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SOME EXAMPLES OF STOCHASTICALLY STABLE

HOMEOMORPHISMS

TAKESHI SASAKI

§ 0. Introduction

Recently A. Morimoto [1] has proved the Takens conjecture in the
tolerance stability by using the notion of pseudo-orbits and the stochastic
stability. He also characterized group automorphisms of a torus to be
stochastically stable and clarified the relations to other stabilities.

In this paper we shall give the condition for spherical or protective
linear transformations to be stochastically stable.

The author would like to express his hearty thanks, to Professor
A. Morimoto who taught him the problem and gave him advices for the
completion of this paper.

§1. Definitions and results

Let φ: X —>X be a homeomorphism of a compact metric space (X, d).
A sequence {#<} of points xt e X, ί e Z, is called a ^-pseudo orbit of φ if
d(φ(Xi), xi+1) <d holds for every ieZ. We denote by Orhδ(φ) the set of
all 5-pseudo orbits of φ, and by Orbδ (φ) the set of all closed subsets of
X which are the closure of d-pseudo orbit of φ. Oφ(x) = the closure of
the orbit of φ through x.

Let C(X) be the set of all non-empty closed sets in X. C(X) will
be a compact metric space by the distance function d defined by

d(A, B) = Max (Max d(A, 6), Max d(a, B)\ ,

for A,BeC(X), where d(A, b) = infα6^ d(a, b). An element A of C(X)
is called an extended orbit of φ iff for any ε > 0 there is Ae e Orbβ (φ)
with d(A, As) < ε. We denote by Eφ the set of all extended orbits of φ,
and Oφ = the closure of {Oφ(x)\xeX) in C(X).
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98 TAKESHI SASAKI

DEFINITION 1. A homeomorphism φ is called OE if OΦ = Eφ.
Given ε > 0, a ^-pseudo orbit {ajj is called to be ε-traced by a point

xeX iff dAφ\x),xd ̂  e for every ίeZ.

DEFINITION 2. φ is called stochastically stable (abbriv. PO) iff for
any ε > 0 there exists δ > 0 such that any ^-pseudo orbit of φ can be
ε-traced by some point x e X.

Relating to these notions we have the following theorems.

THEOREM I ([1]). // φ is PO, then it is OE.

THEOREM II ([1]). // the space X is a manifold and φ is a Cι-dif-
feomorphism satisfying Axiom A and the strong transversalίty condition,
then it is PO. Especially if φ is a Morse-Smale diffeomorphism, then
it is PO.

Therefore by the celebrating theorem of Anosov

COROLLARY. If φ: X -^ X is an Anosov diff eomorphism, it is PO.

Moreover we have

THEOREM III ([1]). Any isometry of a compact Riemannian manifold
of positive dimension is not PO.

Now we shall state the results.
Let φ be a general linear transformation of Jfn+1, that is, a matrix

φeGL(n + 1,R). Then it induces on the sphere a diff eomorphism φ
which is defined by

φ(x) = Φ&L for x € Sn ,

where | | is the euclidean norm. We call the transformation of this
type a spherical linear transformation.

THEOREM 1. A spherical linear transformation φ is PO iff the ab-
solute value of the eigenvalues of the associated matrix φ are all mutually
distinct.

Clearly φ induces the real protective linear transformation φf of
Pn(R) given by

Φ'(lx\) =
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for [x] e Pn(R), [x] being the line through x and the origin of Rn+1.
Denoting by π:Sn-*Pn(R) the natural projection, we have φ'oπ = πoφ.
Therefore combining a result in [1] and Theorem 1, we obtain

COROLLARY 1. A real projective linear transformation φr is PO iff
the absolute value of the eigenvalues of the associated matrix φ are mu-
tually distinct.

Similarly let ψ be an element of GL(n + 1, C). By ψ we denote
the associated projective linear transformation on Pn(C). The we shall
prove

THEOREM 2. ψ is PO iff the absolute value of eigenvalues of ψ are
all mutually distinct.

