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1. Introduction

The invariant affine connection over a coset space G/J of a Lie group G

have been discussed by various authors. Recently, Nomizu [8] gave a systematic

study of this problem when / is reductible in G. Among other results, he

established a 1-1 correspondence between the invariant affine connections and

certain multilinear mappings, and calculated the torsion and curvature. For

canonical affine connection of the second kind, the holonomy group was also

given.

It is the purpose of this paper to discuss the connections over a principal

fibre bundle which admit a fibre transitive υ Lie group of automorphisms without

restricting to the reductible case. In fact, let {E, S) be a differentiate principal

fibre bundle with total space E, structural group S, and base space B. Suppose

G to be a Lie group of automorphisms of {Ey S}, and / the subgroup leaving

a fibre Fo invariant. There is a natural homomorphism ψ '- J -» S. If we regard

G as a transformation group of the base space B, then / is the isotropic sub-

group at the point bQ^B which corresponds to Fo. (In the particular case that

E is the bundle of frames of B, then ψ is nothing but the linear representation

of / on the tangent space of B at bo.) Let us denote by G, S, J the Lie

algebras of G, S, / respectively. The main results can be stated as follows:

(A) Suppose G to be transitive on the fibres of E. Then there is a 1-1

correspondence between the G-inυariant connections over E and the linear

mappings Ψ : G -* S such that ( l ) f ° Ad.y = Ad. ψ(j) ° Ψ, jG /, and (2) ¥(])

= ψ(j), j & J where ive use ψ to denote both the group homomorphism: /-> S

mentioned above and the Lie algebra homomorphism: J -» S it induces.
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1} By fibre transitive, we mean that, given any two fibres, there exists an element of

the group carrying one to the other.
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(B) Suppose, moreover, that E satisfies the second count ability axiom. Let

V denote the linear subspace of S spanned by all the vectors of the form

Ψίiu 5 2 ] - [ ^ i , Ψgzl, 8u ^ E G. Then the Lie algebra of the holonomy

g?'oup of the connection which corresponds to Ψ is given by

V W G ) , v] + [r(G), DP (G), ΐll+ . . .

In the discussion of the holonomy group of a G-invariant connection (G

not necessarily fibre-transitive), we introduce a subgroup Δ of S which depends

on G. The group Δ contains both the holonomy group and the group ψ(J).

Elements of Δ was first used by Nomizu [9], and the Lie algebra of Δ is closely

related with a tensor studied by Kostant [12] when {E, S) is the bundle of

frames of a manifold. Interpreting some known results in terms of Δy we get

the following:

Let G be a connected group of isometries of a compact Riemannian manifold

B. Then, at each point of B, the linear isotropic subgroup is contained in the

holonomy group. Moreover, each parallel tensor field over B is invariant under G.

When B is homogeneous, this has been proved by B. Kostant [13].

2. Some conventions

Throughout this paper, all differentiable menifolds and mappings are under-

stood to be of class C30.

Let E be a differentiable manifold and x a point of E. We shall always

use T(E) to denote the tangent bundle of E, and TX{E) the tangent space of

E at x. Suppose f : E-* M to be a differentiable mapping of E into a differ-

entiable manifold M. Then / induces a mapping / ' : T(E)-+T(M) which is

called the differential of /. Restricted to TX(E), / ' is linear. Let V be a vector

space over the reals. We denote by ΘE and &JU respectively, the sets of linear

combinations of F-valued differential forms over E and over M. They are

graded algebras with differential operator. The dual of / ' gives a homomorphism

/* : ΘM -* ΘE.

For the sake of simplicity, we shall use, in what follows, the same symbol

/ to denote the differential /' of a differentiable mapping /.

Let G be a Lie group and G its (left) Lie algebra. We identify G with

the tangent space TC(G) of G at the identify e of G. For g&G, Lg and Rg

denote, respectively, the left and right translations induced by g. The composite
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Lg ° Rg-ί is called the adjoint transformation and is denoted by Ad. g. It carries

Te(G) into itself and is an automorphism of the Lie algebra of G. By left

Maurer-Cartan form, we mean the G-valued linear differential form ω over G

such that ω{g)=(Le-ι)(g) for g ETg{G). Right Maurer-Cartan form is

defined in the similar manner.

Let φ be a linear representation of a Lie group G on a linear space V, and

H a closed subgroup of G. Suppose λ : Te(G) -> V to be a linear mapping such

that λ ° Ad. h = ψ(h) ° Λ for all hE H. We can extend A to a F-valued linear

differential form ω over G by putting

Its differentiability follows from the differentiability of the group multiplication

of G. For any k E G, and hE H, we find by a direct calculation that

This ω will be called the ^-invariant extension of λ. We note that ω is the

only F-valued differential form which extends λ and satisfies the first part of

the conditions (2.1).

