Bull. Austral. Math. Soc. Vol. 62 (2000) [57–66]

DIRECT SUMS OF INDECOMPOSABLE INJECTIVE MODULES

SANG CHEOL LEE AND DONG SOO LEE

This paper proves that every direct summand N of a direct sum of indecomposable injective submodules of a module is the sum of a direct sum of indecomposable injective submodules and a sum of indecomposable injective submodules of $Z_2(N)$.

In this paper, we shall always assume that every ring R has an identity element. By a module, we shall always mean a unitary left R-module.

LEMMA 1. Let M be an R-module and suppose that $\{M_i\}_{i \in I}$ and $\{N_i\}_{i \in I}$ are families of submodules of M such that $\sum_{i \in I} \bigoplus M_i = \sum_{i \in I} N_i$ in M. Suppose further that $M_i \supseteq N_i$ for each $i \in I$. Then $M_i = N_i$ for each $i \in I$.

PROOF: If $M_j \supset N_j$ for some $j \in I$, then $\sum_{i \in I} \oplus M_i \supset \sum_{i \in I} \oplus N_i = \sum_{i \in I} N_i$, contradiction.

Recall that the singular submodule Z(M) of an R-module M is defined by

 $Z(M) = \{ m \in M \mid \operatorname{ann}_R(m) \text{ is essential in } R \}.$

Recall further that the module M is called *singular* if M = Z(M), and *nonsingular* if Z(M) = 0.

It is fairly well known that for any prime p in the ring \mathbb{Z} of integers, the \mathbb{Z} -module $G = \mathbb{Z}(p^{\infty}) \oplus \mathbb{Z}(p^{\infty})$ has the property that not every submodule has a unique injective envelope in G. It is well-known that if there is an injective envelope of a submodule, within a given nonsingular module, then it is unique. (In fact, this follows from [3, Propositions 4.9, 3.28(b), 3.26] and [2, Lemma 2.1].) This can be further generalised as follows:

LEMMA 2. If there is an injective envelope E(N) of a submodule N, within a given R-module M, then for every injective envelope E'(N) of N, within M,

$$E'(N) + Z(M) = E(N) + Z(M).$$

Received 23rd September, 1999

The authors wish to acknowledge the financial support of the Korea Research Foundation in the year 1998, Project No. 1998-015-D00010.

Copyright Clearance Centre, Inc. Serial-fee code: 0004-9727/00 \$A2.00+0.00.

PROOF: It is well-known [2, Proposition 1.11] or [3, Proposition 4.9] that there exists an isomorphism f from E(N) onto E'(N) such that $f|_N = id_N$. To show that E(N) + Z(M) = E'(N) + Z(M) in M, it suffices to prove that for every $e \in E(N) \setminus N$, $\operatorname{ann}_R(e - f(e))$ is essential in R.

Let \Im be a non-zero left ideal in R. Since N is essential in E(N), it follows that E(N)/N is singular. This implies that $\operatorname{ann}_R(e+N)$ is essential in R, so that $\Im \cap \operatorname{ann}_R(e+N) \neq 0$. Take a non-zero element i in $\Im \cap \operatorname{ann}_R(e+N)$. Then $ie \in N$. Since $f|_N = id_N$, it follows that i belongs to $\Im \cap \operatorname{ann}_R(e-f(e))$, so that $\Im \cap \operatorname{ann}_R(e-f(e)) \neq 0$. Hence, $\operatorname{ann}_R(e-f(e))$ is essential in R, as required.

If M is a nonsingular R-module which is a sum of indecomposable injective submodules, then it is a direct sum of indecomposable injective submodules. The generalisation of this will be discussed.

PROPOSITION 3. Let M be an R-module which can be expressed in the form $M = \sum_{i \in I} M_i + Z(M)$, where the M_i 's are indecomposable injective submodules of M. Then there exists a subset J of I such that $M = \sum_{i \in J} \bigoplus M_j + Z(M)$.

PROOF: Consider the family $\{M_i\}_{i \in I}$. By Zorn's lemma, the collection of subfamilies $\{M_k\}_{k \in K}$ $(K \subseteq I)$ of the family $\{M_i\}_{i \in I}$ such that the sum $\sum_{k \in K} M_k$ is direct, has a maximal member, say $\{M_j\}_{j \in J}$ $(J \subseteq I)$. Let $C = \sum_{j \in J} \bigoplus M_j + Z(M)$. In order to show the proposition, it is sufficient to prove that M = C.

