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Summary

Current methods for detecting Hardy–Weinberg disequilibrium (HWD) only deal with one locus at a time.
We developed a method that can jointly detect HWD for multiple loci. The method was developed under the
generalized linear model (GLM) using the probit link function. When applied to a single locus, the new method
is more powerful than the exact test. When applied to two or more loci, the method can reduce false positives
caused by linkage disequilibrium (LD). We applied the method to 24 single nucleotide polymorphism (SNP)
markers of a single human gene and eliminated several false positive HWDs due to LD. We developed an
R package ‘hwdglm’ for joint HWD detection, which can be downloaded from our personal website
(www.statgen.ucr.edu).

1. Introduction

Hardy–Weinberg equilibrium (HWE) is an important
phenomenon in population genetics and it has been
a subject of intense consideration and a powerful re-
search tool in population genetics (Crow, 1988).
Deviation from HWE is called Hardy–Weinberg
disequilibrium (HWD), which may be generated by
many different evolutionary forces, including non-
random mating, selection, genetic drift and so on.
Testing HWD can help detection of such evolutionary
forces (Weir, 1996; Deng et al., 2001). In addition,
HWD may also be introduced by genotyping errors
(Lee, 2003), which is a factor responsible for low
power of association studies. A very important ap-
plication of HWD is in case–control disease associ-
ation studies (Chen & Chatterjee, 2007) or case-only
association studies (Nielsen et al., 1999; Lee, 2003;
Weinberg & Morris, 2003). In case–control studies,
genotype frequencies of the case population are com-
pared with HWE predicted genotype frequencies from
the control population. A significant deviation of a
marker from HWD implies the association of the
locus with the disease. In case-only studies, a signifi-
cant HWD of a marker within the case population
implies marker-disease association if the entire
population is assumed to be in HWE. A more detailed

review of application of HWD to genetic association
studies can be found in Salanti et al. (2005).

Many statistical methods have been developed to
test HWE, including the x2 test (Li, 1955; Hernandez
& Weir, 1989) and the exact test (Fisher, 1935;
Haldane, 1954; Chapco, 1976; Guo & Thompson,
1992; Rohlfs & Weir, 2008). Bayesian statistics have
also been applied to HWD analysis by drawing pos-
terior credibility of the estimated HWD parameter
(Ayres & Balding, 1998; Shoemaker et al., 1998).
These methods have been substantially validated and
applied to population genetics. They can be summar-
ized in two general categories : (1) a parametric hy-
pothesis test and (2) an exact test. In the parametric
hypothesis test, there is a HWD parameter to estimate
and a test is performed on this parameter. The most
common parameters are the inbreeding coefficient ( f)
for two alleles, the fixation index (fij) for multiple
alleles, the additive HWD parameter (D) for two al-
leles and the corresponding multiple allelic HWD
parameter (Dij). Please see Weir (1996) for details of
these parameters. There are two versions of the exact
test. The first version remains in its original form of
the exact test (Fisher, 1935; Guo & Thompson, 1992),
in which the proportion of the extreme samples was
counted as the P-values. The second version of the
exact test requires a parametric estimation of the
HWD parameter and a test statistic. All possible
samples from the hypergeometric distribution ofE-mail : shizhong.xu@ucr.edu
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genotype counts under the null model are evaluated.
The test statistics are then ranked to form a null dis-
tribution (Rousset & Raymond, 1995). Different test
statistics may generate different ranks and thus have
different P-values for the same data.

It appears that existing methods are already mature
and do not have much room to improve. However,
one aspect has been ignored in all HWD studies,
which is a conditional test for one locus given the
genotypes of other loci. If the multiple loci are in low
linkage disequilibrium (LD), conditional tests would
not offer any advantage over the individual locus tests
(one locus at a time). However, if these loci are in high
LD, conditional tests will lead to different results. A
locus in HWD detected separately may not be truly in
HWD, but caused by the HWD of another locus in
high LD with the one of interest. This Type I error has
not been recognized in the literature. None of the
existing methods have addressed this problem. Some
of the pooling methods deal with multiple loci
(Hill et al., 1995; Ayres & Balding, 1998). However,
these methods were based on the assumption of same
inbreeding coefficient for all loci and thus gained
power when different loci are combined. There has
been no report in the literature to jointly estimate
HWD for multiple loci.

One approach to tackling this problem is to extend
the contingency table to cover multiple loci. The
dimension of the table would rise rapidly as the
number of loci increases. This may explain why
people choose to avoid HWD testing for multiple loci.
It is feasible to test HWD for a pair of loci simul-
taneously, but the method may not be easily extended
to multiple loci. Here, we proposed an entirely differ-
ent approach to handle multiple locus HWD test, a
generalized linear model (GLM) approach. The
GLM is a well-known model for analysing discrete
data (McCullagh & Nelder, 1989). Connection of
the HWD problem to GLM is not obvious. If we treat
the genotype or allele count as the response variable,
there are no predictors. If we treat the genotype
counts as predictors, there is no response variable. We
previously developed a GLM for testing multiple lo-
cus segregation distortion (Zhan & Xu, 2011). In that
model, we proposed a hidden linear predictor, called
liability. The response variables are the genotype
counts. In this study, we adopted that model to per-
form HWD test. The key difference between the GLM
and the existing methods is that we can use a linear
predictor to measure the strength of HWD. With the
proposed linear predictor, we can handle multiple loci
easily by combining all locus-specific HWD para-
meters into a single linear predictor. Parameter esti-
mation and hypothesis test can be performed under
the GLM framework.