3. c-invariant differential forms

Suppose that a Lie group G acts on a differentiable manifold E differ-

entiably. Then the mapping G x E -* E given by (g, x) -> g(x), gE G, xE E,

is differentiable [7, p. 212]. Choose a point Xo of E, and define p : G -* £ by

ίU7) =#(#o). This mapping p is differentiable and the subgroup H- {g : gE G,

£ (#o)=#o} is a closed subgroup of G. For any gEGy and h E H, we find

immediately that the diagrams

G - ^ £ G-^->£

(3.1) Z./J j * Ad. AI JΛ

G - ^ £ G-^->£

are commutative, and hence

(3.2) (Le)*i>* = ί V , (Ad. h)*/>* = i>*Λ*.

Let CP be a linear representation of G over a linear space V. A V-valued

differential form α> over E is called <f -invariant under G if g*ω = <f(g)ω for all

goί G.
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(3.3) Let ω = p ω where ω is a <f -invariant, V-valued linear differential

form over E. Then (i) Lg'ω = <f(g)ω, (Ad. h)*ω = <f(h)ω for gE: G, h G H, and

(ii) ω{fι) = Ofor h Ei

Proof. Property ( i ) follows directly from (3.2). T o see property (ii), w e

note that p(H) = xQ. Hence, for h e Te(H), p(h ) = 0 and

ω( h ) = (p*ω) (h) = ω(p( h )) = 0.

(3.4) Suppose that G acts on E transitively, and that ω is a V-valuedy

linear form over G having the properties ( i ) and (ii) in (3.3). There exists

then a unique φ-invariant, V-valued differential from ω over E such that ώ = p*ω.

Proof. The uniqueness follows from the fact that p is an onto mapping.

To see the existence, let us consider the restriction of p on Te(G). This is a

linear mapping: Te(G) -> TXo(E). From the theory of Lie groups, we know

that this mapping is onto and has Te(H) as its kernel. Let ωe denote the

restriction of ω on Te(G). Since ωe vanishes in Te(H)> there exists a linear

mapping λ : TXo(E) -» V such that

(3.5) ωe(k) = λ(p(k)), kete(G).

For any x e TXo(E), we choose k e Te(G) with the property t h a t p{k) = ϊ .

From the commutativity of the diagrams (3.1) and the property ( i ) of S, it

follows that S ϋ ^ ^ ^

(3.6) Λ(fc(ϊ)) =A(/ι(ί(A)) = λ(ί(Ad.Λ)(A)) = S)β((Ad.

Let .y be any point of E, and y e Ty(E). Since G is transitive on 2?, there

exists an element <?of G such that #00 = xd. Hence ^(3^) G TXQ(E), and Λ(#(.?))

has a meaning. We shall see that the expression <f(g~1)λ(g(y)) is independent

of the choice of g. Suppose that gi also carries y to xύ. Then gγ - hg for a

certain h of //. From (3.6), we have

Thus c(g~ι)λ(g(y)) depends only on y. Defining ω(y)=ψ(g'1)λ(g(y))9 we

get a F-valued linear form ω over E. Its' differentiability follows from the

differentiability of the transformation mapping: G x E -> £, while its f -invaji-
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ance under G follows from its definition. Furthermore, we can easily verift

that ω-p^ω by using (3.5), the ^-invariance of ω and the property (i) of ω.

4. Automorphisms of a principal fibre space

Let S be a topological transformation group of a space E acting from the

left. The system {E, S} is said to form a principal fibre space if the following

two conditions are satisfied:

1) Given any two points x, y of E, there exists at most one element of S

carrying x to y.

2) The set R= {(x, y): there exists s of S carrying x into y) is closed in

Ex Ey and the mapping of R into S defined by (x, y) -* s is continuous.

The group S, the orbits under S, and the space B of orbits are called,

respectively, the structure group, fibres, and the base space. From condition

2), it follows that fibres are closed in E and are all homeomorphic with S.

Here, contrary to convention, we assume the group S to act on E from the left.

This has some advantages in our further discussions.

A principal fibre space will be called differentiable if all the spaces in-

volved in the definition are differentiable manifolds and all the mappings are

differentiable.

Let {E, S) be a differentiable principal fibre space. Then S is a Lie group

acting on E differentiably. From Frobenius Theorem, we know that local differ-

entiable cross section exists. Then the base space B has a natural differentiable

structure, and £ is a differentiable fibre bundle over B. A transformation of

E is called an automorphism if it is bi-differentiable and it permutes with every

element of S. Hence an automorphism carries fibres into fibres. Now suppose

G to be a Lie group of automorphisms of E. Choose a fibre Fo of E and a

point Xa in Fo. Consider the subgroup / = {g : g&G, g{F0) = Fo}. For j G/,

j~1{xo) e Fo. There exists then a unique element, say ψ(j), of S such that

Ψ(J)(XQ) =j~1{xo). Since elements of/ and elements of S permute, the mapping

Φ - J -* S preserves the group multiplication. It is, moreover, continuous on

account of the property 2) in the definition of a principal fibre space. We note

that for different choice of the point XQ, the homomorphisms obtained differ

only by an inner automorphism of S.