ψ also induces a transformation ψ on S2n+1 c Cn+ι as in the real
case. But for ψ we get

COROLLARY 3. ψ is not PO.

§2. Spherical linear transformations

Let φ (resp. ψ) be a real non-singular matrix of size n + 1, and
φ (resp. ψ) the induced spherical transformation of Sn. Sn is endowed
with the canonical distance function dn. We can easily verify that

φoψ = φoψ and hence, by the following Lemma 1, we see that if φ and
ψ are conjugate then φ is PO if and only if ψ is.

LEMMA 1 ([1]). Let h19 h2 be homeomorphisms of a compact metric
space, and set hz = h,2°hιoh,21. Then hγ is PO iff h3 is.

LEMMA 2. Let φ be reducible of type l^1 ), φx e GL(m + 1,/?),

m < n. If φ is PO, then φx is PO.

Proof. For x = (x0, "',xn)eRn+ι set x' = (x0, , x m ) , xrf = (xm+ί,
• , x n ) . Define Sm = {xeSn\x" = 0} and P = {χeSn\x' = 0}. We can

define the projection π : Sn — P —• Sm by π(x) = —a?', TΓ is distance

decreasing in the following sense, i.e. dn(x, y) > dm(π(x), y) holds for
xe Sn,y e Sm. By the definition πφ(x) = φλπ(x) for x e Sn — P. To prove
φi is PO, fix ε > 0. Here we may assume ε < d(Sm,P). Since φ is PO,
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there exists δ > 0 for this ε such that every ^-pseudo orbit of φ is ε-
traced. Let {Xi}ieZ> ^ e S w , be a ^-pseudo orbit of φx. Since {xt} is also
a ^-pseudo orbit of φ, this can be ε-traced by some point x e Sn: dn{φι{x)9

xt) ^ ε, i G Z. Therefore by the distance decreasing property of π as
mentioned above we have ε ̂  dm{π^{x)9 xt) = c£m($7r(#)> α?ί), which says
that {&<} is ε-traced by π(x). Hence φ1 is PO.

LEMMA 3. // φ is a matrix of the form
1
λ)

n + 1^2, φ is not PO.

λ 1

of size

Proof. By Lemma 1 and the fact that φ and cφ (c Φ 0 e R) induce
the same spherical transformation we can assume λ = 1. Then by a
simple calculation

Φk(x) - - ± -
\Vt\

• τ(k)x

Hence (1) if xn ^ 0 (resp. ^ 0) then (̂ *(a?))n ^ 0 (resp. ^ 0) and (2) φkx
-> (1,0, . , 0) (resp. (-1,0, . , 0)) if k -> + oo and xn > 0 or k -» -co
and α;n < 0 (resp. k —> +oo and α;n < 0 or fc -> — oo and #re > 0). To
prove φ is not PO, it is enough to find ε > 0 and a <5-pseudo orbit for
any δ > 0 which cannot be ε-traced. But this is achieved by the prop-
erties (1) and (2). In fact, by (2) we can construct, for any δ > 0, a
^-pseudo orbit combining the upper hemisphere and the lower one, but
(1) means every orbit stays always in the same hemisphere.

LEMMA 4. Let φJ • '. * , where Rβ = ( g j J -JJE J),

/2 = ̂ J JV Γfeen ^ is not PO.

Proof. In case φ = β^, ^ is not PO because $ is an isometry (cf.
Theorem III). In case the size of φ is not smaller than 4, for the sake

of simplicity, we shall prove this Lemma for φ = ί θ -£ J. In this
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case, introducing new variables u = x0 + V —l#i and v = x2 + V —1#3,

we have

(M, v) = e<n (wn, vn)

— u + ne~ί9v , vn = v .