We first introduced the GLM for a single locus. We
then extended the model to conditional analysis for

two loci. Finally, we addressed conditional tests for
multiple loci. Simulation experiments were performed
to validate the GLM for the single locus and two loci
analyses. A real single nucleotide polymorphism
(SNP) dataset was used to demonstrate the multiple
locus conditional tests.

2. Theory and method

(i) Model for single locus

Let A1 and A2 be two alleles in a biallelic population
and A1A1, A1A2 and A2A2 be the three possible geno-
types. Denote the observed counts of the three geno-
types by n11, n12 and n22. The estimated frequencies of
the two alleles are p1=(2n11+n12)/(2n) and p2=
(2n22+n12)/(2n), respectively, where n=n11+n12+n22

is the sample size. Under HWE, the predicted geno-
typic frequencies are Q11=p1

2, Q12=2p1p2 and Q22=p2
2,

respectively. Rather than using the classical hetero-
zygosity reduction index f or the disequilibrium D as
the parameter to measure the amount of departure
from HWE, we proposed a new parameter for HWD.
This parameter takes any real number without
the awkward constraint as that in the D parameter.
The new parameter can be derived based on the
selection theory, in which the heterozygosity de-
ficiency (or excess) is formulated as selection against
(or in favour of) heterozygote. Let y11=y22 be the
fitness of the two homozygotes and y12 be the fitness
of the heterozygote. The relative fitness of the het-
erozygote over the homozygotes is y12/y11. This rela-
tive fitness of a non-unity value represents the
departure from HWE. This is the dominance model of
fitness selection.

We now reparameterize the fitness using y11=
y22=W(0)=1/2 and y12=W(h), where W() is the
standardized cumulative normal distribution and h
is the new HWD parameter. If h=0, then y12=
W(0)=1/2 and the relative fitness of the heterozygote
is 1 (compared with that of the homozygotes) and the
population is in HWE. If h<0, selection is against the
heterozygote while h>0 means selection against
homozygotes. Note that HWD may be caused by
many other factors, including inbreeding, genetic drift
and population subdivision. The selection parameter
h also indicates heterozygote deficiency if h<0 and
heterozygote excess if h>0. We can estimate and test
h as the parameter of departure from HWE. The null
hypothesis is H0 :h=0. We can see that x‘<h<+‘

and thus there is no constraint on this parameter. We
could have set y11=y22=1, but parameter h under
this set up would not be zero under HWE. It is equally
valid to define y12=W(xh) so that h>0 represents
heterozygosity deficiency. More discussion on the
relative fitness is given in the last section of the
manuscript.
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Using the Bayes theorem, we can find the prob-
abilities of the three genotypes, as shown below:

p(11)=
’11W(0)

’11W(0)+’12W(h)+’22W(0)
,

p(12)=
’12W(h)

’11W(0)+’12W(h)+’22W(0)
,

p(22)=
’22W(0)

’11W(0)+’12W(h)+’22W(0)
:

(1)

These probabilities are considered the posterior
probabilities of the three genotypes under the
Bayesian framework. The HWE predicted prob-
abilities serve as the prior probabilities. The fitness of
each genotype then serves as the likelihood. One can
easily see that, when h=0, the posterior probabilities
converge to the HWE probabilities.

The log-likelihood function is constructed using the
multinomial distribution of the data, as shown by

L(h)=n11 ln p(11)½ �+n12 ln p(12)½ �+n22 ln p(22)½ �: (2)

The derivative of L(h) with respect to h is

@L(h)

@h
=

n12w(h)

W(h)
x

2(n11+n12+n22)’12w(h)

’11+2’12W(h)+’22
, (3)

where w() is the standardized normal density. Setting
the derivative to zero and solving for h leads to
the maximum likelihood estimate (MLE) of the
parameter,

ĥ=Wx1 0�5r n12(’22+’11)

’12(n11+n22)

� �
: (4)

The variance of the estimate is approximated by the
inverse of the information,

var(ĥ) � Ix1(ĥ)=
W(ĥ) ’11+2’12W(ĥ)+’22

� �2

2n’12(’11+’22)w
2(ĥ)

: (5)

Significance test forH0 :h=0 may be performed in two
ways, the likelihood ratio test (LRT) and the Wald
test. The former is defined as

LRT=x2 L(0)xL(ĥ)
h i

: (6)

The Wald test is

Wald=
ĥ2

var(ĥ)
: (7)

Under the null hypothesis, both statistics asymptoti-
cally follow the x1

2 distribution and thus the critical
value x1,0.95

2 =3.84 can be used to declare significance
at the a=0.05 Type I error rate. One caveat of the
Wald test is that if the genotype counts extremely de-
viate from HWE, the second derivative of L(h) with
respect to hmay not be defined, leading to no estimate
of the variance. This problem does not apply to the

LRT because it does not require the second deriva-
tive. We call this model the GLM because the HWD
parameter h is a linear predictor and the link function
is probit. The novelty of the model is that we used a
linear predictor h to measure the strength of HWD.

This paragraph shows an example using the pro-
posed GLM and compared it with the Fisher’s exact
test. Let the counts of the three genotypes be n11=24,
n12=39 and n11=37 with a sample size n=100. The
genotypic frequencies predicted under HWE are
Q11=0.1892, Q12=0.4916 and Q22=0.3192. The GLM
estimated HWD parameter is ĥ=x0 � 4380 with an

estimation error

ffiffiffiffiffiffiffiffiffiffiffiffiffi
var(ĥ)

q
=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
0�03499

p
=0�1870. The

Wald and LRT statistics are Wald=5.4844 and
LRT=4.1467, respectively. The corresponding
P-values for the two tests are 0.0192 and 0.0413, re-
spectively. Using Fisher’s exact test, the P-value is
0.0423, close to the P-value of the LRT.