Let Q = G x S be the direct product of G and S. In the natural manner,
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Q acts on E as a differentiate transformation group (Q is not necessarily

effective even if both G and S are so). The isotropic subgroup of Q at x0 is

then H={(j, ψ(j)) ' / £ / } • Let J, S, H denote the Lie algebras of /, S, H

respectively. Following our convention, we use the same letter ψ to denote the

algebra homomorphism: J -> S induced by the group homomorphism ψ.

Then

(4.D n={] +ψ{j) : j e J}.

In particular, suppose E to be the bundle of frames of a differentiable

manifold B of dimension n. Then the structure group S is the general real

linear group GL(R, n). Let G be a differentiable transformation group of B,

and / ' the isotropic subgroup at a point b of B. Each / of / ' induces a linear

transformation j of the tangent space TbKB). Thus we have a homomorphism

j-* / of / into GZ,(i?, #). On the other hand, G can be regarded as a group

of automorphisms of the bundle E of frames. Let Fo be the fibre of E corre-

sponding to b, and /, 0 have the same meaning as in the preceding paragraph.

Then we see readily that / = / ' and that φ is nothing but the linear represen-

tation j -> / .

5. Invariant connections

Let {E, S) be a differentiable principal fibre space, and S the Lie algebra

of S. A connection over E is, by definition [2, p. 51], an S-valued linear differ-

ential form ω over E such that (a) .s*o? = (Ad.s)ω, s&Sl and (b) if y is any

point of E and π : S -* E is defined by π(s) = s(jy), then π*α) is the right Maurer-

Cartan form of S. Here, we have Ad. s and right Maurer-Cartan form instead

of Ad. s"1 and left Maurer-Cartan form as in the classical definition. This is

due to our assumption that S acts on E from the left.

Let ω be a connection over E> and G a Lie group of automorphisms of

E leaving ω invariant. Consider the direct product Q = G x S, and denote by

ψ the representation of Q on S defined by ψ(g, s) = Ad. 5, g&G, s&S. Then

the form ω is ^-invariant under Q. Choose a fibre Fo of £, and a point ΛΓO in

Fo. Let

and _£ : Q -+ E be defined by p(q) - q(x0).
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(5.1) Denote by Ψ the restriction of -p*ω on Te(G). Then

ψo (Ad.j)=Ad.φ(j) o ψy ψ(j) =ψ(j)

for all j' G / and j G J, where ψ is the homomorphism discussed in § 4.

Proof. Since ω is φ-invariant under Q, we have from (3.3)

(5.2) (Ad. h)*(p*ω) = φ{h)(p*ω)9 (p*ω)( ft ) = 0, h&H, I G H .

Let I G G = W G ) , and j&l The element h = (j, ψ(j)) belongs to H. (5.2)

then implies that

From the permutability of elements of G and S, we know (Ad.h)( g) = i Ad. j)(g).

Hence 5P((Ad./)(£)) = Ad.φij)Ψ(g).

Let G J . From (4.1), j + ψ(j) &Te(H)t and hence by (5.2), we have

(p*ω){j + 0 ( 7 ) ) = 0 . In other words, Ψ(j) = (p*ω){ψ())). By definition of

a connection, the restriction of i>*6t; on S is the right Maurer-Cartan form of S.

From the fact ψ{J) G 7US), it follows then that (p*ω)(ψ(j)) = ψ(j). There-

fore, Ψ(j) = 0 ( 7 ) t o r 7 G J Proposition (5.1) is thus proved.

(5.2) Z,£f i2 &£ ffte curvature form of a connection ω over E invariant

under G. Then the restriction of p*Ω in Te(G) is given by

2(ρ*Ω)(gu ioJ^ΨΊiu iH-lΨ(ii), r(i2)], gu

Proof. From equations of Cartan, we know that

2J2 = 2tfω + [ω, ωl

It follows that 2p*Ω =^2d(p*ω) + Lp*ω, p*ω], and hence

2(p*Ω)(gu g2)=2d(p*ω)(iu g2) + lΨ(gi), Ψ(£)l, £i, ^ G Te{G).

The linear form ω over E is f-invariant. We have therefore, from (3.3) that

Lg(p*ω) = <ρ(g){p*ω) =p*ω for every g of G. In other words, the restriction

of p*ω on G is invariant under left translations. Hence

2d{p*ω){gu

and hence

2(p*Ω)(gu g2)=
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6. Fibre-transitive case

Suppose that E, S, G, ΛΓ0, /, <p, . . . have the same meaning as in the

preceding section. We see immediately that the following three conditions are

equivalent: ( i) G is transitive on the fibres of E\ (ii) the group Q = G x S is

transitive on E\ and (iii) G, when regarded as a transformation group of the

base space B, is transitive. Moreover, if this is the case, then B is homeo-

morphic with the coset space GlJ.

THEOREM 1. Let G be a Lie group of automorphisms of a differentiable

principal fibre space {E, S}, transitive on the fibres. Then there is a one-to-one

correspondence between the invariant connections ω over E and the linear

mappings Ψ : G -> S such that

ψo (Aά.j)^Aά.φ(j) ° ψ, Ψ(j) = ψ(j)9 j&J, ' G J.