Suppose that $M \neq C$. Then there exists $i \in I$ such that M_i is not contained in C. By the maximality of $\{M_j\}_{j \in J}$, we have $M_i \cap \sum_{j \in J} \bigoplus M_j \neq 0$. We can now pick out a finite collection $\{M_{j_1}, M_{j_2}, \ldots, M_{j_r}\}$ of members of $\{M_j\}_{j \in J}$ such that

$$M_i \cap (M_{j_1} \oplus \cdots \oplus M_{j_r}) \neq 0$$

Since $M_{j_1} \oplus \cdots \oplus M_{j_r}$ is injective, $M_i \cap (M_{j_1} \oplus \cdots \oplus M_{j_r})$ has an injective envelope which is a submodule of $M_{j_1} \oplus \cdots \oplus M_{j_r}$ (see [5, Proposition 2.22]). Further, M_i is an injective envelope for $M_i \cap (M_{j_1} \oplus \cdots \oplus M_{j_r})$. Therefore, according to Lemma 2,

$$M_i \subseteq M_i + Z(M) \subseteq M_{j_1} \oplus \cdots \oplus M_{j_r} + Z(M) \subseteq C$$

This is a contradiction. Hence, M = C.

Let A be any indecomposable injective R-module and let B be any non-zero submodule of A. Then A is an injective envelope for B. In particular, B is essential in A. Hence, the residue class R-module A/B is singular. This shows that the homomorphic image of an indecomposable injective R-module A is either an indecomposable injective R-module (which is isomorphic to A) or a singular R-module.

Π

Every homomorphic image N of a sum of indecomposable injective submodules of an R-module is the sum of a direct sum of indecomposable injective submodules which are not singular and Z(N). More precisely, we proceed to the following:

THEOREM 4. Let M and N be R-modules and let $\{M_i\}_{i \in I}$ be a family of indecomposable injective submodules of M. Then for every epimorphism $f: \sum_{i \in I} M_i \to N$, there is a subset J of I such that

$$N = \left(\sum_{j \in J} \oplus f(M_j)\right) + Z(N)$$

in which each $f(M_j)$ is indecomposable injective but not singular.

PROOF: Let $\{M_i\}_{i \in I}$ be a family of submodules of an *R*-module *M*. Let $N_i = f(M_i)$ for each $i \in I$. Then $N = \sum_{i \in I} N_i$. Hence,

$$N = \left(\sum_{i \in I} N_i\right) + Z(N).$$

Now, assume that each M_i is indecomposable injective. Then, since N_i is the homomorphic image of M_i , it follows from the argument immediately following the proof of Proposition 3 that each N_i is either indecomposable injective or singular. It may be assumed that every singular submodule of N is contained in Z(N). Thus, we may assume that each N_i is indecomposable injective but not singular.

Therefore, by Proposition 3, there is a subset J of I such that

$$N = \left(\sum_{j \in J} \oplus N_j\right) + Z(N);$$

and each N_j is indecomposable injective but not singular, as required.

Theorem 4 provides us with the natural generalisation of a theorem of Harada [4, (8.2.7)].

If R is a nonsingular ring, then the factor R-module M/Z(M) is nonsingular (see [3, Proposition 3.29].) However, we cannot say in general that the factor R-module M/Z(M) is nonsingular.

Let R be a ring and let M be an R-module. Since Z(M/Z(M)) is a submodule of the factor R-module M/Z(M), it follows from the one-to-one correspondence theorem for modules that there exists a unique submodule G of M containing Z(M) such that

$$G/Z(M) = Z(M/Z(M)).$$

[3]

Then G is called the Goldie torsion submodule (or second singular submodule) of M and is denoted by $Z_2(M)$ (see [7]).

We should mention three well known facts. The first is that

$$\frac{M/Z(M)}{Z_2(M)/Z(M)} \cong M/Z_2(M).$$

The second is that $Z_2(M)/Z(M)$ is the singular submodule of the factor *R*-module M/Z(M). The third is that the factor *R*-module $M/Z_2(M)$ is nonsingular. Clearly, $Z_2(Z_2(M)) = Z_2(M)$.