Therefore
(1) Every orbit approaches to Sι = {(w, v) 6 S31 v = 0} in the limit

of both directions, and
(2) φ\Sι is a rotation. Hence there exists a ^-pseudo orbit of φ\Sι

for any δ > 0 which is dense in S1. By (1) and (2) we can easily con-
struct a dense J-pseudo orbit of φ. Hence E$ s S\ On the other hand,
for some small neighbourhood U of (u, v) = (0,1), there exists a posi-
tive constant c depending only on U such that d(φ(x), x) ̂  c and φk(x)
& U, k Φ 0, for # e [7. Therefore 0^ $ S3. Hence φ is not O£\ By

Theorem I φ is not PO.

Proof of Theorem 1. Assume φ is PO. By the remark preceding
Lemma 1 the transformation associated with the Jordan canonical form
of φ is also PO. By Lemma 2 each block gives a PO transformation.
Then by Lemma 3 and 4 each block must be of size 1. Therefore, by
making use of Lemma 2 again, we see that all eigenvalues of φ are
real and mutually distinct. Moreover φ does not contain a component

of type β _°X because β __°λ is not PO by Theorem III. Hence

all eigenvalues of φ are mutually distinct in absolute value.

h • \
Conversely let φ = and we may assume |^ | > | ^ | for

\ ' J
0 < ί < j < n. Then the periodic point set of φ is [pf \ 0 < i < ri\, where

i

pf = (oΓ^To, 1,0, . , 0). If we identify Tβn with the set {yeRn+1\

xQy« + + XnVn = 0}, then φ*y = (kyQ, . . . , A ± y < M , 0, ̂ ψ-yί+1, , ^yn)

for ye Tp±(Sn). Therefore φ is hyperbolic at pf, 0 < i < n. Moreover

we see that the stable manifold Ws(pf) at pt is the set {x e Sn \ x0 = •

= ^_ x = 0, xt > 0} and the unstable manifold Wu(pf) at pf is the set

{a; e Sn I ^ > 0, xj+ι = = #„ = 0}, both in the case that λo> > /lTO

> 0. Hence Ws(pf) and TFw(p|) have only transversal intersection.
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Since Ws(x) = 0 and Wu(x) = 0 for x ψ pf, φ satisfies the strong trans-
versality condition. When the sign of λt is in the other case we can
see the same property. This means, namely, that φ is a Morse-Smale
diffeomorphisms, especially PO by Theorem II.

COROLLARY 2. Let φ be a spherical linear transformation. Then the
following conditions for φ are mutvjally equivalent:

(1) φ is stochastically stable (PO),
(2) φ is a Morse-Smale diffeomorphism,
(3) φ satisfies Axiom A and the strong transversality condition,
(4) φ is topologically stable.

Proof. (1) —> (2) is shown in the proof of Theorem 1.
(2) -> (3) -* (1) is by Theorem II,
(3) -* (4) is by Nitecki [2].
(4) —> (1) is proved by Morimoto [1].

Let ψ be an element in GL(n + 1, C). -ψ " defines a transformation

ψ: Sn+1 -> S2n+ι by $(x) = J ^ . If we consider GL(n + 1, C) as a sub-
\ψ(x)\

group of GL(2n + 2,R) by the identification ψ<+(, ~~y) = ψ'f where
\YΓ2 Ψl/

ψ1 = Re ψ and ψ2 = Im ψ , then ψ is nothing but the spherical linear
transformation ψ' associated with ψ'.

COROLLARY 3. The transformation ψ cannot be PO.

Proof. Let λ be a real eigenvalue of ψ' and I ™\ be a corresponding

eigenvector: ψ ' M = ^ί^V Then ψ(w + ̂ Γ^lv) = (̂i6 + <f=\v). Hence

Λ is also an eigenvalue of ψ. Therefore, if ψ is PO, i.e. if ψ7 has 2τι
distinct real eigenvalues, then ψ has also 2^ distinct eigenvalues. But
this is a contradiction. Hence ψ cannot be PO.

§3. Projective linear transformations

We shall prove Theorem 2 along the same line as in the proof of
Theorem 1.

Let ψ be a matrix in GL(n + 1, C) and ψ the associated element in
PGL(n + 1,C). ψ is a projective linear transformation of Pn(C). We
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denote by z == [z0, , zn] a point of Pn(C) in the homogeneous coordi-

nate.