Let Ω denote the curvature form of ω. Then the restriction of p*Ω on G is

given by

2(p*Ω)(£u g2) = ίwiix), Ψ{g2)l - Ψίiu iύ, gu £2 e G.

Proof. On account of (5.1) and (5.2), it suffices to prove that to a linear

mapping Ψ : G -> S with the two properties mentioned in the Theorem, there

corresponds an invariant connection ω under G. For this purpose, we extend

- Ψ to a linear mapping λ : Te{Q) -* S by putting

Let h be an element of H. There exists JELJ such that h= (/, Φ(j)). Taking

account of the fact that G and S are elementwise permutable, we have

λ({Ad.h)(g+s))=λ((Ad.j)(g))

= Ad.ψ(j)G)-Ψ{(AάJ)(g))

= Ad.φ{j){s) - (Ad.φ(j))Ψ(g) =Ad.ψ(j)λ{g+s).

In other words, λ ° Aά.h = <f(h) ° λ for h&H. Therefore λ has a ^-invariant

extension ω over the entire tangent space T(Q) of Q as defined is §2. This

ω is an S-valued linear differential form over Q with the following properties:

2> The Lie algebra G is always identified with Te(G).
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(6.1) L * ω = <F(q)ωt ( A d . h)*oί p <f (h)ω, ω ( s ) = s , ω(g) = - Ψ(g )

# < = < ? , h<ΞH, i ε G , s G S .

L e t ft e T e ( / 7 ) = I I . F r o m ( 4 . 1 ) , w e c a n find / E J s u c h t h a t h =] +ψ(j).

T h e n

(6.2) ω ( ί ) 7 ?

Taking account of (6.1) and (6.2), we have from (3.4) that there exists an

S-valued linear form ω over E which is ^-invariant under Q and satisfies

ω = p*ω. We shall see that this ω is a connection over E invariant under the

group G.

For g&G, 5 G S , we have from the definition of <f that <f(g) = identity,

and ψ(s) = Ad. s. Therefore, the f-invariance of α> under Q accounts to

(6.3) g^ω = ω, s*ω = (Ad. 5)0).

Let θ be the restriction of ω on S. From (6.1), we have

These two equalities imply that θ is the right Maurer-Cartan form of S. Now

let y be any point of Ey and π : S-+ E be defined by πis) = s(y), sE:S. Since

G is transitive on the fibres of Ey Q is transitive on E. There exist go of G

and so of S such that g^soixo) = y. From the commutativity of the diagram

it follows that τr*ω = π*gί'ω = S}op*ω = R*oθ = ^, and hence ?r*ω is the right

Maurer-Cartan form of S. Combining this with (6.8), we know that ω is a

connection over E invariant under G. Theorem I is thus proved.

COROLLARY 1. In Theorem 1, the connection ω is locally flat if and only

if the linear mapping Ψ : G -> S is a Lie algebra homomorphism.

Proof. The "only if" part is a direct consequence of Theorem 1. To see

the "if" part, let us assume that Ψ is a Lie algebra homomorphism. We take

any two horizontal vectors Xu x2 of E at the point Xo. Since the mapping

p : Q -* E is onto, there exist Si e G, S j G S such that p(gi -f s/) = xit i = 1, 2.

The vectors />(?/) are vertical. Hence p{gi) and ϊ , have the same horizontal
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component, and hence

2Ω(xu x2) =2Ω(p{gι), p(g2)) = ϊt

The curvature form Ω vanishes at x0 and then must vanish everywhere on

account of the homogeneity. The connection ω is locally flat.

COROLLARY 2. Let G be a Lie group acting differentiably and transitively

on an n-dimensional manifold B with J as the isotropic subgroup at a point b

of B. Denote by β the natural linear representation of J on TbiB). Then there

is a 1-1 correspondence between invariant linear connections over B and linear

mappings Ψ of G into the Lie algebra of GL(R, n) such that

ψo AdJ=Ad.β(j) o ψ, Ψ(j) = β(j), j<=J, J G J .

COROLLARY 3. Let E, S, G, /, ψ have the same meaning as in Theorem 1.

Suppose that J is reductibh in G (i.e., G has a linear subspace M such that

G = J + M, J Π M = 0, Ad./(M) = M). Then E always has connections invariant

under G. Moreover, these connections are in 1-1 correspondence with the linear

mappings a : M -» £ such that a ° (Ad. j) = Ad. ψ(j) ° a> j e /.

Corollaries 2, 3 are particular cases of Theorem 1. Both of them can be

regarded as a generalization of a theorem of Nomizu E8]. It is to be noted

that the existence of an invariant linear connection does not imply that / is

reductible in G. A criterion of this reductibility will be given in §9.

7. Definition of the group A

To discuss the holonomy group Σ of an invariant connection, we find it

convenient to introduce a subgroup Δ of S. This group Δ contains both Σ and

ψ(J), and is, in general, larger than ψ(J) Σ. Elements of Δ have been used

by K. Nomizu [9] to study the affine collineations of Riemannian manifolds.

This section and the next are devoted to the discussion of Δ.

