SETS OF DIFFERENTIALS AND SMOOTHNESS

WEE-KEE TANG

OF CONVEX FUNCTIONS

Approximation by smooth convex functions and questions on the Smooth Variational Principle for a given convex function f on a Banach space are studied in connection with majorising f by C^1 -smooth functions.

It is known that a weakly compactly generated (WCG) Banach space admits an equivalent Fréchet differentiable norm if it admits a Fréchet differentiable bump function (see, for example [5]). However, there are nonseparable spaces that admit Fréchet differentiable bump functions but admit no equivalent Fréchet differentiable norm (see, for example [3, Chapter VII]). If the space X admits an equivalent norm with modulus of smoothness of power type 2, then every convex continuous function on X has points of Lipschitz smoothness (see, for example [3, Chapter IV]). The purpose of this note is to localise these results. We prove that any convex Lipschitz function f that is defined on a WCG Banach space X can be uniformly approximated by Fréchet differentiable convex functions if f is majorised on X by a Fréchet smooth convex function. If, moreover, $\overline{span}^{\|\cdot\|} \{\partial f(x) : x \in X\}$ is a subspace of X^{*} that admits a norm with modulus of rotundity of power type 2, then there is a convex function ψ with ψ' Lipschitz on X such that $\psi \ge f$ on X and $\psi(x) = f(x)$ for some $x \in X$. Thus in particular, f has points of Lipschitz smoothness. A separable version of these problems was studied in [10]. We use standard notation in this note (see for example [3]), and refer to [6, 7, 9]and [3] for some unexplained notions and results used in this note.

THEOREM 1. Let f be a convex Lipschitz function defined on a WCG Banach space X. Then the following are equivalent.

- (1) The function f can be uniformly approximated on X by a Fréchet differentiable convex function.
- (2) There exists a Fréchet differentiable convex function ϕ defined on X such that $\phi \ge f$ on X.

Received 15th October, 1994

The author was supported by NSERC (Canada). The author is indebted to Professor V. Zizler for his guidance and suggestions, and to the referee for his/her helpful comments.

Copyright Clearance Centre, Inc. Serial-fee code: 0004-9729/95 \$A2.00+0.00.

PROOF: Clearly (1) \implies (2). The proof (2) \implies (1) is divided into a few steps. **PROPOSITION 2.** Let X be a WCG Banach space, ϕ be a Fréchet differentiable

convex function defined on X and let $Y := \overline{span}^{\|\cdot\|} \{ \phi'(x) : x \in X \}$. Then there exists a projectional resolution of the identity (PRI) $\{P_{\alpha} : \omega \leq \alpha \leq \mu\}$ on X such that

- (i) $P_{\mu}^{*} = I$, $||P_{\alpha}^{*}|| = 1$ for all α .
- (ii) $P^*_{\alpha}P^*_{\beta} = P^*_{\beta}P^*_{\alpha} = P^*_{min(\alpha,\beta)}$.
- (iii) $P^*_{\alpha}Y \subset Y$ for all α .
- $\begin{array}{ll} \text{(iv)} & \operatorname{dens}\left(P_{\alpha}^{*}Y\right) \leqslant \alpha \text{ for all } \alpha \leqslant \mu \, . \\ \text{(v)} & P_{\alpha}^{*}Y = \overline{span}^{\|\cdot\|} \bigcup_{\beta < \alpha} P_{\beta+1}^{*}Y \text{ for all } \alpha \leqslant \mu \, . \end{array}$

PROOF: Using standard techniques for constructing projectional resolutions of the identity (see for example [3, Chapter VI), we only need to show $P^*_{\sigma}Y \subset Y$ and $P^*_{\sigma}Y =$ $\overline{span}^{\|\cdot\|} \bigcup P^*_{\beta+1}Y$ for all α . The proof of this is contained in Lemmas 3 to 5. βčα

LEMMA 3. In notation as above, we can construct a PRI $\{P_{\alpha} : \omega \leq \alpha \leq \mu\}$ so that $P^*_{\alpha}\phi'(y) = \phi'(y)$ for all $y \in P_{\alpha}X$.

PROOF: See Lemma 5 in [5].

LEMMA 4. With notation as above, $P^*_{\alpha}Y = \overline{span}^{\|\cdot\|} \{\phi'(x) : x \in P_{\alpha}X\}$.

