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SETS OF DIFFERENTIALS AND SMOOTHNESS
OF CONVEX FUNCTIONS

WEE-KEE TANG

Approximation by smooth convex functions and questions on the Smooth Varia-
tional Principle for a given convex function f on a Banach space are studied in
connection with majorising f by C!-smooth functions.

It is known that a weakly compactly generated (WCG) Banach space admits an
equivalent Fréchet differentiable norm if it admits a Fréchet differentiable bump function
(see, for example [5]). However, there are nonseparable spaces that admit Fréchet
differentiable bump functions but admit no equivalent Fréchet differentiable norm (see,
for example {3, Chapter VII]). If the space X admits an equivalent norm with modulus
of smoothness of power type 2, then every convex continuous function on X has points
of Lipschitz smoothness (see, for example [3, Chapter IV]). The purpose of this note is to
localise these results. We prove that any convex Lipschitz function f that is defined on a
WCG Banach space X can be uniformly approximated by Fréchet differentiable convex
functions if f is majorised on X by a Fréchet smooth convex function. If, moreover,
span!l{8f(z) : = € X} is a subspace of X* that admits a norm with modulus of
rotundity of power type 2, then there is a convex function 9 with ' Lipschitz on X
such that ¥ > f on Xand +(z) = f(z) for some z € X. Thus in particular, f has
points of Lipschitz smoothness. A separable version of these problems was studied in
[10]. We use standard notation in this note (see for example [3]), and refer to [6, 7, 9]
and [3] for some unexplained notions and results used in this note.

THEOREM 1. Let f be a convex Lipschitz function defined on a WCG
Banach space X. Then the following are equivalent.

(1) The function f can be uniformly approximated on X by a Fréchet dif-
ferentiable convex function.

(2) There exists a Fréchet differentiable convex function ¢ defined on X such
that ¢ > f on X.
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Proor: Clearly (1) = (2). The proof (2) = (1) is divided into a few steps.

PROPOSITION 2. Let X bea WCG Banach space, ¢ be a Fréchet differentiable
convex function defined on X and let Y := spanll{¢'(z) : z € X}. Then there exists
a projectional resolution of the identity (PRI) {Py :w < a < p} on X such that

() Pr=1I,||P:| =1 foralla.

(ii) P;Pg = Pp’fP; = P;:in(a,ﬁ)‘
(i) PyY CY forall a.
(iv) dens(PlY)< a forall ag p.
(v) PrY = spanl Ugs<a Po11Y forall a < p.

PRoOF: Using standard techniques for constructing projectional resolutions of the
identity (see for example [3, Chapter VI]), we only need to show P:Y C Y and PJY =
spanl Y Pg,,Y for all a. The proof of this is contained in Lemmas 3 to 5.

B<a

LEMMA 3. In notation as above, we can construct a PRI {P, : w £ a € u} so
that P3¢'(y) = ¢'(y) for all y € P, X.

PROOF: See Lemma 5 in [5]. O
LEMMA 4. With notation as above, P:Y = spanl{¢/(z) : z € PaX}.

PROOF: To see P:Y O spanll{¢'(z) : = € PoX}, we let z € P.X, and show
that ¢'(z) € P;Y. Since ¢ is C'-smooth, given &€ > 0, there exists an zg € Pg41X
for some B < e, such that ||¢'(z) — ¢'(zg)l| < e. By Lemma 3, ¢'(zg) = P5,,4'(z5)-
Therefore ¢'(zg) € P5,,Y C P;Y. As P.Y is closed, ¢'(z) € P;Y. For the converse
inclusion, we follow the idea in [4]. Let ¢'(z) € Y. Clearly g(-) = ¢(-) — ¢'(z)()
is a continuous bounded below function on X. Hence its restriction g;p,x is also
continuous and bounded below. By Ekeland’s variational principle, given € > 0, there
exists o € P.X such that for every w € Bp,x, t > 0, we have g(z, +tw) 2>
g(za) — €t, thus, ¢'(z)(w) < (¢(za + tw) — ¢(za))/t — €. Hence, by taking limits, we
have ¢'(z)(w) ~ ¢'(za)(w) < €. Therefore sup{|¢'(z)(v) — ¢'(za)(v)| : v € Bp, x} <
€. Given any h € Bx, we have (h,Pi¢'(z) — ¢'(za)) = (h,Pi¢'(z) — Pid'(za)) =
(Pxh,¢'(z) — ¢'(za)) < €. Therefore ||Pi¢'(z) — ¢'(za)l| € €. Finally, since Y is the
closed linear span of the derivatives of ¢ and P, is bounded, the assertion follows. 0