Let ω be a connection over {E, S}, and G a group of automorphisms of

{E, S} leaving ω invariant, not necessarily fibre transitive. From now on, E is

assumed to satisfy the second axiom of countability. For each point x of E,

we denote by Σx the holonomy group at x and by £>* the set of all points

which can be joined to x by horizontal curves. These £>'s are submanifolds of

E which we shall call horizontal manifolds. We note that $x is, in general,
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not closed in E. Since elements of both G and S carry horizontal curves into

horizontal curves, we have

= ®g(χ), s(ξ>x) = fax),

Now fix a point x of E. Consider the orbit g* == G(©*) of $x under G.

For each u of &Xt let us put

We shall see that Δu forms a group. In fact, let s, f e Λ. There exist & ft e G,

y, zE ξ*x such that s(w) = g(y), t(u) = ft( z). It follows that

Hence

= hs'Hz) e As"1©^ = te"1^ C

and hence Δn forms a subgroup of S. It is easy to verify that Δu is independent

of the choice of u in @*. Nevertheless, if ΛΓ is changed, Λ is changed into one

of its conjugate subgroups in S.

Let r £ Σu, and 5 6 Jw. There exist yE: ©x. ^ G G such that s(w) =<g
Γ(3J).

Since H ^ e f e , we have

s~Vs(w) ~ s^rgiy) =gs'1r(y) e 5s"1 ©̂  = gg~ι$u = ©«.

This tells us that 5~xr5G ©«. In other words, JΓW is a normal subgroup of Δu.

Thus we have proved

(7.1) For each x of E, Δx is a subgroup of S and contains Σx as a normal

subgroup.

The group Δu can also be defined in terms of the parallel displacements.

In fact, let F be the fibre containing u, and g an element of G. Then g(F) is

a fibre, and there exists a parallel displacement a (not unique) carrying g(F)

to F. Let s-s(g, σ) be the element in S such that s(u) =σg(u). Then Δu

consists of the elements s(g, a) for all the possible pairs (g, a).

Since Δx is a subgroup of the Lie group S, we can talk about its Lie

algebra (i.e., the Lie algebra of its arcwise connected component of identity)

and its linear adjoint representation. The following property will be found

useful:

(7-2) Suppose that E, S, G, #0, H, p, ω, Ψ have the same meaning as in
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(5.1). If G is transitive on the fibres of E, then $X()-GΔX(1(XQ), and Ψ(G) is

contained in the Lie algebra of ΔX(j.

Proof For simplicity, we write 6, J, ξ), Σ instead of 6*0, JtD, £>*„, ΣXtr

It is evident that GΔ{x0) C G(£) =6. To see the equality, let ,yε6. There

exist z £ | ) , g& G such that #U) =jy. Since G is fibre-transitive, we can find

gitΞG such that x0 and gϊιg(z) are in the same fibre. There exists then s G S

with the property that S(ΛΓ0) = gϊ1g(x) G G(ξ>) = <£. By definition of J, s G J.

Therefore jy = #(2) = gιsUc) G GJ{xo). This shows the equality GJU0) = is.

Since J is a subgroup of the Lie group S, we can give it a stronger topo-

logical structure to render it a Lie group Δ' in such a manner that Δ and J'

have the same arcwise connected components. Let us consider the Lie group

G x Δf. It contains H as a closed subgroup. Denote by & the coset space

(G x Δ')IH. There is a 1-1 continuous mapping i of 6' onto (£. In the natural

manner, {&, Δ') forms a differentiate principal fibre space. We can readily

verify that {E', Δ'} together with i is a reduced bundle of {E, S) in the sense

of Nomizu [10, p. 37]. Thus both @ and Δ(xQ) are submanifolds of E.

Since ξ> C @, the connection ω on {J51, S} can be reduced to a connection

on {(£', J'} [10, p. 27]. In other words, any horizontal vector at a point of @

is tangent to g. Let ^ e G, then ^ ( ^ ) G 7V<S). From the definition of Ψ

(cf. §5), the horizontal and vertical components of p{§) are, respectively,

ρ{g+Ψ(g)) and - ί ( y ( J ) ) . Since p(g+ ¥(£)) ^ TXQ(E), we know that

ρψ(g) e TXo(E). The vector pψ(g), being vertical, then must be tangent to

the orbit J(#o) of A;0 under J. There exists s e ί such that p( 5) =pψ(g).

We know that, restricted to S, ./> is one to one. Hence Ψ(s) = s G j . The

proof is thus completed.

Professor Nomizu has communicated to me that 3F(G) C Δ still holds if G

is not fibre-transitive.

8. Some remarks about the group Δ

We shall give, in this section, three remarks about Δ which will not be

used in the rest of this paper.