THEOREM 5. Let M and N be R-modules and let $\{M_i\}_{i \in I}$ be a family of indecomposable injective submodules of M. Then for every epimorphism $f: \sum_{i \in I} M_i \to N$, there are subsets K, J of I with $K \subseteq J$ such that

$$N = \left(\sum_{k \in K} \oplus f(M_k)\right) \oplus Z_2(N)$$

where each $f(M_k)$ is indecomposable injective and nonsingular;

$$Z_2(N) = \left(\sum_{j \in J \smallsetminus K} \oplus f(M_j)\right) + Z(N)$$

where each $f(M_j)$ is indecomposable injective, not singular but $Z_2(f(M_j)) \neq 0$.

PROOF: By Theorem 4, there is a subset J of I such that

(1)
$$N = \left(\sum_{j \in J} \oplus N_j\right) + Z(N)$$

where $N_j = f(M_j)$ and N_j is indecomposable injective but not singular. Then since $Z_2(N)$ contains Z(N), it follows that

$$N = N + Z_2(N) = \left(\sum_{j \in J} \oplus N_j\right) + Z(N) + Z_2(N) = \left(\sum_{j \in J} \oplus N_j\right) + Z_2(N).$$

Let K be the set of all $j \in J$ with $Z_2(N_j) = 0$. Then

(2)
$$N = \left(\sum_{k \in K} \oplus N_k\right) \oplus \left(\sum_{j \in J \smallsetminus K} \oplus N_j\right) + Z_2(N).$$

Let j be any element of $J \setminus K$. Since N_j is indecomposable injective and $Z_2(N_j) \neq 0$, $N_j/Z_2(N_j)$ is both singular and nonsingular. This implies that $N_j = Z_2(N_j)$. Hence,

$$\sum_{j\in J\smallsetminus K} \oplus N_j = \sum_{j\in J\smallsetminus K} \oplus Z_2(N_j) \subseteq Z_2(N).$$

Further, by making a direct computation, we can see that

$$\left(\sum_{k\in K}\oplus N_k\right)\cap Z_2(N)\subseteq \sum_{k\in K}\oplus Z_2(N_k)=0.$$

Therefore, it follows from (2) that

(3)
$$N = \left(\sum_{k \in K} \oplus N_k\right) \oplus Z_2(N).$$

Here, notice that each N_k is nonsingular, because $N/Z_2(N)$ is nonsingular so that $\sum_{k \in K} \bigoplus N_k$ is nonsingular.

From (1) and (3), we have

$$\left(\sum_{k\in K}\oplus N_k\right)\oplus Z_2(N)=\left(\sum_{k\in K}\oplus N_k\right)\oplus \left(\sum_{j\in J\smallsetminus K}\oplus N_j\right)+Z(N).$$

Therefore, by Lemma 1 or by the modularity, we get

$$Z_2(N) = \left(\sum_{j \in J \smallsetminus K} \oplus N_j\right) + Z(N).$$

The remainder of the proof is obvious.

COROLLARY 6. Let M be an R-module which is a direct sum of indecomposable injective submodules. Then for every direct summand N of M, $N/Z_2(N)$ is a direct sum of indecomposable injective submodules.

Theorem 5 says that if M is a module which is a direct sum of indecomposable injective submodules, then every direct summand N of M is a direct sum of a direct sum of indecomposable injective submodules and $Z_2(N)$. This implies that $Z_2(N)$ is a direct summand of a direct sum of indecomposable injective modules.

We turn our attention to the decomposition of $Z_2(N)$ into indecomposable injective submodules when $Z_2(N) \neq 0$. More generally, we proceed to the following:

LEMMA 7. Let X, Y, Z be submodules of an R-module such that $X \oplus Y = X \oplus Z$. Then there exists an isomorphism φ from Y onto Z such that for every submodule B of Y and for every submodule C of Z, $\varphi(B) \cap C = (X \oplus B) \cap C$.

PROOF: Let $\pi: X \oplus Z \to Z$ be the canonical projection. Then for any submodule B' of $X \oplus Z$, $\pi(B') = (X + B') \cap Z$. If $X \oplus Y = X \oplus Z$, then the composite map $\varphi: Y \xrightarrow{inc} X \oplus Y = X \oplus Z \xrightarrow{\pi} Z$ is an isomorphism. Now, let B be any submodule of Y and let C be any submodule of Z. Then

$$\varphi(B) \cap C = \pi(B) \cap C = (X \oplus B) \cap Z \cap C = (X \oplus B) \cap C,$$

0

[5]

as required.

Compare the following theorem with Azumaya's Decomposition Theorem [1, Theorem 12.6].