(ii) Model for two loci

The single locus model is just an alternative way to
test HWD. The main goal of proposing this new test
statistic is to facilitate a conditional test for each of
two loci that are in LD. If two loci are in linkage
equilibrium, there is no advantage for the conditional
test. However, if the two loci are in high LD, the
HWD of one locus may be caused by the HWD of
the other locus. The conditional test may correct
the confounding. It is easy to use an indicator variable
for the genotype of each locus for each individual.
Let A1A1, A1A2 and A2A2 be the three ordered geno-
types for the first locus. The genotype indicator vari-
able for individual j is defined by a 1r3 vector Xj.
For example, if individual j is of type A1A1, then
Xj=[ 1 0 0 ]. Let B1B1, B1B2 and B2B2 be the three
ordered genotypes for the second locus. The genotype
indicator variable of individual j for the second locus
is defined by a 1r3 vector Yj. For example, if indi-
vidual j is of type B1B2 for the second locus, then
Yj=[ 0 1 0 ]. We now use hX and hY, respectively,
to denote the HWD parameters for the two loci.
Let us define d=[ 0 1 0 ]T as a 3r1 vector of con-
stants. We can see that Yjd=1 if j is heterozygote for
the second locus and Yjd=0 otherwise. Conditional
on hY for the second locus, the posterior probabilities
of the three genotypes of individual j for the first
locus are

pj(11)=
’11W(YjdhY)

’11W(YjdhY)+’12W(hX+YjdhY)+’22W(YjdhY)
,

pj(12)=
’12W(hX+YjdhY)

’11W(YjdhY)+’12W(hX+YjdhY)+’22W(YjdhY)
,

pj(22)=
’22W(0+YjdhY)

’11W(YjdhY)+’12W(hX+YjdhY)+’22W(YjdhY)
:

(8)
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Let pj= pj(11) pj(12) pj(22)½ �T and thus ln(pj) is a
3r1 column vector as shown below:

ln (pj)= lnpj(11) lnpj(12) lnpj(22)½ �T: (9)

We define the conditional log likelihood function for
hX given hY by

L(hXjhY)= g
n

j=1
Xj ln(pj): (10)

Maximizing this likelihood function and finding
the solution of hX gives the conditional MLE of hX.
Unfortunately, an explicit solution for the MLE of hX
is hard to find. A numerical solution may have to be
resorted to e.g. the Newton method, which has the
following iteration form:

h(t+1)
X =h(t)

X x
Lk(h(t)

X jhY)

La(h(t)
X jhY)

, (11)

where Lk(hX(t)) and La(hX(t)) are the first- and second-
order derivatives of the log-likelihood function with
respect to hX evaluated at hX=hX

(t). When the iteration
process converges, we get the MLE of hX conditional
on hY, denoted by ĥX, whose variance can be ap-
proximated by

var(ĥX) � x
1

La(ĥXjhY)
: (12)

Once hX is estimated, we construct the likelihood
function for hY conditional on hX using the same ap-
proach. Define the posterior probabilities of the three
genotypes for the second locus by

jj(11)=
v11W(XjdhX)

v11W(XjdhX)+v12W(hY+XjdhX)+v22W(XjdhX)
,

jj(12)=
v12W(hY+XjdhX)

v11W(XjdhX)+v12W(hY+XjdhX)+v22W(XjdhX)
,

jj(22)=
v22W(XjdhX)

v11W(XjdhX)+v12W(hY+XjdhX)+v22W(XjdhX)
,

(13)

where v11=q1
2, v12=2q1q2 and v22=q2

2 are the HWE
predicted genotype frequencies for the second locus.
The conditional log likelihood function for hY is

L(hYjhX)= g
n

j=1
Yj ln(jj), (14)

where

ln (jj)= ln jj(11) ln jj(12) ln jj(22)
� �T

: (15)

Conditional on hY to estimate hX and then con-
ditional on hX to estimate hY will complete just one
cycle of iterations. The Newton iteration process
continues until the sequence converges. After
convergence, we obtain the MLE of both parameters,
denoted by ĥX and ĥY for the two loci.

Again, both the likelihood ratio and the Wald test
statistics are used to perform the HWD tests. The
LRT statistics are

LXjY=x2 L(0jĥY)xL(ĥXjĥY)
h i

(16)

and

LYjX=x2 L(0jĥX)xL(ĥYjĥX)
h i

(17)

for the two loci. The corresponding Wald tests are

WXjY=
ĥ2
X

var(ĥX)
(18)

and

WYjX=
ĥ2
Y

var(ĥY)
: (19)

We now show the result of an example using the
GLM method. The joint genotype counts of the two
loci (X and Y) of the example are given below,

Locus X

Locus Y

B1B1 B1B2 B2B2 NX

A1A1 27 6 1 34
A1A2 3 23 6 32
A2A2 1 10 23 34
NY 31 39 30 100

We performed a contingency table association
test for the data. The x2 test statistic for the associ-
ation is 78.52 with a P-value of less than 0.0001,
showing strong LD between the two loci. The mar-
ginal tests of HWD for individual loci showed that
ĥX=x0�7215t0�1640 and ĥY=x0�4684t0�1833 for
the two loci. The corresponding P-values are 0.00001
for locus X and 0.01064 for locus Y, meaning that
both loci deviate from HWE. The conditional tests,
however, showed that ĥX=x0�6294t0�1630 and
ĥY=x0�2489t0�1850 for the two loci. The corre-
sponding P-values are 0.00011 for locus X and 0.1785
for locus Y. The conclusion is that the marginal HWD
for locus Y is actually caused by the HWD of locus X
due to LD.

