SPECIAL SERIES OF UNITARY REPRESENTATIONS OF GROUPS ACTING ON HOMOGENEOUS TREES

ANNA MARIA MANTERO and ANNA ZAPPA
(Received 17 August 1984; revised 16 October 1984)
Communicated by G. Brown

Abstract

Let G be a group acting faithfully on a homogeneous tree of order $p+1, p>1$. Let \mathscr{K}^{0} be the space of functions on the Poisson boundary Ω, of zero mean on Ω. When p is a prime, G is a discrete subgroup of $P G L_{2}\left(\mathbf{Q}_{p}\right)$ of finite covolume. The representations of the special series of $P G L_{2}\left(\mathbb{Q}_{p}\right)$, which are irreducible and unitary in an appropriate completion of \mathscr{K}^{0}, are shown to be reducible when restricted to G. It is proved that these representations of G are algebraically reducible on \mathscr{K}^{0} and topologically irreducible on \mathscr{K}^{0} endowed with the weak topology.

1980 Mathematics subject classification (Amer. Math. Soc.): 22 D 10, 20 E 05, 43 D 90.

1. Introduction

Let G be a group acting isometrically and simply transitively on a homogeneous tree of order $p+1, p>1$. Every such group is isomorphic to the free product $G_{r s}$ of r copies of \mathbb{Z} and s copies of \mathbb{Z}_{2}, with $2 r+s=p+1$ [1]. Following [3], we denote by Ω the Poisson boundary of G with respect to an isotropic nearest neighbour random walk, by ν the corresponding Poisson measure on Ω and by $P(x, \omega)=d \nu\left(x^{-1} \omega\right) / d \nu(\omega)$ the associated Poisson kernel.

Let $\mathscr{K}(\Omega)$ be the space of continuous simple functions on Ω, endowed with the weak topology defined by the functionals

$$
F(\xi)=(\xi, \eta), \quad \xi, \eta \in \mathscr{K}(\Omega)
$$

For each $z \in \mathbb{C}$, we consider the representation π_{z} of G on $\mathscr{K}(\Omega)$, defined by

$$
\pi_{z}(x) \xi(\omega)=p^{z}(x, \omega) \xi\left(x^{-1} \omega\right), \quad \xi \in \mathscr{K}(\Omega), x \in G .
$$

[^0]Let $\Upsilon=\{z \in \mathbb{C}: z=h \pi i / \log p, h \in \mathbb{Z}\}$. In the case when G is a free group, then π_{z} is topologically irreducible on $\mathscr{K}(\Omega)$, whenever $z, 1-z \notin \Upsilon[4$, Proposition 3.2]. On the other hand, this representation is algebraically reducible on $\mathscr{K}(\Omega)$ [4, Proposition 3.3].

The purpose of this note is to extend these results to the representation π_{z} of G for $1-z \in \Upsilon$ (the remaining case $z \in \Upsilon$ is trivial). The argument of the proof works in exactly the same way for all groups $G_{r s}$. For the sake of simplicity of notation, from now on we restrict attention to the case $G=G_{0 s}$; all the results that we prove also hold in the general case.

The subspace $\mathscr{K}^{0}(\Omega)$ of $\mathscr{K}(\Omega)$ defined by

$$
\mathscr{K}^{0}(\Omega)=\{\xi \in \mathscr{K}(\Omega),(\xi, \mathbb{1})=0\}
$$

is invariant under the representation $\pi_{z}, 1-z \in \Upsilon$; we endow $\mathscr{K}^{0}(\Omega)$ with the weak topology defined by the functionals

$$
F(\xi)=(\xi, \eta), \quad \xi, \eta \in \mathscr{K}^{0}(\Omega)
$$

and call it the \mathscr{K}^{0}-topology. Then we prove that the representation $\pi_{z}, 1-z \in \Upsilon$, is topologically irreducible on $\mathscr{K}^{0}(\Omega)$, but algebraically reducible.

