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and devil’s staircases

Andrei Yu. Goldin1 and Aslan R. Kasimov1,2,†
1Skolkovo Institute of Science and Technology, Bolshoy Blvd. 30, bldg. 1, Moscow 121205, Russia
2Institute for Computer Science and Mathematical Modeling, Sechenov University, 8-2 Trubetskaya St.,
Moscow 119991, Russia

(Received 4 April 2022; revised 30 June 2022; accepted 4 July 2022)

We report on the phenomenon of detonation synchronization and demonstrate the
existence of the Arnold tongues and devil’s staircases in the problem of gaseous detonation
in a periodically inhomogeneous reactive medium. Universal properties of these dynamical
structures – the Farey tree, fractal dimension and period-doubling bifurcations – are
revealed.
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1. Introduction

In this work, we investigate numerically the dynamics of a gaseous detonation wave
propagating in a mixture with properties varying periodically in space. A phenomenon of
detonation synchronization is revealed and its various features are described. Detonations
in gaseous mixtures are well known to exhibit complex nonlinear dynamics whereby the
velocity of the wave oscillates in time regularly or chaotically (Fickett & Davis 1979;
Henrick, Aslam & Powers 2006; Faria, Kasimov & Rosales 2015). Thus, a detonation
wave represents a nonlinear dynamical system capable of self-sustained oscillations. The
influence of periodic external perturbations on such oscillations is of interest and is
investigated in this work. The perturbations are taken to arise due to periodic variations
of properties of the reactive mixture. In practice, the variations can come, for example,
from non-uniform mixing of fuel and oxidizer as is the case in rotating detonation
engines (RDE) (Anand & Gutmark 2019). The main outcome of our analysis is that the
periodic forcing leads to detonation synchronization and, depending on the wavelength
and amplitude of the variations, to regimes of varying complexity.

Detonation propagation in non-uniform media has been considered in a number
of studies before with various types of state perturbations ahead of the wave.
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Mi et al. (2017a); Mi, Timofeev & Higgins (2017b) describe propagation of detonation
across discrete reactive layers separated by inert gas regions. They observe ensembles of
explosion waves moving with an average speed exceeding that of the corresponding CJ
(Chapman-Jouguet) speed of the homogenized medium if the spacing between reactive
layers is larger than the inherent reaction zone length. In Wang et al. (2021b), it is
found that successful detonation reinitiation after the lead shock passes through inert
layers occurs only for relatively thin inert layers and small spacing. No effect on the
averaged detonation speed is detected, but the presence of the inert layers results in
larger cells and in the appearance of double cellular structures. According to Li, Mi
& Higgins (2015), continuous two-dimensional sinusoidal perturbations of the fresh
mixture favour detonation propagation with a greater velocity and into thinner layers
of explosive than in the homogeneous case. Perturbations of some optimal size at a
wavelength of 10 to 50 times the half-reaction-zone length are found to affect the
dynamics most strongly. Wang, Chen & Chen (2021a) consider the dynamics of cellular
detonation in hydrogen–air mixtures using detailed chemistry and assuming sinusoidal
distribution of the reactants in the fresh mixture. The influence of the amplitude and
wavelength of the distribution on the cellular structure and the average speed of the wave is
analysed.

In addition to detonation in periodically inhomogeneous mixtures, it is of interest to
investigate the effects of various other types of composition gradients on detonation
propagation. Many publications can be found that analysed such problems in relation to
explosion safety (e.g. Kuznetsov et al. 1998; Ishii & Kojima 2007; Kessler, Gamezo &
Oran 2012). These papers consider non-periodic variations of the mixture composition
focusing on the local response of the detonation wave on the variable conditions.
While such local influence may be important for our problem in certain cases, the
focus of the present work is rather on the global response of the detonation wave
to periodic upstream conditions. In other words, we are interested in the long-time
dynamics of the detonation after the wave passes many periods of the mixture
variations.

Kasimov & Gonchar (2019, 2021) have extended the reactive Burgers model of Kasimov,
Faria & Rosales (2013) to include periodic upstream conditions and have demonstrated for
the first time the existence of resonant amplification and frequency locking for oscillations
of detonation velocity in sinusoidally periodic upstream conditions. The findings have
been reproduced within the framework of the one-dimensional reactive Euler equations
in Kasimov & Goldin (2021) for periodic variations of temperature, reactivity or heat
release. A key outcome of these analyses is the demonstration of the existence of bands
of wavelength of the periodic variations that correspond to the regularization of the
detonation dynamics. Similar findings have also been reported in Kim et al. (2020)
and Ma, Wang & Han (2020). These complex dynamical phenomena and identification
of optimal perturbation scales (e.g. Li et al. 2015) motivate the need for a deeper
understanding of the interaction of detonation waves with external conditions. Our present
work is a step in this direction.