THEOREM 8. Let M be an R-module which is a direct sum of indecomposable injective submodules M_i , $i \in I$. Then every non-zero direct summand of M has an indecomposable injective direct summand isomorphic to one of the M_i .

PROOF: Let $\{M_i\}_{i\in I}$ be a family of indecomposable injective submodules of an R-module M such that $M = \sum_{i\in I} \oplus M_i$. Let N be a direct summand of M. Then there is a submodule N' of M such that $M = N \oplus N'$. If N is non-zero, then there exists a finite subset J of I such that $\left(\sum_{j\in J} \oplus M_j\right) \cap N \neq 0$. Consider the family \mathcal{F} of all finite subsets F of I such that $\left(\sum_{f\in F} \oplus M_f\right) \cap N \neq 0$, and consider the set $S = \{|F| \mid F \in \mathcal{F}\}$, where |F| denotes the number of elements of F. Then S is a non-empty subset of the set \mathbb{N} of natural numbers. By the well-ordering property of integers, S has the least element l. Then $l = |F_*|$ for some finite subset F_* of I with $\left(\sum_{f\in F_*} \oplus M_f\right) \cap N \neq 0$. Write $F_* = \{i_1, \ldots, i_l\}$.

Assume that l = 1. Then $(M_{i_1} \cap N) \cap (M_{i_1} \cap N') = 0$, $M_{i_1} \cap N \neq 0$, and M_{i_1} is indecomposable injective. So, $M_{i_1} \cap N' = 0$. Hence, by [6, Lemma 2.10], $M_{i_1} \oplus N'$ is a direct summand of M. In fact, there exists a submodule N_1 of N such that $M = M_{i_1} \oplus N' \oplus N_1$, that is, $N' \oplus M_{i_1} \oplus N_1 = N' \oplus N$. By Lemma 7, there exists an isomorphism φ from $M_{i_1} \oplus N_1$ onto N. Hence $\varphi(M_{i_1}) \oplus \varphi(N_1) = \varphi(M_{i_1} \oplus N_1) = N$ so that N has an indecomposable injective direct summand $\varphi(M_{i_1})$ which is isomorphic to M_{i_l} .

Assume now that l > 1. Then by the minimality of l, we must have $(M_{i_1} \oplus \cdots \oplus M_{i_{l-1}}) \cap N = 0$. According to [6, Lemma 2.10], $M_{i_1} \oplus \cdots \oplus M_{i_{l-1}} \oplus N$ is a direct summand of M. In fact, there exists a submodule N'_1 of N' such that $M = M_{i_1} \oplus \cdots \oplus M_{i_{l-1}} \oplus N \oplus N'_1$. Write M as follows:

$$M = M_{i_1} \oplus \cdots \oplus M_{i_{l-1}} \oplus \sum_{i \in I \setminus \{i_1, \dots, i_{l-1}\}} \oplus M_i.$$

By Lemma 7, there exists an isomorphism φ from $\sum_{i \in I \setminus \{i_1, \dots, i_{l-1}\}} \oplus M_i$ onto $N \oplus N'_1$ such that $\varphi(M_{i_l}) \cap N = (M_{i_1} \oplus \dots \oplus M_{i_{l-1}} \oplus M_{i_l}) \cap N$. Note that

$$\left(\varphi(M_{i_l})\cap N\right)\cap\left(\varphi(M_{i_l})\cap N_1'\right)=0.$$

Π

According to the construction of l,

$$\varphi(M_{i_l}) \cap N = (M_{i_1} \oplus \cdots \oplus M_{i_l}) \cap N = \left(\sum_{f \in F_*} \oplus M_f\right) \cap N \neq 0.$$

 $M_{i_l} \cong \varphi(M_{i_l})$ implies that $\varphi(M_{i_l})$ is indecomposable injective. Hence, as in the case l = 1, we can prove that N has an indecomposable injective direct summand which is isomorphic to $\varphi(M_{i_l})$ and hence to M_{i_l} .

REMARK. The word "isomorphic" in Theorem 8 cannot be replaced by the word "equal". An example of this is given in the following example.