A preliminary step in the irreducibility proof consists in finding a finite set of functions $\psi_{j}, j=1, \ldots, p+1$, in $\mathscr{K}^{0}(\Omega)$, such that the linear span of $\left\{\pi_{z}(x) \psi_{j}\right.$: $x \in G, j=1, \ldots, p+1\}$ is the whole of $\mathscr{K}^{0}(\Omega)$. Then the argument proceeds by constructing operators $T_{n}^{(j)}, n \in \mathbb{N}, j=1, \ldots, p+1$, such that for any $j=$ $1, \ldots, p+1, \xi \in \mathscr{K}^{0}(\Omega), T_{n}^{(j)} \xi$ converges weakly in $\mathscr{K}^{0}(\Omega)$ to $\left(\xi, \psi_{j}\right) \psi_{j}$, as $n \rightarrow+\infty$.

By way of contrast, we show that the representation $\pi_{z}, 1-z \in \Upsilon$, is topologically reducible on the Hilbert space where it acts unitarily.

2. Principal results

Let G be the free product $\mathbb{Z}_{2} * \mathbb{Z}_{2} * \cdots * \mathbb{Z}_{2},(p+1)$-times, with generators $a_{j}, a_{j}^{2}=1, j=1, \ldots, p+1$. Given any $x \in G$, let $E(x)=\left\{\omega \in \Omega: \omega^{(n)}=x\right\}$, where $\omega^{(n)}$ denotes the first n letters of the infinite reduced word ω.

We define, for $1 \leqslant j \leqslant p+1$,

$$
\psi_{j}(\omega)=\psi_{a_{j}}(\omega)= \begin{cases}1, & \omega \in E\left(a_{j}\right), \\ -1 / p, & \omega \notin E\left(a_{j}\right),\end{cases}
$$

and for any $x \in G,|x|=n>1$,

$$
\psi_{x}(\omega)= \begin{cases}1, & \omega \in E(x) \\ -1 /(p-1), & \omega \in E\left(x^{(n-1)}\right) \backslash E(x) \\ 0, & \text { otherwise }\end{cases}
$$

Linear combinations of $\psi_{x}, x \in G$, exhaust $\mathscr{K}^{0}(\Omega)$; moreover we have the following result.

Proposition 1. Let $1-z \in \Upsilon$. Then $\mathscr{K}^{0}(\Omega)$ is the linear span of $\left\{\pi_{z}(x) \psi_{j}\right.$: $x \in G, j=1, \ldots, p+1\}$.

Proof. It suffices to show that for every $x \in G, \psi_{x}$ is a linear combination of functions of the type $\pi_{2}(y) \psi_{j}$, for some $y \in G, j=1, \ldots, p+1$. Let x be the reduced word $x=x_{1} \cdots x_{n}, n>1$. It follows by explicit calculations that

$$
\psi_{x}=\left(p^{2} / p^{2}-1\right) p^{(1-z) n} p^{-n}\left[p^{z} \pi_{z}\left(x^{(n-1)}\right) \psi_{x_{n}}-\pi_{z}\left(x^{(n-2)}\right) \psi_{x_{n-1}}\right]
$$

Let $N\left(\omega, \omega^{\prime}\right)$ be the largest integer n such that $\omega^{(n)}=\omega^{(n)}$. The representation $\pi_{z}, 1-z \in \Upsilon$, acts unitarily on $\mathscr{K}^{0}(\Omega)$ with respect to the inner product defined by

$$
(\xi, \eta)_{1}=2 \log p \int_{\Omega} d \omega \int_{\Omega} d \omega^{\prime} N\left(\omega, \omega^{\prime}\right) \xi(\omega) \overline{\eta\left(\omega^{\prime}\right)}, \quad \xi, \eta \in \mathscr{K}^{0}(\Omega)
$$