The remainder of the paper is organized as follows. In § 2, we describe the main
problem and formulate the governing equations and periodic upstream conditions. This
section also presents the numerical approach to the problem. Next, we show in § 3 the
results of simulations for varying frequency and amplitude of the upstream conditions
that demonstrate the effect of frequency locking, or synchronization, between external
oscillations and the detonation velocity. These findings are unified in § 4 to reveal
the existence of the Arnold tongues and devil’s staircases. Section 5 summarizes the
results.
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Figure 1. The schematics of the density profile for detonation in a non-uniform medium.

2. Governing equations and non-uniform conditions

Consider a one-dimensional planar detonation wave propagating in a gaseous mixture in
the positive x direction (figure 1). The detonation dynamics is governed by the reactive
Euler equations (Fickett & Davis 1979; Kasimov & Goldin 2021):

ρt + (ρu)x = 0, (2.1)

(ρu)t + ( p + ρu2)x = 0, (2.2)

(ρe)t + (ρu (e + p/ρ))x = 0, (2.3)

(ρλ)t + (ρuλ)x = ρω, (2.4)

that consist of equations of continuity (2.1), momentum (2.2), energy (2.3) and reaction
progress (2.4), Here, subscripts t and x denote partial derivatives with respect to time t
and space x. Variables ρ, u, p, e, λ ∈ [0, 1] are the density, particle velocity, pressure,
total specific energy and reaction progress variable, respectively. The reactive medium is
assumed to be an ideal gas described by the equation of state p = ρRT with gas constant R
and temperature T . The gas undergoes a single-step irreversible chemical reaction obeying
the Arrhenius rate, ω = K(1 − λ) exp(−E/(RT)), with rate constant K and activation
energy E, for reactants λ = 0 and for products λ = 1. The total specific energy e of the
gas is given by e = (γ − 1)−1p/ρ + u2/2 − λQ, where γ is the ratio of specific heats,
and Q is the specific heat release.

Consistent with the existing analyses of realistic scenarios in RDE (e.g. Fujii et al. 2017;
Gaillard, Davidenko & Dupoirieux 2017) wherein injector systems lead to nearly periodic
variations of temperature and fuel concentration upstream of the rotating detonation front,
we model the upstream conditions (at x > 0) as

Ta(x) = Ta + A(1 + sin kx), (2.5)

λa(x) = A(1 + sin kx). (2.6)

Here Ta is the minimal temperature of the fresh mixture, 0 ≤ A ≤ 0.5 and k are the
amplitude and wavenumber of the variations, respectively. We further assume zero fluid
velocity (in the laboratory frame) and constant pressure pa throughout the fresh mixture.
The variables are rescaled with respect to pa for pressure, ρa = pa/(RTa) for density, and√

pa/ρa for velocity. The length scale is the standard half-reaction length, l1/2, i.e. the
distance from the shock over which half of the chemical energy is released; the time scale
is then l1/2/

√
pa/ρa.

Governing equations (2.1)–(2.4) are solved numerically by a high-order shock fitting
method based on the conservative WENO5M scheme for the spatial discretization and
total variation diminishing Runge–Kutta method for time integration as described in
Henrick et al. (2006) and Kasimov & Goldin (2021). The problem is posed in the moving
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shock-attached frame of reference. The location of the leading shock wave is always fixed
at the origin of the coordinate system. Such an approach allows for high accuracy because
the shock is not smeared in contrast to shock capturing methods. Since detonation velocity
D(t) explicitly appears in the governing equations, the system requires an additional
shock-change equation (see Kasimov & Goldin 2021):

dD
dt

= −
(

∂ (ρsus)

∂D

)−1 (
∂ (ρu (u − D) + p)

∂x
+ D

∂ (ρsus)

∂x

)∣∣∣∣
x=0

, (2.7)

that is integrated numerically together with the reactive Euler equations. Here, subscript
s denotes the variables immediately after the shock jump. To determine these variables in
terms of D and the upstream conditions (2.5)–(2.6), the Rankine–Hugoniot conditions are
used:

ρs (D − us) = ρa (D − ua) , (2.8)

ps − pa = (ρa (D − ua))
2
(

1
ρ a

− 1
ρ s

)
, (2.9)

es − ea = 1
2

( ps + pa)