PROOF: To see $P_{\alpha}^*Y \supset \overline{span}^{\|\cdot\|} \{ \phi'(x) : x \in P_{\alpha}X \}$, we let $x \in P_{\alpha}X$, and show that $\phi'(x) \in P^*_{\alpha}Y$. Since ϕ is C^1 -smooth, given $\varepsilon > 0$, there exists an $x_{\beta} \in P_{\beta+1}X$ for some $\beta < \alpha$, such that $\|\phi'(x) - \phi'(x_\beta)\| < \varepsilon$. By Lemma 3, $\phi'(x_\beta) = P^*_{\beta+1}\phi'(x_\beta)$. Therefore $\phi'(x_{\beta}) \in P_{\beta+1}^*Y \subset P_{\alpha}^*Y$. As P_{α}^*Y is closed, $\phi'(x) \in P_{\alpha}^*Y$. For the converse inclusion, we follow the idea in [4]. Let $\phi'(x) \in Y$. Clearly $g(\cdot) = \phi(\cdot) - \phi'(x)(\cdot)$ is a continuous bounded below function on X. Hence its restriction $g_{\dagger P_{\alpha}X}$ is also continuous and bounded below. By Ekeland's variational principle, given $\varepsilon > 0$, there exists $x_{\alpha} \in P_{\alpha}X$ such that for every $w \in B_{P_{\alpha}X}$, t > 0, we have $g(x_{\alpha} + tw) \ge$ $g(x_{\alpha}) - \varepsilon t$, thus, $\phi'(x)(w) \leq (\phi(x_{\alpha} + tw) - \phi(x_{\alpha}))/t - \varepsilon$. Hence, by taking limits, we have $\phi'(x)(w) - \phi'(x_{\alpha})(w) \leqslant \varepsilon$. Therefore $\sup\{|\phi'(x)(v) - \phi'(x_{\alpha})(v)| : v \in B_{P_{\alpha}X}\} \leqslant$ arepsilon. Given any $h \in B_X$, we have $(h, P^*_{lpha} \phi'(x) - \phi'(x_{lpha})) = (h, P^*_{lpha} \phi'(x) - P^*_{lpha} \phi'(x_{lpha})) =$ $(P_{\alpha}h,\phi'(x)-\phi'(x_{\alpha})) \leqslant \varepsilon$. Therefore $\|P_{\alpha}^*\phi'(x)-\phi'(x_{\alpha})\| \leqslant \varepsilon$. Finally, since Y is the closed linear span of the derivatives of ϕ and P_{α} is bounded, the assertion follows. Ц

LEMMA 5. $P^*_{\alpha}Y = \overline{span}^{\|\cdot\|} \bigcup_{\beta < \alpha} P^*_{\beta+1}Y$ for every $\alpha \leq \mu$.

PROOF: Clearly $P^*_{\alpha}Y \supset \overline{span}^{\|\cdot\|} \bigcup_{\beta < \alpha} P^*_{\beta+1}Y$. The converse inclusion follows from

Lemma 4 and the continuity of ϕ' .

PROOF OF THEOREM 1: Since $f \leq \phi$, using Ekeland's variational principle as in Lemma 4 we show that dom $f^* \subset Y$. Using Lemma 5, and the classical Troyanski's

Π

Convex functions

construction (see for example [3, Chapter VII]) we obtain a dual norm $\|\cdot\|^*$ in X^* such that its restriction on Y is locally uniformly rotund (LUR). Define a sequence of functions $\{h_n\}$ on X^* by $h_n(x^*) = f^*(x^*) + \|x^*\|^{*2}/(4n^4)$. Clearly, dom $h_n = \text{dom } f^*$. Define $g_n := f \Box n^4 \|\cdot\|^2$, where \Box denotes the infimal convolution. Note that g_n is convex and continuous on X and $g_n^* = h_n$ for all n. Given $n \in \mathbb{N}$, $x \in X$ and $y \in \partial g_n(x)$, note that h_n is rotund at y with respect to x in the sense of [1], that is, for every $\varepsilon > 0$, there exist $\delta > 0$ such that $\{v : h_n(y+v) - h_n(y) - (x,v) \leq \delta\} \subset \varepsilon B_{X^*}$ (see, [10]). By [1, Proposition 4], g_n is Fréchet differentiable at x with the derivative y. One can also show that $\lim g_n = f$ uniformly on X (see for example [8, Lemma 2.4]).