Remark 1. Let N be the normaliser of Σx in S, and

3K = MOΛΓ) = {w(^) : w G iV, ^ G 0^}.
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INVARIANT CONNECTIONS 13

Then Wl is a closed submanifold of E, and {3Jί, N} together with the identity

mapping forms a reduced bundle of {E, S}. For each y G 9tt, §3; C 2JΪ. Since

any two horizontal manifolds are either disjoint or identical, we can decompose

9Jΐ by horizontal manifolds. Let M denote the decomposition space. This space

may not be Hausdorff as the holonomy group Σx may not be closed in N. The

group N acts on M in the natural manner as a transitive topological transfor-

mation group. Let % e M be the image of x under the decomposition mapping.

Then the isotropic subgroup of N at x is the holonomy group Σx at x (in fact,

Σx leaves every point of M fixed). There is a 1-1 continuous mapping a of

the factor group N/Σx onto M. We note that N/Σx is, in general, non-Hausdorff.

The mapping a is, moreover, a homeomorphism. This follows from the fact

that, given any open subset U of S, the set

U{$x) = {u(y) : utΞU, y&ξ>x)

is open in E.

On the other hand, we have the group G of automorphisms of {E, S, ω)

(not necessarily fibre-transitive). Since Δx C N, G carries 9ft into itself. Each

g of G permutes the horizontal manifolds Thus G acts on the decomposition

space Ψί in the natural manner as a topological transformation group. Define

β:C-*N/Σx by β(g) = a~ιg{x), g&G. Then β is continuous. From the

commutativity of elements of G and elements of S, we know that β is a homo-

morphism. Moreover, β(G) = Jx/Σx. In other words,

The group Δx is an extension of the holonomy group Σx by a homomorphic

image β(G) of G.

An example: Let Bn be the ^-dimensional ordinary aίϊine space deprived

of the origin, and G the group of all affine collineation of Bn. Since the con-

nection is flat, the holonomy group contains only the identity. Both G and Δ

are isomorphic with the general real linear group GL(R, n), and β is an iso-

morphism. The isotropic subgroup / is of dimension n2-n.

Remark 2. Suppose that {E, S} is the bundle of frames of a differentiate

manifold B. Then ω is the linear connection over B, From the second definition

of Δ and the fact that Δx C N, we have the following:3)

3 ) This has been proved in [5],
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14 HSIEN-CHUNG WANG

Let T be a parallel tensor field over B. If at a point b of B, Tb is invariant

under (the connected component of identity of) the normalizer of the holonomy

group at b, then T is invariant under (the connected component of identity of)

the group of all affine collineations of B.

Remark 3. Let {E, S) be a differentiate principal fibre bundle with a

connection. It is well-known that the holonomy group can be regarded as either

a subgroup of the structure group S or a group of automorphisms of a fibre

F which commutes with S elementwise. Used in the former sense, it depends

on a point x of reference, and we shall denote it by Σx. Used in the latter

sense, it depends on the fibre F, and we shall denote it by ΣF. The situation

is similar for the group A. In the above discussions, we fix a point x of E> and

consider Δx as a subgroup of S. If we use the second definition of J, we can

also interprete it as a group of automorphisms of F which commute elementwise

with S. Thus A depends on F. When used in this sense, it will be denoted

by AF. For each S* = G(©*) and each fibre F, the intersection (£*ΠF is an

orbit of ΔF. Here we note that infinitesimal trnasformations4) of ΔF have a

meaning. They are vector fields over F and are invariant under the translations

of the structure group S.

If G is connected, then the following four conditions are equivalent: (a)

G leaves invariant the horizontal manifold £>* (b) Σx~ Δx\ (c) at each point

of €>*, every infinitesimal transformation of G is tangent to $x\ (d) on any

fibre F of E, the field of vertical components of each infinitesimal transformation

of G is an infinitesimal transformation of ΣF.

Proof. The equivalence of (a) and (b) is evident while the equivalence

of (a) and (c) follows from the fact that G is generated by its infinitesimal

transformations. To discuss condition (d), let Z be an infinitesimal transfor-

mation of G, and denote by Zv the field of vertical components of Z. Since G

and S commute elementwise, the vector field Z, and hence ZVy is invarant under

S. Choose a fibre F, a point y on F, and denote by Z(y), Zv(y), respectively,

the values of Z, Zυ at y. Suppose that (c) holds. Then Ziy) e Ty(Qy). Since

4> Vector fields and infinitesimal transformations on a differentiable manifold are
synonymous. By an infinitesimal transformation of a differentiable transformation group,
we mean the infinitesimal transformation induced by a one-parameter subgroup of that
transformation group.
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Ty($y) contains all the horizontal vectors of E at v, we have

ZV(y) e Ty(ξ>y) Π Ty(F) = Ty($y Π F).

There exists then an infinitesimal trnasformation W of 2V such that Zy(jv)

= W(y). Both vector fields Zv and FT are invariant under S, and S is transitive

on F. It follows that Zυ and FT coincide at every point of F. In other words,

condition (d) holds. Conversely, suppose that (d) holds. Then Zυ is tangent

to horizontal manifolds ξ>y at every point y of E. Since Ty(ξ>y) contains all

the horizontal vectors at y, we have Z(y) e Ty(ξ>y). This completes the proof.

Remark 4. Let B be a differentiate manifold and E the bundle of frames

over E. Choose a point b of 5, and denote by F the corresponding fibre in E.