LEMMA 2'. Assume ψ is reducible: ψ = ( y j and t/ie sia e 0/ ^

is m + 1. Lei Pm(C) = {2; ePn(C)\zm+1 = = zn = 0}. ^ induces a

φrojective linear transformation ψx on Pm(C). Then ψλ is PO if ψ is.

Proof. Define the projection π : Pn{C) - P -> Pm(C) by τr([z]) = [s0,

• , Zm\> where P: = {2 e PW(C) | s0 = = sTO = 0} is the pole of π. In

this situation the proof is the same as that of Lemma 2.

LEMMA 3'. Let ψ = e GL(?ι + 1, C), n > 1. Tfeew ψ is

not PO.

Proof. By the same reason as in the proof of Lemma 3 we can

assume λ = 1. Let Pn-\C) = {^ePn(C)|2n = 0}. Since we have

every orbit of ψ approaches to Pn~l(C) as |fc| -> 00, and f leaves Pn~ι(cy

invariant. First we show E$ s Pn(C), by induction on n. If n = 1,

the orbit of $ approaches to one point (point at infinity). By the same

argument as in the proof of Lemma 3 we have Eφ s P\C). For a gen-

eral n, using the induction hypothesis on Pn~\C), we can construct a

dense ^-pseudo orbit for any δ > 0 by the above remark. Hence E$

3 Pn(C).

On the other hand, by the similar method as in the last part of

the proof of Lemma 4, we see that ψ goes away uniformly in the

neighbourhood of [0, « ,0,1]. Hence, by the same reason as in the

proof of Lemma 4, 0$ 3 Pn(C). Therefore ψ is not OE, hence not PO.

Proof of Theorem 2. Assume ψ is PO. By Lemmas 1,2' and 3A

it follows that the absolute value of eigenvalues of ψ are mutually distinct.

Converse implication does hold by the same sort of reasoning as that for

Theorem 1.

Similarly as Corollary 2, we have
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COROLLARY 4. Let ψ e PGL(n + 1, C). The following conditions for
ψ are equivalent:

(1) f is stochastically stable (PO),
(2) ψ is a Morse-Smale diffeomorphism,
(3) ψ satisfies Axiom A and the strong transversality condition,
(4) ψ is topologίcally stable.

§4. Remark on group automorphisms of the n-torus Tn

In [1] the relations among the stochastic stability and other sta-
bilities are clarified for group automorphisms of Tn. Here we shall
add the relation of the stochastic stability to ergodicity.

PROPOSITION. Let AeSL(n,Z) be a group automorphism of Tn.
If A is OE, then it is ergodic with respect to the canonical measure on

Proof. Assume A is not ergodic. It is classical that, for some
integer p Φ 0, Av has 1 as an eigenvalue. Hence there exists a non-
zero rational vector u such that CAkp — ΐ)u = 0, keZ. Let H be the
hyperplane in Rn orthogonal to u: H = {v \ (v, uy = 0}. Since u is ra-
tional, H projects into the closed submanifold in Tn. But, for every
s e Z, 'A'C'A** - ϊ)u = 0, it follows that Akp+Sx eAsx + H for every
x e Tn. Hence ANx e U?Γo (Asx + H) = : U(x), for any NeZ. U(x) is
obviously closed and invariant under A. Therefore OA $ Tn. However
EA B Un because the periodic points of A is dense in Tn. Hence A is
not OE.

COROLLARY 5. In case n = 1, 2 or 3, the following conditions for
the group automorphism A of the torus Tn are equivalent:

(1) A is stochastically stable (PO),
(2) A is OE,
(3) A is ergodic.

Proof. (1) -> (2) is Theorem I. (2) -> (3) is Proposition. (3) -> (1)
follows from the fact that if some eigenvalue of A is of absolute value
one, then A has a root of unity as an eigenvalue in case n = 1, 2 or
3.
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