Since the function f can be quite "flat" in Theorem 1, there is a difficulty in applying the techniques of Smooth Variational Principles (see, [3, Chapter I]) in this situation. However, under more restrictive assumptions we can use the Stegall-Fabian variational principle and obtain our variational result by duality. We shall say that $x \in X$ is a point of Lipschitz smoothness of a convex function f if $f(x + h) + f(x - h) - 2f(x) = O(||h||^2)$.

LEMMA 6. Let f be a convex continuous function on a Banach Space X and g be its dual function. Suppose there exists a constant C such that for any $x \in X$, $y \in \partial f(x)$, and for any $\varepsilon > 0$, we have

$$\{v: g(y+v) - g(y) - (x,v) \leq C\varepsilon^2\} \subset \varepsilon B_{X^*}.$$

Then f is Fréchet differentiable and f' is Lipschitz on X.

PROOF: By taking polars, we have $\varepsilon^{-1}B_X \subset \{v: g(y+v)-g(y)-(x,v) \leq C\varepsilon^2\}^0$. According to Proposition 3 of [1], $\{v: g(y+v)-g(y)-(x,v) \leq C\varepsilon^2\}^0 \subset C^{-1}\varepsilon^{-2}\{u: f(x+u)-f(x)-(y,u) \leq C\varepsilon^2\}$. Therefore, $\varepsilon CB_X \subset \{u: f(x+u)-f(x)-(y,u) \leq C\varepsilon^2\}$, that is, for any $u \in \varepsilon CB_X$, $f(x+u) + f(x-u) - 2f(x) \leq 2/C(\varepsilon C)^2$. Thus f' exists at x and we have that f' is Lipschitz on X (see, for example [3, Lemma V.3.5]).

THEOREM 7. Let f be a Lipschitz convex function on a Banach space X and $Y = \overline{span}^{\|\cdot\|} \{\partial f(x) : x \in X\}$. Suppose that Y admits an equivalent norm with modulus of convexity of power type 2. Then f can be majorised by a convex function ψ that has a Lipschitz derivative and $\psi(x) = f(x)$ for some $x \in X$. In particular, f has points of Lipschitz smoothness.

PROOF: Let $\|\cdot\|$ be an equivalent norm on X^* such that its restriction on Y has modulus of convexity of power type 2 (see, for example [3, Lemma II.8.1]). We note that Y is w^* -closed. Indeed, since Y is reflexive, B_Y is compact in the weak topology

W-K. Tang

of X^* and thus B_Y is w^* -compact in X^* . By the Banach-Dieudonné theorem, Y is w^* -closed. Assume that f(0) = 0, and thus we have $f^* \ge 0$ on X^* . Let

$$h(x^*) = \begin{cases} \frac{1}{2} \|x^*\|^2 - \frac{1}{2}m^2 \text{ if } x^* \in Y\\ \infty \text{ otherwise,} \end{cases}$$

where m = Lip(f). Since Y is w*-closed, h is w*-lower semicontinuous and $h = (h_{\uparrow X}^*)^*$. We show that h satisfies the condition on the function g given in Lemma 6. Indeed, by the modulus of rotundity of $\|\cdot\|$, there exists L > 0 such that for any $y_1, y_2 \in Y$, we have

(*)
$$\frac{1}{2} \{ \|y_1\|^2 + \|y_2\|^2 \} - \left\| \frac{y_1 + y_2}{2} \right\|^2 \ge L \|y_1 - y_2\|^2$$