We now show another example where the two loci
are in linkage equilibrium. The frequency table is

Locus X

Locus Y

B1B1 B1B2 B2B2 NX

A1A1 10 12 12 34
A1A2 10 12 10 32
A2A2 12 13 9 34
NY 32 37 31 100
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The x2 test statistic for LD between X and Y is
0.6629 with a very large P-value of 0.9558, i.e. the LD
is not significant. The marginal HWD analysis for
individual loci produced ĥX=x0�7215t0�1640 and
ĥY=x0�5426t0�1766 for the two loci. The corre-
sponding P-values are 0.0000109 for locus X and
0.00213 for locus Y, meaning that both loci deviate
from HWE. The conditional analysis showed that
ĥX=x0�6471t0�1544 and ĥY=x0�4632t0�1610
for the two loci. The corresponding P-values are
0.0000278 for locus X and 0.00403 for locus Y. The
marginal tests and conditional tests gave the same
conclusion that both loci deviate from HWE.

(iii) Model for multiple loci

Extension to multiple loci is straightforward except
that the notation becomes a little bit more compli-
cated. We will not provide the detail of the multiple
locus model, but only point out the key step of
the extension. Recall that the conditional posterior
probabilities for the three genotypes of the first locus
given the HWD parameter of the second locus re-
quires an additional term in the linear predictor,
YjdhY, as shown in eqn (8). For multiple loci, this
additional term is replaced by a term called offset,
which includes effects of all other loci except the cur-
rent one of interest. Suppose that we have m loci for
the joint analysis. When the kth locus is considered
given the effects of all other loci, the relative fitness for
this locus are individual specific, y11=y22=W(oj) and
y12=W(hk+oj), where

oj= g
m

kklk

Xjkkdhkk (20)

is the offset and Xjkk is the genotype indicator vector
(1r3) for individual j at locus kk.

Theoretically, one can perform such a conditional
test for as many loci as desired. There is a computa-
tional issue when the number of loci is too large.
Another issue is the model identifiability problem.
Since the h parameter is a linear predictor (a first mo-
ment parameter), we can easily assign each h a normal
prior distribution, which makes the model a general-
ized linear mixed model (GLMM). The GLMM may
be considered as a penalized GLM. If the variance of
the normal prior is further assigned a hyper prior, the
model will then become the Bayesian hierarchical
GLM. If the number of loci is extremely large, we
must take the penalized model using the GLMM ap-
proach, which deserves further investigation.

3. Simulation studies

All analyses were conducted using an R package
‘hwdglm’ developed in this study. The package can be

downloaded from our personal website : www.stat-
gene.ucr.edu. There are three functions within the
package: (1) hwd1.glm() for single locus HWD de-
tection; (2) hwd2.glm() for joint detection of HWD
for two loci ; and (3) hwdm.glm() for joint detection of
HWD for m loci (m>1).

(i) Model for single locus

This simulation experiment aimed to validate the
new model and compare the new model with the exact
test. The following factors were considered in the
simulation: (i) minor allele frequency (p1), (ii) sample
size (n) and (iii) strength of HWD. We used the tra-
ditional inbreeding coefficient f as the degree of HWD
to generate the data, although we never tried to esti-
mate f. For the Fisher’s exact test, we presented
the estimated D and the P-value. The HWE.test ()
function of the R package ‘genetics ’ was used for
the exact test. This method is labelled ‘EXACT’. For
the new method, we used the hwd1.glm() function
of the ‘hwdglm’ package to perform the analysis. We
reported the estimated h and its estimation error. In
addition, we also reported the P-values drawn from
the LRT and the Wald test. The new method is la-
belled ‘GLM’.

The data were generated under the following
multinomial distribution:

Pr (n11, n12, n22)=
n!

n11!n12!n22!
(p2

1+p1p2f )
n11

r(2p1p2x2p1p2f)
n12 (p2

2+p1p2f )
n22 ,

ð21Þ

where p1 is the minor allele frequency and p2=1xp1 is
the major allele frequency. This model was used to
generate the data and is not the model for estimating
the HWD parameter.

The minor allele frequency was examined at five
levels : 0.1, 0.2, 0.3, 0.4 and 0.5. The sample size was
set at the following levels : 50, 100, 200, 300 and 500.
The f value (representing the degree of HWD) was
examined at the following levels : 0.0, 0.1, 0.2, 0.3, 0.4
and 0.5. The situation of f=0 represents the null
model, which was simulated to examine the Type I
errors of various methods compared. The simulation
experiments with f>0 were used to examine the stat-
istical powers. The total number of combinations of
the three factors is 5r5r6=150. Combining with
the two methods, the simulation would generate too
many data points for presentation. Therefore, we used
a subset of the 150 cases to perform the simulations
and drew general conclusions about the new method.
We did not expect any better performance of the new
method than the exact method. We would be satisfied
as long as the performance of the new method is not
too much worse than the existing method. That would
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make the new method a reasonable substitution for
the exact method so that extension to two or more loci
would be well justified.