EXAMPLE 9. Let $R = \mathbb{Z}$ be the ring of integers and let N be the set of non-negative integers. Let V be a vector space over the field $\mathbb{Z}/2\mathbb{Z}$ with a countable basis $v_i, i \in \mathbb{N}$. Let M be the injective envelope of the \mathbb{Z} -module V. Then $M = \sum_{i \in \mathbb{N}} \bigoplus M_i$, where each M_i is an indecomposable injective \mathbb{Z} -module whose socle is the submodule with two elements $\mathbb{Z}v_i$. Let N be an injective envelope in M of the submodule generated by the countable set $v_i - v_{i+1}, i \in \mathbb{N}$, and N' be an injective envelope in M of the submodule generated by v_0 . Clearly $M = N \oplus N'$. Note that $N = \mathbb{Z}_2(N) \neq 0$. Then

$$K = \{i \in \mathbb{N} \mid Z_2(M_i) \neq 0\} = \mathbb{N}.$$

Now $N = Z_2(N) \neq 0$ has an indecomposable injective direct summand N_1 which is isomorphic to M_{k_1} for some $k_1 \in \mathbb{N}$. For instance, take as N_1 the injective envelope in M of the submodule generated by $v_0 - v_1$. This N_1 is isomorphic to M_{k_1} for any $k_1 \in \mathbb{N}$. Let N'_1 be a submodule of $N = Z_2(N)$ such that

$$N = Z_2(N) = N_1 \oplus N_1'.$$

For instance, take as N'_1 the injective envelope in M of the submodule generated by the countable set $v_i - v_{i+1}$, $i \ge 1$. From this we cannot deduce that

$$N = Z_2(N) = M_{k_1} \oplus N_1'.$$

Otherwise, the elements v_{k_1} in the socle of M_{k_1} would belong to N. But this would imply that all the elements v_i are in N, that is, N = M, contradiction.

To investigate the Goldie torsion submodule of an indecomposable injective module, we need to introduce the notion of a module with (C_{11}) .

Let M be an R-module and let N be a submodule of M. By Zorn's lemma, the collection of submodules L of M such that $N \cap L = 0$ has a maximal member. A complement of N in M is a submodule K of M maximal with respect to the property

 $N \cap K = 0$. A submodule K of M is called a *complement in* M if there exists a submodule N of M such that K is a complement of N in M. A module M is a CS-module or satisfies (C_1) if every complement in M is a direct summand of M. A module M is said to satisfy (C_{11}) if every submodule of M has a complement in M which is a direct summand of M.

If an *R*-module *M* satisfies (C_1) , then it satisfies (C_{11}) . For example, every injective *R*-module satisfies (C_1) and hence it satisfies (C_{11}) . In fact, let *M* be an injective *R*-module and let *K* be any complement in *M*. Then there is a submodule *N* of *M* such that *K* is a complement of *N* in *M*. Since *M* is injective and $N \oplus K$ is a submodule of *M*, $N \oplus K$ has an injective envelope $E(N \oplus K)$ in *M*. Note that $E(N \oplus K) = E(N) \oplus E(K)$. According to [5, Proposition 2.15], $E(N) \oplus E(K)$ is a direct summand of *M*. Let *P* be a submodule of *M* such that

$$M = E(N) \oplus E(K) \oplus P$$

Then $N \cap (E(K) \oplus P) = 0$ and $K \subseteq E(K) \oplus P$. By the maximality of K, $E(K) \oplus P = K$. Hence $E(K) \subseteq K$ and $P \subseteq K$, so K = E(K) and $P = P \cap K = 0$. Thus, $M = E(N) \oplus K$. This shows that K is a direct summand of M. Therefore, M satisfies (C_1) and hence it satisfies (C_{11}) .

PROPOSITION 10. Let M be an R-module. If M is indecomposable injective, then either $Z_2(M) = 0$ or $Z_2(M) = M$.

PROOF: Assume that M is indecomposable injective. Then since M is injective, M satisfies (C_{11}) . $Z_2(M)$ is a direct summand of M (see [6, Theorem 2.7].) Since M is indecomposable, either $Z_2(M) = 0$ or $Z_2(M) = M$.

LEMMA 11. Let M be a direct sum of indecomposable injective submodules. Then every direct summand of M is the sum of all its indecomposable injective submodules.

PROOF: Let $M = \sum_{i \in I} \bigoplus M_i$ be a direct sum of indecomposable injective submodules M_i . Let N be any direct summand of M. Let S be the sum of all indecomposable injective submodules of N. The goal is to show that S = N.