(
1
ρ a

− 1
ρ s

)
, (2.10)

λs = λa. (2.11)

Numerical integration of dxs/dt = D(t) gives the shock position xs in the laboratory
frame of reference. Shock position xs is needed to determine the upstream state just
ahead of the shock. We solve the governing equations in the domain of length L = 50
behind the shock wave with N = 1000 grid points up to time t = 3000. Then, we extract
detonation velocity D(t) and apply analysis of time series and various tools of dynamical
systems theory to study the detonation behaviour. The overall third order of accuracy of
the numerical method is verified on a sequence of spatial grids with decreasing step size.
The accurate numerical solutions allow us to compute the rather subtle effects reported in
this paper.

3. Frequency locking

The key property of gaseous detonation that is important for the purpose of the present
analysis is that it propagates in a self-sustained oscillatory manner if the activation energy
E exceeds a critical value Ec with all other parameters fixed (Fickett & Davis 1979).
From the point of view of dynamical systems theory, the detonation can be looked at as a
self-sustained nonlinear oscillator. It is therefore reasonable to expect that when subjected
to an external periodic influence, the detonation will respond in a manner similar to that of
well-known nonlinear oscillators such as, for example, the van der Pol oscillator (Parlitz &
Lauterborn 1987; Pikovsky, Rosenblum & Kurths 2001; Manneville 2004; Strogatz 2018).
In particular, the periodic forcing is expected to lead to resonances and mode locking,
the latter closely connected to synchronization. This is indeed what we have found as
described next.

The following results are obtained for fixed parameters: γ = 1.2, Q = 50, E = 26. Note
that E > Ec = 25.26. In this case, the steady-state self-sustained CJ detonation velocity
is DCJ =

√
γ + (γ 2 − 1)Q/2 +

√
(γ 2 − 1)Q/2 ≈ 6.81. We investigate the long-time

dynamics of the detonation wave at fixed k = 0.1 and varying A. The influence of
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Figure 2. The normalized detonation speed and its spectra for different amplitudes of the upstream state: (a,d)
A = 0 – period-1 oscillations in a uniform medium; (b,e) A = 0.025 – a quasiperiodic regime; (c, f ) A=0.035 –
period-2 synchronization.

variations in wavenumber k was previously studied in Kasimov & Goldin (2021), where
resonance and locking effects were discussed. When A = 0, the time series of detonation
velocity D(t) shows a period-1 limit cycle with fundamental frequency ν0 = 0.085.
These oscillations of D(t) are shown in figure 2(a) with the power spectrum showing
its maximum at natural frequency ν0 in figure 2(d). The addition of upstream variations
with amplitude A = 0.025 leads to the quasiperiodic regime shown in figure 2(b,e) which
is seen to contain the linear combinations of two dominant frequencies, νD = 0.071 as
a modified natural frequency and νf = 0.107 as arising due to the presence of forcing.
The further increase of A up to 0.035 shifts νD to 0.054 which is close to νf /2 and
the oscillations exhibit a period-2 limit cycle with dominant frequency νD, shown in
figure 2(c, f ). A more detailed dependence of detonation behaviour on A is shown in
figure 3 that depicts the heat map of the power spectra of D(t) for a range of A from
0 to 0.045. The frequency νD of D(t) is seen to decrease somewhat from ν0 as the
amplitude A increases. The almost vertical line near νf ≈ 0.107 appears in the spectra
because it is the time frequency with which the detonation shock propagates through the
upstream variations of constant spatial frequency k/(2π). These latter values are related
as νf = D̄k/(2π), where D̄ is the mean detonation velocity.

The ratio νD/νf determines the possible modes of detonation behaviour. Quasiperiodic
regimes develop for incommensurate νf and νD and produce spectra containing various
linear combinations of these two main frequencies (see figure 3 for A < 0.007, A ≈ 0.01,
0.015, 0.026 and 0.03). Periodic regimes are observed when νD/νf becomes rational:
νD/νf = m/n, m, n ∈ N, and only one dominating frequency νD/m = νf /n together with
its harmonics are present in the spectrum. Such regions are seen in figure 3 near A =
0.0075 (νD/νf = 3/4), A = 0.0125 (νD/νf = 5/7), A = 0.02 (νD/νf = 2/3), A = 0.028
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Figure 3. The logarithm of the power spectral density for the time series of detonation velocity D(t) for a range
of values of amplitude A from 0 to 0.045 and fixed forcing wavenumber k = 0.1. The frequencies ν0 = 0.085
and νf = 0.107 indicated on the ν axis are due to the intrinsic and forcing oscillations, respectively.