Under each scenario, the simulation was replicated
1000 times. For each replicate, a P-value less than a
nominal 0.05 indicated a detection of HWD. Under
the null model, the proportion of replicates in which
HWD was detected represents the empirical Type I
error. If this Type I error is around 0.05, we say that
the Type I error is under our control. Otherwise, the
test is either too conservative or too liberal. Under the
alternative models (f>0), the proportion of replicates
with significant HWD detection becomes the statisti-
cal power.

Table 1 shows the empirical Type I error when
x0.95,1
2 =3.84 was used as the critical value for the test.
Both the Wald test and the LRT under the GLM are
over conservative when the minor allele frequency is
small. However, when the minor allele frequency
reaches 0.4, the empirical Type I error is close to the
theoretical nominal value of 0.05. The Fisher’s exact
test is slightly conservative when the minor allele fre-
quency is small. In conclusion, the GLM is more
conservative than the exact test. In practice, if one
uses x0.95,1

2 =3.84 as the critical value for the test, the

result will be over-conservative, which implies a low
power. Wigginton et al. (2005) stated that even in
a sample size of 1000, the actual type I error rates
for both goodness-of-fit tests and exact tests may be
much different from the nominal values. Our con-
clusion is consistent with Wigginton et al. (2005).
Hernandez & Weir (1989) also observed the same
conservativeness.

To control the Type I error at the claimed 0.05
level, one would need an empirical critical value less
x0.95,1
2 =3.84. Hernandez & Weir (1989) suggested to
use x0.95,0.5

2 =2r4 as the critical value. We decided
to use the x1

2 distribution to draw the critical value.
We performed additional simulations to draw the
empirical critical values for the test statistics (Wald
and LRT). The results are listed in Table 2. The
critical values are clearly less than x0.95,1

2 =3.84 when
the minor allele frequency is small. For the Fisher’s
exact test, we should also correct the Type I error at
low minor allele frequencies.

We now use these empirical critical values (Table 2)
to examine the powers under various scenarios. We
examined the power using f=0.2 as an example to
show the powers of the new method. The empirical

Table 1. Empirical Type I errors for the new method
compared with the exact test obtained from a
simulation experiment with 1000 replicates

Allele
frequency

Sample
size

Method

p1 n
GLM
(Wald)

GLM
(LRT) EXACT

0.1 50 0.002 0.001 0.018
100 0.001 0.001 0.019
200 0.003 0.001 0.030
300 0.001 0.001 0.038
500 0.000 0.000 0.038

0.2 50 0.010 0.002 0.017
100 0.012 0.006 0.036
200 0.009 0.007 0.040
300 0.004 0.001 0.032
500 0.005 0.004 0.039

0.3 50 0.018 0.015 0.039
100 0.022 0.012 0.031
200 0.015 0.023 0.041
300 0.015 0.019 0.041
500 0.021 0.022 0.041

0.4 50 0.028 0.034 0.032
100 0.036 0.028 0.040
200 0.037 0.045 0.047
300 0.040 0.049 0.049
500 0.036 0.040 0.040

0.5 50 0.038 0.053 0.034
100 0.044 0.039 0.055
200 0.033 0.039 0.044
300 0.047 0.055 0.057
500 0.039 0.051 0.047

Table 2. Empirical critical values from x1
2 distribution

to achieve 0.05 Type I error rate for the new method
compared with the exact method obtained from a
simulation study with 1000 replicates

Allele
frequency

Sample
size

Method

p1 n
GLM
(Wald)

GLM
(LRT) EXACT

0.1 50 1.0090 0.8406 2.3404
100 0.8535 0.8556 2.9449
200 0.6936 0.7052 2.7447
300 0.8448 0.8354 3.1618
500 0.9022 0.8883 3.3160

0.2 50 1.9415 1.5638 3.0088
100 1.5650 1.5660 3.0255
200 1.7218 1.7745 3.3791
300 1.6743 1.7102 3.3955
500 1.8567 1.8739 3.8098

0.3 50 2.7500 2.7019 3.1727
100 2.0475 2.2982 2.9886
200 2.5307 2.7923 3.6152
300 2.6805 2.9328 3.8471
500 2.6354 2.8227 3.6957

0.4 50 2.6522 3.7519 3.4703
100 3.5930 3.2863 3.6168
200 3.1476 3.2818 3.4325
300 3.4330 3.6250 3.7051
500 3.4289 3.6253 3.8049

0.5 50 3.2831 3.9282 3.3527
100 3.2342 3.5309 3.9437
200 3.2684 3.5344 3.3926
300 3.9445 4.0755 3.8675
500 3.6144 3.5499 3.5174
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powers are given in Table 3. First, the LRT test of the
GLM is similar to the exact test in all situations.
When the minor allele frequency is low, the power of
the Wald test is also close to that of the exact test.
However, as the minor allele frequency reaches 0.4 or
above, the Wald test is more powerful than both
the LRT test and the exact test, especially when the
sample size is small. This observation is unexpected.
We proposed this new GLM method as a suitable
substitute for the exact test and never expected it
to outperform the exact test. Similar trends were
also observed for other f values (see supplemental
Tables S1–S4 for the power comparisons under other
f values).