Suppose on the contrary that $S \neq N$. Then we can take an element $x \in N \setminus S$. There is a finite set $\{i_1, \ldots, i_m\} \subseteq I$ with $x \in M_{i_1} \oplus \cdots \oplus M_{i_m}$. Set $A = M_{i_1} \oplus \cdots \oplus M_{i_m}$. By [1, Lemma 26.4] there are direct summands P of N and P' of N' such that

$$M = A \oplus P \oplus P'.$$

Let

$$H=N\cap (A\oplus P').$$

Then $x \in N \cap A \subseteq H$, and by modularity

$$N = N \cap M = N \cap ((A \oplus P') \oplus P) = H \oplus P.$$

Since P' is a direct summand of N', there is a submodule P'' of N' with $N' = P' \oplus P''$. Thus,

$$A \cong M/(P \oplus P')$$

= $(N \oplus N')/(P \oplus P')$
= $(H \oplus P \oplus P' \oplus P'')/(P \oplus P')$
 $\cong H \oplus P''.$

But, by [1, Corollary 12.7] the decomposition $A = M_{i_1} \oplus \cdots \oplus M_{i_m}$ complements direct summands. Hence, in particular, H is isomorphic to $\bigoplus_{k \in F} M_k$ for some finite subset $F \subseteq I$, so that H is a direct sum of indecomposable injective submodules of N. Therefore, we get $x \in H \subseteq S$, contradiction.

Recently, study of direct sum decompositions into indecomposable injective modules has been done in [8].

THEOREM 12. Let M be an R-module which is a direct sum of indecomposable injective submodules. Then every direct summand N of M is the sum of a direct sum of indecomposable injective submodules and a sum of indecomposable injective submodules of $Z_2(N)$.

PROOF: Let $\{M_i\}_{i \in I}$ be a family of indecomposable injective submodules of an *R*-module *M* such that $M = \sum_{i \in I} \bigoplus M_i$. Let *N* be a direct summand of *M*. Let $\pi: M \to N$ be the canonical projection. Then by Theorem 5, there is a subset *J* of *I* such that

(1)
$$N = \left(\sum_{j \in J} \oplus \pi(M_j)\right) \oplus Z_2(N)$$

where each $\pi(M_j)$ is indecomposable injective. Let N' be a submodule of $\sum_{i \in I} \oplus M_i$ such that $\sum_{i \in I} \oplus M_i = N \oplus N'$. Then

$$\sum_{i\in I} \oplus Z_2(M_i) = Z_2(N) \oplus Z_2(N').$$

Let

$$K = \left\{ i \in I \mid Z_2(M_i) \neq 0 \right\}.$$

[10]

Then by Proposition 10,

$$\sum_{k \in K} \oplus M_k = Z_2(N) \oplus Z_2(N').$$

Hence, by Lemma 11, $Z_2(N)$ is the sum of all its indecomposable injective submodules. By (1), N is a direct sum of a direct sum of indecomposable injective submodules and the sum of all indecomposable injective submodules of $Z_2(N)$. Therefore, by Zorn's lemma, N is the sum of a direct sum of indecomposable injective submodules and a sum of indecomposable injective submodules of $Z_2(N)$.

References

- F.W. Anderson and K.R. Fuller, Rings and categories of modules, (Second Edition) (Springer-Verlag, Berlin, Heidelberg, New york, 1992).
- [2] K.R. Goodearl, Ring theory. Nonsingular rings and modules, Pure and Applied Mathematics 33 (Marcel Dekker, Inc., New York, Basel, 1976).
- [3] K.R. Goodearl and R.B. Warfield, Jr, An introduction to noncommutative Noetherian rings, London Mathematical Society Student Texts 16 (Cambridge University Press, Cambridge, New York, 1989).
- [4] M. Harada, Factor categories with applications to direct decomposition of modules, Notes in Pure and Applied Mathematics 88 (Marcel Dekker, New York, 1983).
- [5] D.W. Sharpe and P. Vámos, *Injective modules*, Cambridge Tracts in Mathematics and Mathematical Physics 62 (Cambridge, London, New York, 1972).
- [6] P.F. Smith and A. Tercan, 'Generalizations of CS-Modules', Comm. Algebra 21 (1993), 1809–1847.
- [7] B. Stenström, Rings of quotients (Springer-Verlag, Berlin, Heidelberg, New York, 1975).
- [8] H.-P. Yu, 'On Krull-Schmidt and a problem of Matlis', Comm. Algebra 24 (1996), 2851-2858.

Department of Mathematics Education Chonbuk National University Chonju, Chonbuk 561-756 Korea e-mail: scl@moak.chonbuk.ac.kr Department of Mathematics Chungnam National University Taejon 305-764 Korea e-mail: dslee@math.chungnam.ac.kr

66