Moreover the following fact holds.
Lemma 2. For any $\xi \in \mathscr{K}^{0}(\Omega)$ and $x \in G$, we have

$$
\left(\xi, \psi_{x}\right)_{1}=c_{x}\left(\xi, \psi_{x}\right)
$$

where $c_{x}=\log p \cdot p^{2-|x|} /(p+1)^{2}$.
Proof. This is obvious from the definitions.
To prove that the representation π_{z} is topologically irreducible on $\mathscr{K}^{0}(\Omega)$ with respect to the \mathscr{K}^{0}-topology, we build, for any generator a_{j}, a sequence $\left\{\nu_{n}^{(j)}\right\}_{n \in \mathbb{N}}$ of measures on G such that $\left(\pi_{z}\left(\nu_{n}^{(j)}\right) \psi_{x}, \psi_{y}\right)$ tends to $\left(\psi_{x}, \psi_{j}\right)\left(\psi_{j}, \psi_{y}\right)$ as $n \rightarrow \infty$, for any $x, y \in G$.

For any fixed $j=1, \ldots, p+1$ and any large integer n, let $\nu_{n}^{(j)}$ be the measure supported on the words of length n, defined by

$$
\nu_{n}^{(j)}\left(x_{1} \cdots x_{n}\right)=\left[p^{(z-1) n}(p+1) / p \Gamma\right] \begin{cases}\gamma_{11}, & x_{1}=x_{n}=a_{j} \\ \gamma_{10}, & x_{1}=a_{j}, x_{n} \neq a_{j} \\ \gamma_{01}, & x_{1} \neq a_{j}, x_{n}=a_{j} \\ \gamma_{00}, & x_{1} \neq a_{j}, x_{n} \neq a_{j}\end{cases}
$$

where $\Gamma=\gamma_{11}-\gamma_{10}-\gamma_{01}+\gamma_{00} \neq 0$, and $\gamma_{11}, \gamma_{10}, \gamma_{01}$ and γ_{00} are fixed.
Lemma 3. Let $1-z \in \Upsilon$. For any $j=1, \ldots, p+1$ and for every $x, y \in G$

$$
\lim _{n \rightarrow \infty}\left(\pi_{z}\left(\nu_{n}^{(j)}\right) \psi_{x}, \psi_{y}\right)=\left(\psi_{x}, \psi_{j}\right)\left(\psi_{j}, \psi_{y}\right)
$$

Proof. The proof is based on direct calculations, which require some precision but follow straight from the definitions. We give only the end results of these calculations.

Let $x, y \in G, n>|x|+|y|$. For $|x|=|y|=1$ we have

$$
\left(\pi_{z}\left(\nu_{n}^{(j)}\right) \psi_{x}, \psi_{y}\right)= \begin{cases}p^{-2}+O\left(p^{-n}\right), & x=y=a_{j} \\ p^{-4}+O\left(p^{-n}\right), & x \neq a_{j}, y \neq a_{j} \\ -p^{-3}+O\left(p^{-n}\right), & \text { otherwise }\end{cases}
$$

and

$$
\left(\psi_{x}, \psi_{j}\right)\left(\psi_{j}, \psi_{y}\right)= \begin{cases}p^{-2}, & x=y=a_{j} \\ p^{-4}, & x \neq a_{j}, y \neq a_{j} \\ -p^{-3}, & \text { otherwise }\end{cases}
$$

In the other cases $(|x||y|>1)$ we have

$$
\left(\pi_{z}\left(\nu_{n}^{(j)}\right) \psi_{x}, \psi_{y}\right)=O\left(p^{-n}\right)
$$

and

$$
\left(\psi_{x}, \psi_{j}\right)\left(\psi_{j}, \psi_{y}\right)=0
$$

Using the above lemmas we can prove that for $1-z \in \Upsilon, \mathscr{K}^{0}(\Omega)$ has no nontrivial invariant subspace with respect to $\pi_{z}(x)$, which is closed in the \mathscr{K}^{0}-topology.