(νD/νf = 3/5) and A = 0.035 (νD/νf = 1/2) as windows in A with few nearly vertical
spectral lines. Rational values of the frequency ratio νD/νf form the Farey tree structure
(Allen 1983; Gonzalez & Piro 1985) since there exists a locking region with ratio
(m + m′)/(n + n′) between two regions with ratios m/n and m′/n′, where m′, n′ ∈ N

and m′ /= m, n′ /= n. Moreover, the larger the denominator n of the frequency ratio
νD/νf , the thinner the locking interval on the spectrogram. It should also be noted that
period-doubling bifurcations occur inside some of the regions (for νD/νf = 2/3 and 1/2)
that are observed as the appearance of harmonics with half the dominant frequency. At
values A > 0.042, the spectra are seen to become noisy with a nearly continuous range
of frequencies in the signal. This is due to the formation of secondary shock waves in
the reaction zone behind the leading detonation shock in which case signal D(t) contains
discontinuities that are challenging to characterize by the Fourier spectra and are the cause
of the noisy signal. The analysis of this region requires different numerical approaches and
is outside the scope of the present paper.

In figure 4, we show the bifurcation diagram displaying normalized local maxima
Dmax/DCJ in D(t) as a function of A. Periodic locked signals with νD/νf = m/n have only
a small number m of maxima, while quasiperiodic solutions give a large set of distinct
peaks. Period-doubling bifurcations can also be observed in the diagram.

4. Arnold tongues and devil’s staircase

Next, we investigate the nature of the locking regions seen in figures 3 and 4. Specifically,
we perform two-parameter studies and analyse the period number of D(t) for a range of
amplitudes from A = 0 to 0.02 and range of wavenumbers from k = 0 to 0.28. The period
number is calculated as the number of distinct peaks in the signal D(t) for t from t = 2500
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Figure 4. The bifurcation diagram in the plane of the normalized local maxima Dmax/DCJ of detonation
velocity as a function of A for the wavenumber k = 0.1.
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Figure 5. Arnold tongues in the heat map of period number as a function of amplitude A and wavenumber k.

to 3000. Figure 5 summarizes the results of the calculations. In the wedge-shaped areas in
this figure, the period number is small. The areas have a structure similar to that of Arnold
tongues for mode-locking transition to chaos in various dynamical systems. In such simple
systems as a circle map (Jensen, Bak & Bohr 1984; Schuster & Just 2005), these tongues
expand with increasing nonlinearity and eventually fill up the whole horizontal axis at
some critical level of nonlinear coupling. For the coupling values greater than this critical
one, the tongues overlap, and chaotic behaviour arises because the phase trajectory jumps
between various overlapping resonances in an erratic way.

To estimate critical amplitude, Ac, for our case, we investigate the behaviour of the
rotation number and estimate the fractal dimension of the set complementary to the
mode-locked states. Following the methods of analysis of forced oscillators (e.g. Bohr,
Bak & Jensen 1984), we take a large number N of stroboscopic samples from the time
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Figure 6. The fractal dimensions of the set complementary to the mode-locked states computed by methods
from Jensen, Bak & Bohr (1983) (red dots) and Cvitanovic et al. (1985) (blue dots). The black dashed line
shows the universal value d = 0.87.

series D(t) taken at intervals equal to the period of the upstream oscillations, Tf = 1/νf .
Then, we calculate the sample phases φj, j = 1, . . . , N, as complex arguments of points
on the phase trajectory in the plane (D − D̄, Ḋ), where Ḋ = dD/dt. The rotation number
is defined as a limit of the ratio between the total phase increase and the number of
samples: W = limN→∞(φN − φ1)/N. This is in essence another form of the frequency
ratio νD/νf discussed above in relation to figure 3. The dependence of the rotation number
on forcing frequency represents the Cantor function (often called the devil’s staircase, see
Bak 1986) that has constant rational values within synchronization regions. Analytical and
experimental studies show that this function arises in various nonlinear systems as part
of the transition to chaos via quasiperiodicity or mode locking (Bohr et al. 1984; Jensen
et al. 1984; Schuster & Just 2005). Amazingly enough, certain universal scaling laws have
been found near the critical parameters, the main one being the fractal dimension of the
set complementary to the steps of the critical staircase. At transition to chaos, resonance
regions fill up the whole frequency axis while quasiperiodic trajectories form the Cantor
set of zero Lebesgue measure with non-integer dimension d = 0.87 (Bak 1986).

