SETS OF DIFFERENTIALS AND SMOOTHNESS
OF CONVEX FUNCTIONS

Wee-Kee Tang

Approximation by smooth convex functions and questions on the Smooth Variational Principle for a given convex function \(f \) on a Banach space are studied in connection with majorising \(f \) by \(C^1 \)-smooth functions.

It is known that a weakly compactly generated (WCG) Banach space admits an equivalent Fréchet differentiable norm if it admits a Fréchet differentiable bump function (see, for example [5]). However, there are nonseparable spaces that admit Fréchet differentiable bump functions but admit no equivalent Fréchet differentiable norm (see, for example [3, Chapter VII]). If the space \(X \) admits an equivalent norm with modulus of smoothness of power type 2, then every convex continuous function on \(X \) has points of Lipschitz smoothness (see, for example [3, Chapter IV]). The purpose of this note is to localise these results. We prove that any convex Lipschitz function \(f \) that is defined on a WCG Banach space \(X \) can be uniformly approximated by Fréchet differentiable convex functions if \(f \) is majorised on \(X \) by a Fréchet smooth convex function. If, moreover, span\(\{\partial f(x) : x \in X\} \) is a subspace of \(X^* \) that admits a norm with modulus of rotundity of power type 2, then there is a convex function \(\psi \) with \(\psi' \) Lipschitz on \(X \) such that \(\psi \geq f \) on \(X \) and \(\psi(x) = f(x) \) for some \(x \in X \). Thus in particular, \(f \) has points of Lipschitz smoothness. A separable version of these problems was studied in [10]. We use standard notation in this note (see for example [3]), and refer to [6, 7, 9] and [3] for some unexplained notions and results used in this note.

Theorem 1. Let \(f \) be a convex Lipschitz function defined on a WCG Banach space \(X \). Then the following are equivalent.

1. The function \(f \) can be uniformly approximated on \(X \) by a Fréchet differentiable convex function.
2. There exists a Fréchet differentiable convex function \(\phi \) defined on \(X \) such that \(\phi \geq f \) on \(X \).

Received 15th October, 1994

The author was supported by NSERC (Canada). The author is indebted to Professor V. Zizler for his guidance and suggestions, and to the referee for his/her helpful comments.

Copyright Clearance Centre, Inc. Serial-fee code: 0004-9729/95 $A2.00+0.00.
PROOF: Clearly (1) \implies (2). The proof (2) \implies (1) is divided into a few steps.

PROPOSITION 2. Let X be a WCG Banach space, ϕ be a Fréchet differentiable convex function defined on X and let $Y := \overline{\text{span}}\{\phi'(x) : x \in X\}$. Then there exists a projectional resolution of the identity (PRI) $\{P_\alpha : \omega \leq \alpha \leq \mu\}$ on X such that

1. $P_\mu = I$, $\|P_\alpha\| = 1$ for all α.
2. $P_\alpha^* P_\beta = P_\beta^* P_\alpha = P_{\min(\alpha, \beta)}$.
3. $P_\alpha Y \subset Y$ for all α.
4. $\text{dens}(P_\alpha^* Y) \leq \alpha$ for all $\alpha \leq \mu$.
5. $P_\alpha^* Y = \overline{\text{span}} \bigcup_{\beta < \alpha} P_{\beta + 1} Y$ for all $\alpha \leq \mu$.

PROOF: Using standard techniques for constructing projectional resolutions of the identity (see for example [3, Chapter VI]), we only need to show $P_\alpha^* Y \subset Y$ and $P_\alpha^* Y = \overline{\text{span}} \bigcup_{\beta < \alpha} P_{\beta + 1} Y$ for all α. The proof of this is contained in Lemmas 3 to 5.

LEMMA 3. In notation as above, we can construct a PRI $\{P_\alpha : \omega \leq \alpha \leq \mu\}$ so that $P_\alpha^* \phi'(y) = \phi'(y)$ for all $y \in P_\alpha X$.

PROOF: See Lemma 5 in [5].

LEMMA 4. With notation as above, $P_\alpha^* Y = \overline{\text{span}} \{\phi'(x) : x \in P_\alpha X\}$.