Theorem 4. Let $1-z \in \Upsilon$.
(i) For $j=1, \ldots, p+1$ and n a large integer, let

$$
T_{n}^{(j)}=\pi_{z}\left(\nu_{n}^{(j)}\right)
$$

then

$$
\lim _{n \rightarrow \infty}\left(T_{n}^{(j)} \xi, \eta\right)=\left(\xi, \psi_{j}\right)\left(\psi_{j}, \eta\right), \quad \xi, \eta \in \mathscr{K}^{0}(\Omega)
$$

(ii) if \mathscr{M} is a subspace invariant with respect to $\pi_{z}(x)$, and closed in the \mathscr{K}^{0}-topology, then either $\mathscr{M}=\{0\}$ or $\mathscr{M}=\mathscr{K}^{0}(\Omega)$.

Proof. (i) This follows from Lemma 3. (ii) Let \mathscr{M} be an invariant subspace with respect to $\pi_{z}(x)$ and closed in the \mathscr{K}^{0}-topology. If $\left(\xi, \psi_{j}\right)=0$ for every $\xi \in \mathscr{M}$ and all $j=1, \ldots, p+1$, then for every $\xi \in \mathscr{M}, x \in G$, and all $j=1, \ldots, p+1$, we have $\left(\pi_{z}(x) \xi, \psi_{j}\right)=0$. This implies, by Lemma 2, that

$$
\left(\pi_{z}(x) \xi, \psi_{j}\right)_{1}=\left(\xi, \pi_{z}\left(x^{-1}\right) \psi_{j}\right)_{1}=0
$$

for every $\xi \in \mathscr{M}, x \in G$ and all $j=1, \ldots, p+1$. So $\mathscr{M}=\{0\}$, by Proposition 1 . Otherwise take $\xi \in \mathscr{M}$ and ψ_{k} with $\left(\xi, \psi_{k}\right) \neq 0$. Since \mathscr{M} is closed, we deduce from (i) that $\psi_{k} \in \mathscr{M}$. But $\left(\psi_{k}, \psi_{j}\right) \neq 0$ for every j, and therefore $\psi_{j} \in \mathscr{M}$ for all j. So $\mathscr{M}=\mathscr{K}^{0}(\Omega)$.

Finally we prove that the representation π_{z}, for $1-z \in \Upsilon$, is algebraically reducible on $\mathscr{K}^{0}(\Omega)$. For any $j=1, \ldots, p+1$, we denote by \mathscr{M}_{j} the linear span of $\left\{\pi_{z}(x) \psi_{j}: x \in G\right\}$.

Theorem 5. Let $1-z \in \Upsilon$. For any $j=1, \ldots, p+1, \mathscr{M}_{j}$ is a nontrivial proper invariant subspace of $\mathscr{K}^{0}(\Omega)$ with respect to the representation $\pi_{z}(x), x \in G$.

Proof. Fix $j=1, \ldots, p+1$. It is enough to prove that, for $i \neq j, \psi_{i} \notin \mathscr{M}_{j}$. Let φ be an element of \mathscr{M}_{j}. Without loss of generality φ can be written as

$$
\begin{equation*}
\varphi=\sum_{n=1}^{N} \sum_{\substack{|x|=n \\ x_{n}=a_{j}}} C_{x} \pi_{z}(x) \psi_{j}, \tag{*}
\end{equation*}
$$

where $x=x_{1} \cdots x_{n}$ and C_{x} depends only on $x \in G$. If $N=1$, it is obvious that $\varphi \neq \psi_{i}$, whenever $i \neq j$. Indeed in this case $\varphi=C_{a_{j}} \pi_{z}\left(a_{j}\right) \psi_{j}=-C_{a_{j}} \psi_{j}$, which cannot be equal to ψ_{i}, if $i \neq j$. Suppose now there exists a function φ of type (*) where $N>1$, and such that $\varphi=\psi_{i}$. Since φ is of type (*), then for any $y \in G$, $|y|=N$ and $y=y_{1} \cdots y_{N-1} a_{j}$, there exists a constant K_{y} such that, for $\omega \in$ $E\left(y^{(N-1)}\right)$, we have

$$
\varphi(\omega)= \begin{cases}-p^{N-1} C_{y}+K_{y}, & \omega \in E(y) \\ p^{N-2} C_{y}+K_{y}, & \omega \in E\left(y^{(N-1)}\right) \backslash E(y)\end{cases}
$$

