .R-module and let K be any complement in M. Then there is a submodule
N of M such that K \s & complement of N in M. Since M is injective and N © K
is a submodule of M , N ® K has an injective envelope E(N © K) in M. Note that
E{N ®K) = E(N) © E{K). According to [5, Proposition 2.15], E{N) © E(K) is a
direct summand of M. Let P be a submodule of M such that

M = £(A0 © E(K) © P.

Then Nn(E(K)®P) = 0 and if C E(K)®P. By the maximality of K, E(K)®P =
K. Hence £ ( # ) C AT and P C if, so # = E(K) and P = P n K = 0. Thus,
M = i£(A0 © if. This shows that K is a direct summand of M . Therefore, M
satisfies (C\) and hence it satisfies (Cn) .

PROPOSITION 1 0 . Let M bean R-module. If M is indecomposable injective,
then either Z2{M) = 0 or Z2(M) = M.

P R O O F : Assume that M is indecomposable injective. Then since M is injective,
M satisfies (Cn) . Z2(M) is a direct summand of M (see [6, Theorem 2.7].) Since M
is indecomposable, either Z2(M) — 0 or Z2(M) = M. D

LEMMA 1 1 . Let M be a direct sum of indecomposable injective submodules.
Then every direct summand of M is the sum of all its indecomposable injective sub-
modules.

P R O O F : Let M = ^2 ©Mj be a direct sum of indecomposable injective submodules
iei

Mi. Let N be any direct summand of M. Let 5 be the sum of all indecomposable

injective submodules of N. The goal is to show that S = N.

Suppose on the contrary that 5 ^ N. Then we can take an element x € N\S.
There is a finite set { H , . . . , im} C / with x e M^©- • -®Mim . Set A = Mit®- • -®Mim .
By [1, Lemma 26.4] there are direct summands P of N and P' of N' such that

M = A ® P © P'.

Let
H = Nn{A®P').
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Then x € N n A C H, and by modularity

N = N n M = N n ((A © P') © P) = H © P.

Since P' is a direct summand of N', there is a submodule P " of JV' with N' = P'®P".
Thus,

= (H © P © P ' © P") / (P © P')

S H © P".

But, by [1, Corollary 12.7] the decomposition A = Mix © • • • © Mjm complements
direct summands. Hence, in particular, H is isomorphic to ® M* for some finite

k&F

subset F C / , so that iif is a direct sum of indecomposable injective submodules of Af.
Therefore, we get x € H C S, contradiction. D

Recently, study of direct sum decompositions into indecomposable injective mod-
ules has been done in [8].

THEOREM 12 . Let M be an R-module which is a direct sum of indecomposable
injective submodules. Then every direct summand N of M is the sum of a direct
sum of indecomposable injective submodules and a sum of indecomposable injective
submodules of Z2(N).

P R O O F : Let {Mj}j6/ be a family of indecomposable injective submodules of an
.R-module M such that M — ^ © M j . Let JV be a direct summand of M . Let

n : M -> N be the canonical projection. Then by Theorem 5, there is a subset J of /
such that

(1) N = (j^QniMj)^) (B Z2(N)

where each n(Mj) is indecomposable injective. Let N' be a submodule of

such that £ @Mi = N ® N1. Then

Y , i ) = Z2(N) © Z2(N').

Let

K={i 6 / | Z2(Mi) ? 0}.
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Then by Proposition 10,

Hence, by Lemma 11, Z2{N) is the sum of all its indecomposable injective submodules.
By (1), N is a direct sum of a direct sum of indecomposable injective submodules and
the sum of all indecomposable injective submodules of Z2{N). Therefore, by Zorn's
lemma, N is the sum of a direct sum of indecomposable injective submodules and a
sum of indecomposable injective submodules of Z2(N). D
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