PROOF: To see $P_\alpha^* Y \supset \overline{\text{span}} \{\phi'(x) : x \in P_\alpha X\}$, we let $x \in P_\alpha X$, and show that $\phi'(x) \in P_\alpha^* Y$. Since ϕ is C^1-smooth, given $\varepsilon > 0$, there exists an $x_\beta \in P_{\beta + 1} X$ for some $\beta < \alpha$, such that $\|\phi'(x) - \phi'(x_\beta)\| < \varepsilon$. By Lemma 3, $\phi'(x_\beta) = P_{\beta + 1} \phi'(x_\beta)$. Therefore $\phi'(x_\beta) \in P_{\beta + 1}^* Y \subset P_\alpha^* Y$. As $P_\alpha^* Y$ is closed, $\phi'(x) \in P_\alpha^* Y$. For the converse inclusion, we follow the idea in [4]. Let $\phi'(x) \in Y$. Clearly $g(\cdot) = \phi(\cdot) - \phi'(x)(\cdot)$ is a continuous bounded below function on X. Hence its restriction $g|_{P_\alpha X}$ is also continuous and bounded below. By Ekeland's variational principle, given $\varepsilon > 0$, there exists $x_\alpha \in P_\alpha X$ such that for every $w \in B_{P_\alpha X}$, $t > 0$, we have $g(x_\alpha + tw) \geq g(x_\alpha) - ct$, thus, $\phi'(x)(w) \leq (\phi(x_\alpha + tw) - \phi(x_\alpha))/t - \varepsilon$. Hence, by taking limits, we have $\phi'(x)(w) - \phi'(x_\alpha)(w) \leq \varepsilon$. Therefore $\sup\{\|\phi'(x)(v) - \phi'(x_\alpha)(v)\| : v \in B_{P_\alpha X}\} \leq \varepsilon$. Given any $h \in B_X$, we have $(h, P_\alpha^* \phi'(x) - \phi'(x_\alpha)) = (h, P_{\beta + 1}^* \phi'(x) - P_\alpha^* \phi'(x_\alpha)) = (P_\alpha h, \phi'(x) - \phi'(x_\alpha)) \leq \varepsilon$. Therefore $P_\alpha^* \phi'(x) - \phi'(x_\alpha) \leq \varepsilon$. Finally, since Y is the closed linear span of the derivatives of ϕ and P_α is bounded, the assertion follows.

LEMMA 5. $P_\alpha^* Y = \overline{\text{span}} \bigcup_{\beta < \alpha} P_{\beta + 1} Y$ for every $\alpha \leq \mu$.

PROOF: Clearly $P_\alpha^* Y \supset \overline{\text{span}} \bigcup_{\beta < \alpha} P_{\beta + 1} Y$. The converse inclusion follows from Lemma 4 and the continuity of ϕ'.

PROOF OF THEOREM 1: Since $f \leq \phi$, using Ekeland's variational principle as in Lemma 4 we show that $\text{dom} f^* \subset Y$. Using Lemma 5, and the classical Troyanski's
construction (see for example [3, Chapter VII]) we obtain a dual norm \(\| \cdot \|^{*} \) in \(X^{*} \) such that its restriction on \(Y \) is locally uniformly rotund (LUR). Define a sequence of functions \(\{ h_{n} \} \) on \(X^{*} \) by \(h_{n}(x^{*}) = f^{*}(x^{*}) + \| x^{*} \|^{2}/(4n^{4}) \). Clearly, \(\text{dom } h_{n} = \text{dom } f^{*} \). Define \(g_{n} := f \Box n^{4} \| \cdot \|^{2} \), where \(\Box \) denotes the infimal convolution. Note that \(g_{n} \) is convex and continuous on \(X \) and \(g_{n}^{*} = h_{n} \) for all \(n \). Given \(n \in \mathbb{N} \), \(z \in X \) and \(y \in \partial g_{n}(z) \), note that \(h_{n} \) is rotund at \(y \) with respect to \(z \) in the sense of [1], that is, for every \(\varepsilon > 0 \), there exist \(\delta > 0 \) such that \(\{ v : h_{n}(y + v) - h_{n}(y) - (x, v) \leq \delta \} \subset \varepsilon B_{X} \) (see, [10]). By [1, Proposition 4], \(g_{n} \) is Fréchet differentiable at \(z \) with the derivative \(y \). One can also show that \(\lim g_{n} = f \) uniformly on \(X \) (see for example [8, Lemma 2.4]).

Since the function \(f \) can be quite “flat” in Theorem 1, there is a difficulty in applying the techniques of Smooth Variational Principles (see, [3, Chapter I]) in this situation. However, under more restrictive assumptions we can use the Stegall-Fabian variational principle and obtain our variational result by duality. We shall say that \(z \in X \) is a point of Lipschitz smoothness of a convex function \(f \) if \(f(z + h) + f(z - h) - 2f(z) = O(h^{2}) \).

Lemma 6. Let \(f \) be a convex continuous function on a Banach Space \(X \) and \(g \) be its dual function. Suppose there exists a constant \(C \) such that for any \(z \in X \), \(y \in \partial f(z) \), and for any \(\varepsilon > 0 \), we have

\[
\{ v : g(y + v) - g(y) - (z, v) \leq C\varepsilon^{2} \} \subset \varepsilon B_{X}^{*}.
\]

Then \(f \) is Fréchet differentiable and \(f' \) is Lipschitz on \(X \).