(ii) Model for two loci

Although the two loci model does not depend on
whether LD is gametic or zygotic, for simplicity of
simulation, we only considered gametic LD between
two loci. Let the first locus (X) be the primary locus
with HWD and the second locus (Y) be the secondary
locus in HWE. The two loci have LD measured by r,
the correlation between the indicator variables of
allele A1 of the first locus and allele B1 of the second

locus. The genotype transition matrix from the first
locus to the second locus is

TXY=
1

4

(1+r)2 2(1xr2) (1xr)2

1xr2 (1+r)2+(1xr)2 1xr2

(1xr)2 2(1xr2) (1+r)2

2
4

3
5: (22)

For example, the conditional probability of B1B1 gi-
ven A1A2 takes the element of the second row and the
first column of the above transition matrix,

Pr (B1B1jA1A2)=TXY(2, 1)=
1

4
(1xr2): (23)

Given f for the primary locus and r for the
LD, we simulated genotypes of the two loci one
individual at a time. First, we calculated p=
[p(11) p(12) p(22)] using equation (1) and simu-
lated Xj from the multivariate Bernoulli distribution
with a probability vector p. We then simulated Yj

from the multivariate Bernoulli distribution with a
probability vector taking one of the three rows of
matrix TXY, depending on the simulated genotype for
the first locus. When f>0, both loci would show
HWD, but only the first locus is of true HWD and the
appeared HWD of the second locus is purely caused
by LD. We used f=0.2 as an example to demonstrate
the empirical powers of the conditional and marginal
analyses. The marginal analysis was conducted using
the single locus model, ignoring the LD. The simu-
lation was replicated 1000 times under each scenario.
For the first locus, the detection of HWD is called
the power. For the second locus, the detection of
HWD is called the Type I error. The results are given
in Table 4. The powers for the first locus of the con-
ditional and marginal analyses are very similar. The
Type I error for the second locus, however, is dif-
ferent when the LD level is high. Compared with the
marginal analysis, the conditional analysis has low-
ered the Type I error for the second locus, but cannot
fully control the Type I error when LD is too high.
The power and Type I error analysis under other f
values showed a similar trend (see supplemental
Tables S5–S8). The conclusion from the two loci
analysis was that the conditional method can control
the Type I error for the second locus at some degree.

4. Real data analysis

The purpose of the real data analysis is to demon-
strate the difference between the marginal and con-
ditional analyses. The data were downloaded from the
website of a book entitled Applied Statistical Genetics
with R (Foulkes, 2009: http://people.umass.edu/
foulkes/asg/data/FMS_data.txt).

The dataset (FAMuSS) contains 1397 college stu-
dents genotyped for 225 SNPs across multiple genes.
We analysed a gene named ‘akt1’, which included 24

Table 3. Empirical statistical power of HWD
detection for the new method compared with the exact
method ( f=0.2)

Allele
frequency

Sample
size

Method

p1 n
GLM
(Wald)

GLM
(LRT) EXACT

0.1 50 0.348 0.348 0.327
100 0.493 0.479 0.481
200 0.738 0.726 0.740
300 0.872 0.861 0.863
500 0.963 0.959 0.966

0.2 50 0.365 0.339 0.313
100 0.580 0.533 0.543
200 0.823 0.784 0.781
300 0.932 0.915 0.914
500 0.995 0.993 0.990

0.3 50 0.335 0.256 0.246
100 0.631 0.563 0.550
200 0.855 0.780 0.790
300 0.941 0.914 0.913
500 0.992 0.989 0.990

0.4 50 0.453 0.279 0.286
100 0.589 0.542 0.520
200 0.866 0.811 0.806
300 0.938 0.915 0.917
500 0.992 0.989 0.989

0.5 50 0.430 0.253 0.295
100 0.626 0.521 0.473
200 0.885 0.824 0.826
300 0.945 0.918 0.920
500 0.997 0.997 0.997
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SNPs. We used both the marginal and the conditional
methods to analyse the HWD for the 24 SNPs.

First, we expected the 24 SNPs to have high
pairwise LD because they all came from the same
gene. We used the LD(snp1,snp2) function of the R
package ‘genetics ’ to test all pairwise LD. Among the
24(24x1)/2=276 pairs of SNPs, a total of 243 pairs
have P-values less than 0.05. The average P-value for
all the 276 pairs is 0.04. The LD is very strong among
the 24 SNPs. This means that the HWD tests for the
conditional and marginal analyses should be very
different.

The estimatedHWDparameters (h) for the 24 SNPs
are plotted in Fig. 1 for both the marginal analysis
(left panel) and the conditional analysis (right panel).
For the marginal analysis, seven SNPs are significant
(P<0.05). For the conditional analysis, six SNPs are
significant (P<0.05). Among the significant SNPs
detected here, only four were detected by both meth-
ods. Except for two SNPs, the estimated h are all
negative for the marginal analysis. This means that
almost all loci show heterozygote deficiency for the
marginal analysis. The situation is quite different
for the conditional analysis. Among the 24 SNPs,
about half have positive estimates of h. An interesting

observation comes from akt1_t10726c_t12868c
(the 5th SNP from the top). The marginal test shows
that this SNP significantly deviates from HWE,
but the conditional analysis shows that it does not.
The appeared HWD in the marginal analysis may
be caused by LD between this SNP and the next
one (akt1_t10598a_t12740a, the 6th SNP from the
top). The LD analysis (see Table S9) showed that
the Dk estimate between the two SNPs is 0.9785 with
a correlation coefficient of 0.6169. The x2 test statistic
is 589. This analysis clearly demonstrates the advan-
tage of the conditional analysis over the marginal
analysis. The two different estimates of h also share
some level of similarity, with a Pearson correlation of
0.66. TheWald test statistics for the 24 SNPs obtained
from both analyses are plotted in Fig. 2, again show-
ing differences and similarities between the two
analyses.