In figure 6, we show how the fractal dimension varies with the increasing amplitude
A. The numerical results have been obtained with steps in k equal to 0.00075, which
allows us to estimate accurately only the locations of the widest tongues in the analysed
regions. They correspond to rotation numbers W = 1, 2/3, 1/2, 2/5 and 1/3 (see also
figure 7). Simply put, the values of dimension are measures of complexity for different
devil’s staircases. They indicate how the number of points scales in a neighbourhood of
an arbitrary point of the Cantor set, if one changes the radius of this neighbourhood. The
fractal dimension does not depend on the choice of the mode-locked regions because of
the self-similar nature of the devil’s staircase, and we use two approaches to estimate
this value. The first one follows Jensen et al. (1983); Bak (1986) and uses a range of
scales r to find the total width S(r) of all steps wider than a given scale r. The space
between the steps is found as N(r) = S − S(r), where S is the length of the k range
under consideration. When the tongues expand, the synchronization regions grow, and
the space between them N(r) eventually shrinks to a Cantor set and, if measured on scale
r, indicates a power law with specific exponent N(r)/r ∼ r−d. One can find the dimension
d from the relation log N(r) ∼ (1 − d) log r via linear regression. This approach works
well when one has a sufficiently large number of the detected tongues up to very narrow
lengths, which is not our case. The second approach to estimating the dimension is to solve
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Figure 7. The critical devil’s staircase for the rotation number W as a function of wavenumber k at
Ac = 0.0121.

equation
∑

i(si/s̄)d = 1 for d, where s̄ is the gap between two steps and si are smaller gaps
found inside the first larger gap (Cvitanovic et al. 1985; Haucke & Ecke 1987; Sagdeev,
Usikov & Zaslavsky 1988). One can choose any two locking regions corresponding to
ratios m/n and m′/n′ to calculate the large gap s̄, but the Farey tree structure between
rational m/n and m′/n′ should be used to identify the smaller gaps si. This option gives
good results for experimental data with a moderate number of detected steps, hence it is
also a preferable method for our case. Based on this analysis, we have found an estimate for
the critical amplitude as Ac = 0.0121. Here, we should emphasize that mathematically one
observes an abrupt transition of the dimension value from 0.87 to 1 with the decreasing
amplitude, but numerical estimates show a smooth cross-over as in figure 6 even for
simpler dynamical systems such as the circle map (Jensen et al. 1984, § V).

In figure 7, we construct the dependence of W on k at A = Ac. It clearly shows the
presence of plateaus for k in the locking regions. We note certain local universal features of
the mode locking (Jensen et al. 1984) such as the slope discontinuity near rational rotation
numbers in figure 7 and several period-doubling bifurcations when amplitude A increases
for fixed k in figure 4. Just above the critical amplitude Ac, where the synchronization
regions begin to intersect, chaotic solutions may arise. However, they are difficult to find
in practice since their measure is only slightly above zero near Ac (Schuster & Just 2005).
Precisely how the chaotic solutions arise at A > Ac is an interesting problem that we
believe should be investigated in the future. The nature of the Arnold tongues and the
path to chaos for the detonation wave are likely to be more complex than in the simple
case of the one-dimensional circle map. For example, the critical line may not necessarily
be horizontal and various scaling relations may change compared with those of the circle
map if the observed dynamics belong to a different universality class (Jensen et al. 1983;
Bohr et al. 1984). Our present results should be looked at as first estimates in this context.

5. Conclusions

To summarize, we have demonstrated numerically the existence of synchronization
regions (Arnold tongues) in the problem of one-dimensional gaseous detonation
propagating in a periodically non-uniform medium. Such universal properties of these
synchronization regions as the devil’s staircase and its fractal dimension have been
calculated. The synchronization phenomenon is of clear theoretical interest as it points to
a mechanism of possible regularization of the detonation dynamics by means of periodic
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mixture conditions. The regularization implies that detonation propagates in a simple
limit-cycle mode with a small period number whereas in a corresponding homogeneous
mixture it would propagate in an irregular or chaotic regime. From a practical point of
view, the synchronization effect may be relevant to the problem of control of detonations
in RDE in which periodic inhomogeneous reactive mixtures exist by design. The nature of
mode switching and various bifurcations that have been experimentally observed in RDE
remains unclear (Anand & Gutmark 2019), and synchronization may play an important
role in the mechanism of such phenomena.
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