Proof: By taking polars, we have \(\varepsilon^{-1} B_{X} \subset \{ v : g(y + v) - g(y) - (z, v) \leq C\varepsilon^{2} \}^{\circ} \). According to Proposition 3 of [1], \(\{ u : f(z + u) - f(z) - (y, u) \leq C\varepsilon^{2} \}^{\circ} \subset C^{-1} \varepsilon^{-2} \{ u : f(z + u) - f(z) - (y, u) \leq C\varepsilon^{2} \} \), that is, for any \(u \in \varepsilon CB_{X} \), \(f(z + u) + f(z - u) - 2f(z) \leq 2/C(\varepsilon C)^{2} \). Thus \(f' \) exists at \(z \) and we have that \(f' \) is Lipschitz on \(X \) (see, for example [3, Lemma V.3.5]).

Theorem 7. Let \(f \) be a Lipschitz convex function on a Banach space \(X \) and \(Y = \overline{\text{span} \| \cdot \|^{*}} \{ \partial f(z) : z \in X \} \). Suppose that \(Y \) admits an equivalent norm with modulus of convexity of power type 2. Then \(f \) can be majorised by a convex function \(\psi \) that has a Lipschitz derivative and \(\psi(z) = f(z) \) for some \(z \in X \). In particular, \(f \) has points of Lipschitz smoothness.

Proof: Let \(\| \cdot \| \) be an equivalent norm on \(X^{*} \) such that its restriction on \(Y \) has modulus of convexity of power type 2 (see, for example [3, Lemma II.8.1]). We note that \(Y \) is \(w^{*} \)-closed. Indeed, since \(Y \) is reflexive, \(B_{Y} \) is compact in the weak topology...
of X^* and thus B_Y is w^*-compact in X^*. By the Banach-Dieudonné theorem, Y is w^*-closed. Assume that $f(0) = 0$, and thus we have $f^* \geq 0$ on X^*. Let

$$h(x^*) = \begin{cases} \frac{1}{2} \| x^* \|^2 - \frac{1}{2} m^2 & \text{if } x^* \in Y \\ \infty & \text{otherwise,} \end{cases}$$

where $m = \text{Lip}(f)$. Since Y is w^*-closed, h is w^*-lower semicontinuous and $h = (h^*|^X)$. We show that h satisfies the condition on the function g given in Lemma 6. Indeed, by the modulus of rotundity of $\| \cdot \|$, there exists $L > 0$ such that for any $y_1, y_2 \in Y$, we have

$$\frac{1}{2} \left(\| y_1 \|^2 + \| y_2 \|^2 \right) - \| \frac{y_1 + y_2}{2} \|^2 \geq L \| y_1 - y_2 \|^2 \quad (\star)$$

(see, for example [2, Lemma 5.1.4]). Assume that for every $k \in \mathbb{N}$ there exist $\epsilon_k > 0$, $x_k \in X$, $y_k \in \partial h^*_X(x_k)$ and $v_k \in X^*$, $\| v_k \| > \epsilon_k$, such that $h(y_k + v_k) - h(y_k) - v_k(x_k) \leq \epsilon_k^2 / k$. Then $\| y_k + v_k \|^2 / 2 - \| y_k \|^2 / 2 - (x_k, v_k) \leq \epsilon_k^2 / k$ for all k. From the definition of a subdifferential, we have $- (x_k, v_k) \geq \| y_k \|^2 - \| y_k + v_k / 2 \|^2$. Therefore,

$$\left(\| y_k \|^2 + \| y_k + v_k \|^2 \right) / 2 - \| y_k + v_k / 2 \|^2 \leq \epsilon_k^2 / k \leq \| v_k \|^2 / k,$n