LEMMA 5. PY =3panll pL<J Pg,\Y forevery a<p.
[+
PROOF: Clearly P:Y D spanil ﬁL<J P5.,Y. The converse inclusion follows from
a

Lemma 4 and the continuity of ¢'. 0

PROOF OF THEOREM 1: Since f < ¢, using Ekeland’s variational principle as in
Lemma 4 we show that dom f* C Y. Using Lemma 5, and the classical Troyanski’s
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construction (see for example [3, Chapter VII]) we obtain a dual norm ||-|* in X*
such that its restriction on Y is locally uniformly rotund (LUR). Define a sequence of
functions {hn} on X* by hn(z*) = f*(=z*)+|=*||*? /(4n*). Clearly, dom h,, = dom f*.
Define g, := fOn*|-|*, where O denotes the infimal convolution. Note that g, is
convex and continuous on X and g: = h, forall n. Given n € IN, z € X and
y € 8gn(z), note that h, is rotund at y with respect to z in the sense of [1], that is,
for every € > 0, there exist § > 0 such that {v: ha(y + v)—hn(y)—(z,v) < §} C €Bx-
(see, [10]). By [1, Proposition 4], g, is Fréchet differentiable at z with the derivative
y. One can also show that lim g, = f uniformly on X (see for example [8, Lemma

2.4)). 0

Since the function f can be quite “flat” in Theorem 1, there is a difficulty in
applying the techniques of Smooth Variational Principles (see, [3, Chapter I]) in this
situation. However, under more restrictive assumptions we can use the Stegall-Fabian
variational principle and obtain our variational result by duality. We shall say that
z € X is a point of Lipschitz smoothness of a convex function f if f(z + h)+ f(z — h)—

2f() = O(|IAl*).

LEMMA 6. Let f be a convex continuous function on a Banach Space X and
g be its dual function. Suppose there exists a constant C such that for any =z € X,
y € 8f(z), and for any € > 0, we have

{v:9(y +v)—g(y) - (z,v) < Ce®} C eBx-.

Then f is Fréchet differentiable and f' is Lipschitz on X .

PROOF: By taking polars, we have e "' Bx C {v: g(y +v) —g(y) — (z,v) < Ce?}°.
According to Proposition 3 of [1], {v: g(y +v) — 9(¥) — (z,v) L Ce?}° c C e % {u:
f(z +u) — f(z) — (y,u) < Ce?}. Therefore, eCBx C {u: f(z +u) — f(z) — (y,u) <
Ce?}, that is, for any u € eCBx, f(z +u)+ f(z —u) — 2f(z) < 2/C(eC)*. Thus
f' exists at ¢ and we have that f' is Lipschitz on X (see, for example [3, Lemma

Vv.3.5)). 0

THEOREM 7. Let f be a Lipschitz convex function on a Banach space X and
Y =span''l{8f(z) : z € X}. Suppose that Y admits an equivalent norm with modulus
of convexity of power type 2. Then f can be majorised by a convex function 1 that has
a Lipschitz derivative and ¥(z) = f(z) for some z € X . In particular, f has points of
Lipschitz smoothness.

PROOF: Let ||| be an equivalent norm on X* such that its restriction on Y has
modulus of convexity of power type 2 (see, for example {3, Lemma I1.8.1]). We note
that Y is w*-closed. Indeed, since Y is reflexive, Byis compact in the weak topology
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of X* and thus By is w*-compact in X*. By the Banach-Dieudonné theorem, Y is
w*-closed. Assume that f(0) =0, and thus we have f* > 0 on X*. Let

h(z"):{ 3= I? —-gmtifz*eY

oo otherwise,

where m = Lip(f). Since Y is w*-closed, h is w*-lower semicontinuous and h =
(h["x)*. We show that h satisfies the condition on the function g given in Lemma
6. Indeed, by the modulus of rotundity of || - ||, there exists L > 0 such that for any
Y1,¥2 €Y, we have