5. Discussion

We developed a GLM approach to testing HWD
jointly for multiple loci. However, the method also
works well for a single locus. Simulation studies
showed that the method is over-conservative for low
minor allele frequencies if the nominal 0.05 Type I
error obtained from the x2 distribution is used as the
criterion of test. The Fisher’s exact test is also con-
servative when the minor allele frequency is low. This
is consistent with other reports (Hernandez & Weir,
1989; Wigginton et al., 2005). When both methods
were compared under the same experimentally con-
trolled Type I error rate of 0.05, the GLM method is
more powerful than the exact test, which is a surprise.
We never expected the new method to outperform the
exact method for single locus analysis. Therefore, the
new method can be a good (or even a better) substi-
tute for the exact method for single locus analysis. For
multiple locus joint analysis, the new method is the
only one available in the literature.

The new parameter h is an alternative measurement
of the heterozygote deficiency or excess. There is
no explicit relationship between the new parameter
and the D parameter of Weir (1996) or the Wright’s
fixation index f. However, the sign of h should be
opposite to the sign of D or f. A negative h means
heterozygote deficiency, which is represented by a
positive D or f.

LD between two loci is contributed by digenic
LD and higher-order trigenic and quadrigenic LD.
Our GLM does not depend on the type of LD. In the
simulation study, we considered only the digenic LD
for the reason of simplicity. Higher-order LD may
exist in real populations, but they are not expected to
be strong in general (Jiang et al., 2012). Therefore, the
conclusion obtained from the simulation of gametic
LD should be sufficiently general.

Table 4. Empirical statistical power (locus X) and
Type I error (locus Y) of HWD detection for the new
method (f=0.2)

LD (r)
Sample
size (n)

Conditional Marginal

X Y X Y

0.1 50 0.3630 0.0380 0.3620 0.0420
100 0.6160 0.0330 0.6180 0.0360
200 0.8500 0.0420 0.8510 0.0360
300 0.9580 0.0460 0.9600 0.0440
500 0.9950 0.0510 0.9960 0.0500

0.2 50 0.3950 0.0430 0.3770 0.0450
100 0.5890 0.0390 0.5900 0.0460
200 0.8310 0.0350 0.8350 0.0350
300 0.9470 0.0370 0.9520 0.0410
500 0.9950 0.0490 0.9950 0.0590

0.3 50 0.3940 0.0440 0.3860 0.0550
100 0.5860 0.0440 0.5780 0.0600
200 0.8550 0.0630 0.8590 0.0760
300 0.9360 0.0580 0.9450 0.0780
500 0.9950 0.0460 0.9940 0.0720

0.4 50 0.3920 0.0600 0.3640 0.0730
100 0.5970 0.0390 0.5920 0.0590
200 0.8520 0.0590 0.8580 0.1030
300 0.9420 0.0600 0.9440 0.1040
500 0.9950 0.0580 0.9950 0.1280

0.5 50 0.3930 0.0630 0.3650 0.0990
100 0.6040 0.0560 0.5960 0.1080
200 0.8340 0.0590 0.8350 0.1230
300 0.9520 0.0680 0.9580 0.1580
500 0.9960 0.0920 0.9980 0.2550
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Understanding the fact that the new method is
conservative with a true Type I error lower than the
nominal Type I error, we should correct this and use
an empirical P-value criterion to test HWD in real
data analysis. Two approaches may be taken to
draw the empirical P-values for the Wald-test stat-
istic, the exact test and the permutation test. The
hypergeometric distribution of the genotype count
under the biallelic system facilitates both tests.
For the exact test, all possible outcomes from the
hypergeometric distribution are evaluated and the
empirical distribution of the Wald test statistic
is drawn, from which the empirical P-value is calcu-
lated as the proportion of the more extreme
samples than the actual observed Wald test statistic
(Hernandez & Weir, 1989; Rousset & Raymond,
1995; Weir, 1996). The exact test applies to small
samples, say <200. For the permutation test, one
simply draws 1000 or more random samples from
the hypergeometric distribution. Empirical P-value is
then drawn from the proportion of extreme samples
(Guo & Thompson, 1992). The permutation test
applies to large samples.

Further investigation is required regarding the
criterion of significance declaration for the multiple
locus joint analysis. One can arbitrarily lower the
P-value criterion to increase the stringency of the test.
The change of stringency depends on the number of

SNPs included in the model (Lessios, 1992). The
multiple test issue is a common problem in all
genetic analyses, including the HWD test. Any
approaches taken by the genome-wide association
study (GWAS) for Type I error control can be
adopted here for the HWD analysis. A typical
approach, for example, is to control the false dis-
covery rate (FDR).

HWD may be caused by any evolutionary forces.
The one investigated in this study represents only
one evolutionary force, non-random mating (includ-
ing inbreeding and assortative mating), which only
changes the heterozygosity to homozygote ratio
(compared with the HWE predicted ratio) and
does not distinguish between the two homozygotes.
This can be reflected by our assignment of y11=
y22=W(0)=1/2. We did not replace W(0) by 1/2 in
the formulation because that would make extension
difficult. With W(0) appearing in the model, we can
extend the model easily to take into account other
evolutionary forces, e.g. selection. In fact, none of the
existing methods for HWD have taken into account
selection. The extension is straightforward by adding
another effect, q, that represents the fitness difference
between the two homozygotes. The relative fitness of
the three genotypes are then expressed by y11=W(q),
y12=W(h) and y22=W (xq), where q acts like the
‘additive’ effect and h the ‘dominance ’ effect. The

Fig. 1. Comparison of the estimated HWD parameters (h) for the marginal (left panel) and conditional (right panel)
analyses. The SNP names are shown in the left margin of each panel and the P-values are shown in the right margin of
each panel. The x-axis represents the estimated h (dot) and the h¡2 SE (bar).
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GLM then involves two HWD parameters. The al-
gorithm developed in this study applies to two and
multiple parameters with only slight modification.
The two-parameter model for HWD test requires a x2

test with two degrees of freedom (asymptotically).
Such a test is sufficiently general for HWD caused by
any evolutionary forces. This topic deserves a further
investigation.