On the other hand, $\varphi=\psi_{i}$, and φ must be constant on $E\left(y^{(N-1)}\right)$. So necessarily $C_{y}=0$, and φ reduces to

$$
\varphi=\sum_{n=1}^{N-1} \sum_{\substack{|x|=n \\ x_{n}=a_{j}}} C_{x} \pi_{z}(x) \psi_{j} .
$$

By the same argument we prove that $C_{x}=0$ for all x such that $|x|>1$, and this contradicts the assumption that $N>1$.

3. Concluding remarks

Let H be the isometry group of the tree associated with $G[7,6]$. Let $\mathscr{H}_{1}(\Omega)$ be the completion of $\mathscr{K}^{0}(\Omega)$ with respect to the inner product $(,)_{1}$ defined in Section 2. The representations of the special series of H are unitaries on $\mathscr{H}_{1}(\Omega)$
and their restrictions to G coincide with $\pi_{z}, 1-z \in \Upsilon$. In particular, if p is a prime, then the representations $\pi_{z}, 1-z \in \Upsilon$, are restrictions to G of the special series of $P G L_{2}\left(\mathbb{Q}_{p}\right)$ [8]. The topological reducibility of π_{z} on $\mathscr{H}_{1}(\Omega)$ is now immediate, as the following argument shows. Indeed each representation of the special series of H is a subrepresentation of the regular representation of H [8]; therefore the representations $\pi_{z}, 1-z \in \Upsilon$, are subrepresentations of the regular representation of G. Since G is a discrete group, it is in particular a non-compact SIN group [2]. Hence it has no minimal projections in $L^{2}(G)$ [2, Corollary 4.2]. In view of the correspondence between minimal projections in $L^{2}(G)$ and topologically irreducible subrepresentations of the regular representations of G, this result implies that the representations $\pi_{z}, 1-z \in \Upsilon$, are topologically reducible on $\mathscr{H}_{1}(\Omega)$.

It would be interesting now, in view of [5], to characterize all the discrete subgroups Γ of H of finite covolume, which have the property that the spherical representations restrict irreducibly to Γ.

References

[1] W. Betori and M. Pagliacci, 'Harmonic analysis for groups acting on trees', Boll. Un. Mat. Ital. 6 3-B (1984), 333-349.
[2] C. Cecchini and A. Figà -Talamanca, 'Projections of uniqueness for $L^{P}(G)^{\prime}$, Pacific J. Math. 51 (1974), 37-47.
[3] A. Figà - Talamanca and M. A. Picardello, 'Spherical functions and harmonic analysis on free groups', J. Funct. Anal. 47 (1982), 281-304.
[4] A. Figà-Talamanca and M. A. Picardello, Harmonic analysis on free groups (Lecture Notes in Pure and Applied Math., Vol. 87, Marcel Dekker, New York, 1983).
[5] A. Figà -Talamanca and M. A. Picardello, 'Restriction of spherical representations of $P G L_{2}\left(\mathbf{Q}_{p}\right)$ to a discrete subgroup', Proc. Amer. Math. Soc. 91 (1984), 405-408.
[6] G. I. Ol' shanskii, 'Classification of irreducible representations of groups of automorphisms of Bruhat-Tits trees', Functional Anal. Appl. 11 (1977), 26-34.
[7] J. P. Serre, 'Arbres, amalgames, $S L_{2}$ ’, Astérisque 46 (1977).
[8] A. J. Silberger, $P G L_{2}$ over the p-adics: its representations, spherical functions, and Fourier analysis (Lecture Notes in Math. 166, Springer-Verlag, Berlin, Heidelberg, New York, 1970).

Istituto di Matematica
Via L. B. Alberti, 4
16132 Genova
Italy

[^0]: © 1986 Australian Mathematical Society $0263-6115 / 86 \$ \mathrm{~A} 2.00+0.00$