ity +y2

(%) —{Ilyxll + w2 lI*} - > Ly — gl

(see, for example [2, Lemma 5.1.4]). Assume that for every k € IN there exist e > 0,
zxy € X, yr € Oh{x(zx) and vp € X*,|lvk]| > €&, such that A(ys +ve) — h(yx) —
vi(zx) < ex?/k. Then |lyx + vil® /2 — |lyk||® /2 — (zk,vi) < €x2/k for all k. From the
definition of a subdifferential, we have —(zx,vx) 2 |lysll® — llux + vi/2||°. Therefore,
(sl + llgs +04?) /2 — llgx +v4/27 < e4/k < [onl? /b, which contradicts (¥).
Now, for each ¢* € dom f* C mBx+, we have h(z*) < 0 < f(z*). Therefore f* —h is
a lower semicontinuous convex function on dom f* that is bounded below. Note that
f*—h2|-]| - m. By the Stegall-Fabian result (see, for example [9, Corollary 5.22]),
there exists Z € Y* such that f* —h —Z attains its minimum in dom f*, that is, there
is a 2* € dom f* such that f*(z*) — h(z*) — Z(2*) = a < f*(¥*) — h(y*) — Z(y*) for
all y* € dom f*. Therefore we have h(-)+Z(-)+ o £ f*(-) on dom f* and the equality
holds at z*. Since Y is reflexive, there exists # € X such that y*(z) = Z(y*) for each
y* €Y. Let k: X* — IR be a function defined by k(-) = hA(-) + z(-) + @. Then k is
a convex function such that k£ < f* and k(z*) = f*(2*). Put | = kjy. The function
l is continuous and convex on Y. Let § € 0l(2*) C Y*. As Y is reflexive, there
exists y € X such that (y*) = y*(v) for each y* € Y. We claim that y € 8k(z*).
Indeed, let 2* € X*. H 2* €Y, y(z* —2z*) =g(z* —z*) < k(z*) —k(z*). f 2* ¢ Y,
then y(z* —z*) < k(z*) — k(2*) = oco. Hence y € 9k(z*). Since k(z*) = f*(z*),
we have y € 0f*(z*). Thus k*(y) + k(z*) = (=*,y) = f*(z*) + f(y). Therefore
f(y) = k¥*(y). Since f* > k, we have k* > f. Put ¢ = k. The function 9 has
a Lipschitz derivative and is our required function. Indeed, k* = (h(:) + z(-) + )" =
(h+z)" — a = A*(-)0é:(-) — @ = h*(- —z) — a (where §, is the indicator function
of the singleton {z}) and h* has the desired differentiability by Lemma 6. Finally,
since f(y) = k*(y) = ¥(y) and f < ¥ on X, we havef(y+v) + f(y —v) — 2f(y) <
¥(y+ v) + ¥(y — v) — 2¢(y) < C|jv||?, for some constant C. Therefore the function f
is Fréchet differentiable at y and f' is Lipschitz at y. 0
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Similarly, using Troyanski's result that reflexive spaces admit equivalent LUR
norms (see, for example [3, Chapter VII]], we can show the following result.

COROLLARY 8. Let f be a Lipschitz convex function on a Banach space X and
Y = span’l{8f(z) : z € X}. I Y is reflexive, then f can be majorised on X by a
convex function ¢ that is Fréchet differentiable and ¢(z) = f(z) for some z € X .

Under the assumptions in Theorem 7, the techniques in Theorem 1 may be applied
to obtain approximation by functions with Lipschitz derivatives.

THEOREM 9. Let X,Y and f be as in Theorem 7. Then f can be uniformly
approximated on X by convex functions that have a Lipschitz derivative.

PROOF: As in the proof of Theorem 7, let || - | be an equivalent norm of X*
such that its restriction on Y is LUR. Let h = || - ||?/2 and g := h + f* on X*.
The function g is w*-lower semicontinuous on X*. Let k be a convex function on X
such that k* = g. We claim that there exists a constant C such that for any ¢ > 0,
z € X and y € Ok(z), we have {v: g(v+y) — g(y) — (z,v) < Ce} C eBx-+. Since
g(u) = co whenever u ¢ Y, we only need to consider points in Y. Let » € Y,
then (9(y) + 9(y +v))/2 - 9((2y + v)/2) > (h(y) + h(y + v))/2 - h((2y + v)/2) for any
y € Y. Using (*), we have (g(y) + 9(y + v))/2 — 9((2y + v)/2) > L ||v|* forany v € Y
and for any y € Y. Following the same idea as in the proof of Theorem 7, we can
complete the proof of the claim. By Lemma 6, k is Fréchet differentiable and k' is
Lipschitz. For each n € IN define g, := f* + h/(2n*) and k, such that k}, = g. By
the above argument, the function k, is Fréchet differentiable and k] is Lipschitz for
each n € IN. By [8, Lemma 2.1], lim g, = f uniformly on X. 0
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