which contradicts (\star). Now, for each $x^* \in \text{dom } f^* \subset mbX^*$, we have $h(x^*) \leq 0 \leq f(x^*)$. Therefore $f^* - h$ is a lower semicontinuous and convex function on $\text{dom } f^*$ that is bounded below. Note that $f^* - h \geq \| \cdot \| - m$. By the Stegall-Fabian result (see, for example [9, Corollary 5.22]), there exists $\widehat{x} \in Y^*$ such that $f^* - h - \widehat{x}$ attains its minimum in $\text{dom } f^*$, that is, there is a $x^* \in \text{dom } f^*$ such that $f^*(x^*) - h(x^*) - \widehat{x}(x^*) = \alpha \leq f^*(y^*) - h(y^*) - \widehat{x}(y^*)$ for all $y^* \in \text{dom } f^*$. Therefore we have $h(\cdot) + \widehat{x}(\cdot) + \alpha \leq f^*(\cdot)$ on $\text{dom } f^*$ and the equality holds at x^*. Since Y is reflexive, there exists $x \in X$ such that $y^*(x) = \widehat{x}(y^*)$ for each $y^* \in Y$. Let $k : X^* \rightarrow \mathbb{R}$ be a function defined by $k(\cdot) = h(\cdot) + x(\cdot) + \alpha$. Then k is a convex function such that $k \leq f^*$ and $k(x^*) = f^*(x^*)$. Put $l = k|_Y$. The function l is continuous and convex on Y. Let $\widehat{y} \in \partial l(x^*) \subset Y^*$. As Y is reflexive, there exists $y \in X$ such that $\widehat{y}(y^*) = y^*(y)$ for each $y^* \in Y$. We claim that $y \in \partial k(x^*)$. Indeed, let $z^* \in X^*$. If $z^* \in Y$, $y(z^* - z^*) = \widehat{y}(z^* - z^*) \leq k(z^*) - k(x^*)$. If $z^* \notin Y$, then $y(z^* - z^*) < k(z^*) - k(x^*) = \infty$ Hence $y \in \partial k(x^*)$. Since $k(x^*) = f^*(x^*)$, we have $y \in \partial f^*(z^*)$. Thus $k^*(y) + k(x^*) = (z^*, y) = f^*(z^*) + f(y)$. Therefore $f(y) = k^*(y)$. Since $f^* \geq k$, we have $k^* \geq f$. Put $\psi = k^*|^X$. The function ψ has a Lipschitz derivative and is our required function. Indeed, $k^* = (h^* + x^* + \alpha)^* = (h + x)^* - \alpha = h^*(\cdot) \Delta \delta_x(\cdot) - \alpha = h^*(\cdot - x) - \alpha$ (where δ_x is the indicator function of the singleton $\{x\}$) and h^* has the desired differentiability by Lemma 6. Finally, since $f(y) = k^*(y) = \psi(y)$ and $f \leq \psi$ on X, we have $f(y + v) + f(y - v) - 2f(y) \leq \psi(y + v) + \psi(y - v) - 2\psi(y) \leq C \| v \|^2$, for some constant C. Therefore the function f is Fréchet differentiable at y and f' is Lipschitz at y. \[\square\]
Corollary 8. Let \(f \) be a Lipschitz convex function on a Banach space \(X \) and \(Y = \overline{\text{span}} \{ \partial f(x) : x \in X \} \). If \(Y \) is reflexive, then \(f \) can be majorised on \(X \) by a convex function \(\phi \) that is Fréchet differentiable and \(\phi(x) = f(x) \) for some \(x \in X \).

Under the assumptions in Theorem 7, the techniques in Theorem 1 may be applied to obtain approximation by functions with Lipschitz derivatives.

Theorem 9. Let \(X, Y \) and \(f \) be as in Theorem 7. Then \(f \) can be uniformly approximated on \(X \) by convex functions that have a Lipschitz derivative.

Proof: As in the proof of Theorem 7, let \(\| \cdot \| \) be an equivalent norm of \(X^* \) such that its restriction on \(Y \) is LUR. Let \(h = \| \cdot \|^2/2 \) and \(g := h + f^* \) on \(X^* \). The function \(g \) is \(\psi^* \)-lower semicontinuous on \(X^* \). Let \(k \) be a convex function on \(X \) such that \(k^* = g \). We claim that there exists a constant \(C \) such that for any \(\varepsilon > 0 \), \(x \in X \) and \(y \in \partial k(x) \), we have \(\{ v : g(v + y) - g(y) - (x,v) \leq C\varepsilon \} \subseteq \epsilon B_{X^*} \). Since \(g(u) = \infty \) whenever \(u \notin Y \), we only need to consider points in \(Y \). Let \(v \in Y \), then \((g(y) + g(y + v))/2 - g((2y + v)/2) \geq (h(y) + h(y + v))/2 - h((2y + v)/2) \) for any \(y \in Y \). Using \((*)\), we have \((g(y) + g(y + v))/2 - g((2y + v)/2) \geq L\| v \|^2 \) for any \(v \in X \) and for any \(y \in Y \). Following the same idea as in the proof of Theorem 7, we can complete the proof of the claim. By Lemma 6, \(k \) is Fréchet differentiable and \(k' \) is Lipschitz. For each \(n \in \mathbb{N} \) define \(g_n := f^* + h/(2n^4) \) and \(k_n \) such that \(k_n^* = g \). By the above argument, the function \(k_n \) is Fréchet differentiable and \(k_n' \) is Lipschitz for each \(n \in \mathbb{N} \). By [8, Lemma 2.1], \(\lim g_n = f \) uniformly on \(X \).

References

https://doi.org/10.1017/S0004972700014477 Published online by Cambridge University Press

Department of Mathematics
University of Alberta
Edmonton
Canada T6G 2G1