Our initial study showed that choosing the relative
fitness of y11=exp(0), y12=exp(h) and y12=exp(0)
worked equally well (data not shown). Under this
reparameterization, the link function is log. In the

single locus situation, the explicit MLE under the log
link is

ĥ= ln
n12(’11+’22)

’12(n11+n22)

� �
: (24)

The variance of ĥ is

var(ĥ) � x
@2L(ĥ)

@ĥ2

" #x1

=
’11+’12 exp (ĥ)+’22

� �2

n’12(’11+’22) exp (ĥ)
:

(25)

Fig. 2. Comparison of the Wald-test statistics for the 24 SNPs in gene akt1 obtained from the marginal (blue) and
conditional (pink) analyses.
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We now show an example of the log link analysis.
Let the data be n11=24, n12=39 and n22=37. The
estimated h and the estimation error are

ĥt
ffiffiffiffiffiffiffiffiffiffiffiffiffi
var(ĥ)

q
=0�413509t

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
0�0420345

p

=0�413509t0�2050231

and the Wald test statistic is Wald=4.0678. The re-
sults are similar to the probit link analysis. There are
two advantages using the log link function. First, the
computational behaviour of the log link function is
better because the occurrence of floating errors is ex-
tremely low compared with the probit link function
where h in W(h) has to be constrained between x5
and 5 to avoid numerical overfloating. Secondly,
y12=exp(h) can be interpreted as the fitness odds ra-
tio of the heterozygote to the homozygotes. An odds
ratio of less than unity indicates heterozygosity deficit
and an odds ratio of greater than unity indicates het-
erozygosity excess. We examined both the log and
probit link functions, but decided to pursue the probit
link because the log link did not work well for two and
more loci. The reason is unclear and deserves further
in-depth investigation.

Literature search did not show any evidence of
using GLM for HWD analysis. The only closed
method is the log linear approach of Lindley (1988),
who defined two linear parameters,

a=1
2
ln (4P2

12=P11P22),

b=1
2
ln (P11=P22),

(26)

where P11, P12 and P22 represent the observed fre-
quencies of the three genotypes, and a and b are
analogous to the ‘dominance ’ and ‘additive’ effects
discussed earlier.

A typical GLM problem has closed forms of the
first and second derivatives of the likelihood function
with respect to the parameters for multiple indepen-
dent variables. Our problem is atypical because it
does not enjoy that property when two or more loci
are considered. Fortunately, numerical differentiation
is routinely conducted nowadays. With the high
computer power, analytic and numerical differentia-
tions do not seem to matter too much. In particular,
finding the MLE of parameters is iterative anyway.
Therefore, our atypical GLM problem is not much
inferior to a typical GLM problem.

The number of SNPs handled by the joint analysis
can be limited, say 100 at most. The method in its
current form cannot be applied to genome-wide
HWD in a simultaneous manner, although the single
locus model is very practical. To perform a joint
analysis for several thousand SNPs simultaneously, a
penalty is required. Since the HWD parameter, hk for
the kth locus, has been formulated as a first moment

parameter, the L1 penalty (Lasso) or the L2 penalty
(Ridge) or both (Elastic net) can be used. This opens a
new avenue for the application of the penalized GLM.

Finally, if a large population is stratified and con-
sists of many local populations of different demo-
graphic regions (population subdivision), the HWD
of the whole population is also expected to be high.
The h parameter estimated from the whole population
would be denoted by hIT, corresponding to FIT

(Holsinger & Weir, 2009). If the HWE predicted
genotypic frequencies are calculated from each local
populations and these population-specific genotype
frequencies are used as the prior probabilities for
the corresponding local populations, the estimated
h parameter (assuming all local populations have
the same h) would be denoted by hIS, analogous
to FIS. The corresponding h parameter representing
population differentiation may be derived from hST=
hITxhIS, corresponding to the population differen-
tiation index FST (Holsinger & Weir, 2009). We may
then use

HST=
h2
ST

h2
ST+h2

IS

=
(hITxhIS)

2

(hITxhIS)
2+h2

ST

(27)

to measure population differentiation. This new par-
ameter takes a domain between 0 and 1 with zero
meaning no differentiation and one being maximum
differentiation. This extension will shed new light on
future population differentiation studies.

6. Supplemental Material

There are eight supplemental tables (Tables S1–S8).
The first four tables (Tables S1–S4) show results of
additional simulations for power analysis under the
single locus model. The last four tables (Tables S5–S8)
give the results of additional simulations for power
(primary locus) and Type I error (secondary locus)
under the two loci model. These supplemental docu-
ments are available under the Paper Information link
at the Genetics Research website (http://www.jour-
nals.cambridge.org/GrH). The R package ‘hwdglm’
is available from the author’s personal website : http://
www.statgen.ucr.edu.
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