Since E is the principal fibre bundle associated with the tangent bundle of B,

there is a one-to-one correspondence between automorphisms of Tb(B) and

automorphisms of F commuting with all elements of S. Passing to the infini-

tesimal transformations, we have a correspondence L between endomorphisms

of TbiB) and vector fields over F invariant under S. This correspondence L

is bijective, linear and preserve the bracket operation. L also gives a corre-

spondence0) between tensor fields of type (1,1) on B and vertical vector fields

on E which are invariant under S.

Now suppose that B has a linear connection without torsion. For each

vector field X on By Kostant [12] defined a field ax of endomorphisms of the

tangent spaces of B by putting ax(v) = -FVX, ί/G T(B), where V denotes the

covariant differentiation. This field ax has a very simple geometrical meaning

in the bundle E of frames. In fact, X, being an infinitesimal transformation on

By gives in the natural manner an infinitesimal transformation X on the bundle

E of frames. Let Xv be the field of vertical components of X. By a direct

computation, we can verify that L(ax) = Xυ. By means of the correspondence

L, both the group ΔF and the holonomy group ΣF can be regarded as groups

of automorphisms of the tangent space. Thus we have, from Remark 3,

Let G be a connected group of affine collineations of a manifold B with a

5> Let ul (z = l, 2, . . . , « ) be a system of local coordinates of £?, and (u\ Xj) be the
local coordinates in E as in [10, Chap. Ill, §4]. Suppose A to be a tensor field of type
(1,1) on B defined by A{d/duj) =AJ;d/duk, where A1- are functions of «'s. Then L{A) is
the vector field —X'.Λ^d/dX^ on E.
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linear connection. Then the group Δ coincides ivith the holonomy group if and

only if, for each infinitesimal transformation X of G, the Kostant tensor ax

belongs to the Lie algebra of the holonomy group.

Kostant [12] has proved that, for and Killing vector field X on a compact

Riemannian manifold, ax always belongs to the Lie algebra of the holonomy

group. Hence

Let G be a connected group of isornetries of a compact Riemannian space

B. Then the group Δ and the holonomy group coincide. In particular, at each

point of B, the linear isotropic subgroup is contained in the holonomy group.

Moreover, each parallel tensor field over B is invariant under G.

If B is, moreover, homogeneous, this has been proved by Kostant (to

appear). For B irreducible, this can also be obtained from Lichnerowicz

results [6].

9. The holonomy group

Now assume that G is fibre-transitive on E. We have shown in §6 that

the invariant connections ω are in 1-1 correspondence with certain linear

mappings Ψ : G -» S. It is the aim of this section to give an explicit ex-

pression of Δ and the holonomy group Σ in terms of Ψ. When / is reductible

in G and ω is the canonical linear connection of the second kind, the expression

for Σ has been found by K. Nomizu.

THEOREM 2. Let G be a Lie group of automorphisms of {E, S}, transitive

on the fibres. Suppose that ω is an invariant connection corresponding to the

linear mapping Ψ : G -> S. Denote by R the subάlgebra of S generated by Ψ{G).

Then ΔXo-φ(J) R ivhere R-exp. R. If, moreover, ψij) is arcivise connected,

then ΔXo = R.

Proof. Since Ψ ° Ad. (j) = Ad. ψ(j) ° Ψ for jE:J, we have Ad. ψ(J)(R) = R

and Aά.φ(J){R) = R. In other words, ψ(J) belongs to the normalizer of R, and

hence ψ(J) R = R ψ{J) forms a subgroup of S. From (7.2) and the definition

of Δ, we have RCΔXo and ψ(J) C ΔXo respectively. Therefore ψ(J) RCΔXo.

To prove ΔXo C ψ(J) R, we shall first show that the connection ω can be

reduced to a connection with structure groμp ψ(J) R, and then show the

required inclusion, For this purpose, we give the subgroup ψ(J) R of S its
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intrinsic topology to render it a Lie group Γ. Let δ = GR(x0) and £' - (G x Γ)/H

where # = {(/, ψ(j)) : / e / } . The mapping i : C-* E defined by *((#, s)#)

= <gs(#o), g&G, s&Γ, is one-to-one and differentiate. Moreover, /(£')=£.

Assuming Γ to act on 6/ from the left in the natural manner, we can readily

verify that {£', Γ} together with i is a reduced bundle of {Ey S} in the sense

of [10, p. 37], Now we shall see that the connection ω can be reduced to a

connection on {C, Γ}. Let y& (ί = GR(xo), and y be a horizontal vector at y.

There exist g^G, r& R, such that gr(y) = xQ. Then x = grϋ) G TXo(E) and

is horizontal. Since Q = G x S acts transitively on E, we can find ^ G G , s G S

with the property that p (£ + s ) = 5 . F r o m the equality

0 = ω(Λr) = (p*ω)(£

it follows that s = r ( i ) , and then 5 =£(£ +?P (^))Gi>(G+ R) = TX,(C). There-

fore, y ^r~ιg~\x) e Ty(K) because i?G(6)=S'.. In other words, ω can be

reduced to a connection on {&', Γ}. We have then

©,0 c e, e^ = G(§,0) c G(K) = e.

As J' and Γ are the structure groups of & and 6' respectively, it follows that

Λχo C0(/) /?. The equality Λβ = ψ(J) /? is thus established.

Since <M J) = Ψ{ J ) C ^(G) C R, we have ψ(J) C R and J^0 = i? whenever

ψ(J) is arcwise connected.

THEOREM 3. Assumptions are the same as in Theorem 2. Let V denote

the linear subspace of S spanned by {Ψ[_gu £2]-DF(£i), ΨiSzΏ - £1, ^ 2 G G}.

Then the Lie algebra Σ of the holonomy group Σ at x0 is the minimal linear

subspace containing V and invariant under Ad. ΔXo, or what is the same}

Proof. Let Λ2 denote the curvature form of the connection ω, and Ω = p*Ω.

From Theorem 1,

2~Ω{£U g2)=lΨ(£i), ΨigoJl-Ψίiu £2], £1, ^ 2 G G.

Hence \C{Ω(xu X2) : Xu x-ι<aTx»(E)}. We shall see that they actually

coincide. Given i , e TXo(E), there exist ^, e G, s, e S such that p(£i+ s, )

= 5, , ί = l , 2. The vectors p(gj) and ί, have the same horizontal component.

Hence Ω(£u £2) = Ω(p(£d, p(£2)) = Ω(xu X2), and hence
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V ={£(*i, x2) : Xu x2(ΞTXΰ(E)}.

Let U be the minimal linear subspace of S containing V and invariant

under Ad. JXo. Since VCi 1, proposition (7.1) implies that U C l . We note

here that ϋ is an ideal of the Lie algebra of ΛXo and hence a subalgebra. Let

y be any point on ξ>Xo and y u y2eTy{E). Since £)*0C ©*0 and G x JXo is transi-

tive on ©*0, there exist g&G, SELΔXO such that gs(y) - Xo. Hence gs(y i)

e TXo(E)t and we have

ΩGU y2)=Ω(g{yi), g(y2)) -{Ad.s'^ΩigsΘi), #K.?2))e Ad. J*0(V)C ϋ.

A theorem^ of Ambrose-Singer [1] then tells us that l C ϋ . Hence U = 2*.

Let W= V + DKG), V] + DΓ(&), DΓ(G), VH + . . . . Both Ad.ψiJ) and

Ad. i? leaves W invariant. The former follows from the formula Ψ Aά.j

= Aά.ψ(j) ° Ψ, JEL], while the latter from the fact that R is generated by
?/(G) and /? = exp. R. Therefore, UCW. The inclusion W C ϋ i s evident and

we get U = \V. This completes the proof of Theorem 3.

COROLLARY. If, in Theorem 3, Ψ{G) =ψ(j), then the Lie algebra of the

holonomy group at xQ is the linear space V.

Proof. This follows from the fact that l¥(G), V] = [0(J), V]CV.

Remark. Let {E, S} be the bundle of frames of a manifold B, and assume

that G to be effective. Then the homomorphism ψ : / -» S is an isomorphism.

Suppose that E has an invariant connection for which Ψ{G) =ψ(J). Denote

by K the kernel of Ψ. Then K Π J = 0, and dim. K = dim. G - dim. ψ( J )

= dim. G - dim. J. Hence G = K 4- J. From the fact Ψ ° Ad. j = Ad. ψ(j) © ψ,

j&J, it follows that (Ad./)(K) = K. This tells us that / is reductible in G.

Conversely, suppose that / is reductible in G. Let G = J + K be the reduction.

We define the linear mapping ψ : G -* S by putting ψ(j) = ψ(j), ψ(%)=0,

J G J, %E: K. This Ψ gives an invariant connection with the property Ψ(G)

= 0(J) . It can be verified that this is Nomizu's canonical connection of'the

second kind [8].

10. Invariant Cartan connection

Let {Ey S) be a differentiable principal fibre space with base space B, and Si

a Lie group containing S such that dim. B = dim. Si/S. Denote by §, Si the Lie

algebras of S, Si respectively. Then a Cartan connection over B can be defined
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as an S r valued linear differential from ω over E with the following properties:

( i ) x & T(E) and ω( x) = 0 implies x = 0

(ii> s*ω= (Ad.s)ω, s&S;

(iii) For any x e £", let us define π* : S -» is by 7rA(s) - s(#), S G S . Then

7rίω is the right Maurer-Cartan form of S [3], [4].

Using the same arguments as before, we can prove

THEOREM 4. Suppose G to be a Lie group of automorphisms of {E, S}>

transitive on the fibres. Then there is a 1-1 correspondence between the in-

variant Cartan connections ω over B and linear mappings Ψ : G ~> Sj such that

(a) ψCj) =φ(j), j e J, ( b ) f ° Ad. j= Ad. ψ(j) <> Ψ, j&J, and (c) Ψ(G) + S

= Si. Here, J, J, ψ have the same meaning as in §4.
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