(see, for example [2, Lemma 5.I.4]). Assume that for every $k \in \mathbb{N}$ there exist $\varepsilon_k > 0$, $x_k \in X, \ y_k \in \partial h^*_{!X}(x_k) \ \text{and} \ v_k \in X^*, \|v_k\| > \varepsilon_k, \ \text{such that} \ h(y_k + v_k) - h(y_k)$ $v_k(x_k) \leqslant \varepsilon_k^2/k$. Then $||y_k + v_k||^2/2 - ||y_k||^2/2 - (x_k, v_k) \leqslant \varepsilon_k^2/k$ for all k. From the definition of a subdifferential, we have $-(x_k, v_k) \ge ||y_k||^2 - ||y_k + v_k/2||^2$. Therefore, $\left(\left\|y_k\right\|^2+\left\|y_k+v_k\right\|^2\right)/2-\left\|y_k+v_k/2\right\|^2\leqslant \varepsilon_k^2/k\leqslant \left\|v_k\right\|^2/k, ext{ which contradicts (*)}.$ Now, for each $x^* \in \text{dom } f^* \subset mB_{X^*}$, we have $h(x^*) \leq 0 \leq f(x^*)$. Therefore $f^* - h$ is a lower semicontinuous convex function on dom f^* that is bounded below. Note that $f^* - h \ge \|\cdot\| - m$. By the Stegall-Fabian result (see, for example [9, Corollary 5.22]), there exists $\hat{x} \in Y^*$ such that $f^* - h - \hat{x}$ attains its minimum in dom f^* , that is, there is a $x^* \in \text{dom} f^*$ such that $f^*(x^*) - h(x^*) - \widehat{x}(x^*) = \alpha \leq f^*(y^*) - h(y^*) - \widehat{x}(y^*)$ for all $y^* \in \text{dom } f^*$. Therefore we have $h(\cdot) + \hat{x}(\cdot) + \alpha \leq f^*(\cdot)$ on dom f^* and the equality holds at x^* . Since Y is reflexive, there exists $x \in X$ such that $y^*(x) = \hat{x}(y^*)$ for each $y^* \in Y$. Let $k: X^* \to \mathbb{R}$ be a function defined by $k(\cdot) = h(\cdot) + x(\cdot) + \alpha$. Then k is a convex function such that $k \leq f^*$ and $k(x^*) = f^*(x^*)$. Put $l = k_{lY}$. The function l is continuous and convex on Y. Let $\widehat{y} \in \partial l(x^*) \subset Y^*$. As Y is reflexive, there exists $y \in X$ such that $\widehat{y}(y^*) = y^*(y)$ for each $y^* \in Y$. We claim that $y \in \partial k(x^*)$. Indeed, let $z^* \in X^*$. If $z^* \in Y$, $y(z^* - x^*) = \hat{y}(z^* - x^*) \leq k(z^*) - k(x^*)$. If $z^* \notin Y$, then $y(z^* - x^*) < k(z^*) - k(x^*) = \infty$. Hence $y \in \partial k(x^*)$. Since $k(x^*) = f^*(x^*)$, we have $y \in \partial f^{*}(x^{*})$. Thus $k^{*}(y) + k(x^{*}) = (x^{*}, y) = f^{*}(x^{*}) + f(y)$. Therefore $f(y) = k^*(y)$. Since $f^* \ge k$, we have $k^* \ge f$. Put $\psi = k_{1X}^*$. The function ψ has a Lipschitz derivative and is our required function. Indeed, $k^* = (h(\cdot) + x(\cdot) + \alpha)^* =$ $(h+x)^* - \alpha = h^*(\cdot) \Box \delta_x(\cdot) - \alpha = h^*(\cdot-x) - \alpha$ (where δ_x is the indicator function of the singleton $\{x\}$ and h^* has the desired differentiability by Lemma 6. Finally, since $f(y) = k^*(y) = \psi(y)$ and $f \leqslant \psi$ on X, we have $f(y+v) + f(y-v) - 2f(y) \leqslant$ $\psi(y+v) + \psi(y-v) - 2\psi(y) \leq C \|v\|^2$, for some constant C. Therefore the function f Π is Fréchet differentiable at y and f' is Lipschitz at y.

Convex functions

Similarly, using Troyanski's result that reflexive spaces admit equivalent LUR norms (see, for example [3, Chapter VII]], we can show the following result.

COROLLARY 8. Let f be a Lipschitz convex function on a Banach space X and $Y = \overline{span}^{\|\cdot\|} \{\partial f(x) : x \in X\}$. If Y is reflexive, then f can be majorised on X by a convex function ϕ that is Fréchet differentiable and $\phi(x) = f(x)$ for some $x \in X$.

Under the assumptions in Theorem 7, the techniques in Theorem 1 may be applied to obtain approximation by functions with Lipschitz derivatives.

THEOREM 9. Let X, Y and f be as in Theorem 7. Then f can be uniformly approximated on X by convex functions that have a Lipschitz derivative.

PROOF: As in the proof of Theorem 7, let $\|\cdot\|$ be an equivalent norm of X^* such that its restriction on Y is LUR. Let $h = \|\cdot\|^2/2$ and $g := h + f^*$ on X^* . The function g is w^* -lower semicontinuous on X^* . Let k be a convex function on X such that $k^* = g$. We claim that there exists a constant C such that for any $\varepsilon > 0$, $x \in X$ and $y \in \partial k(x)$, we have $\{v : g(v+y) - g(y) - (x,v) \leq C\varepsilon\} \subset \varepsilon B_{X^*}$. Since $g(u) = \infty$ whenever $u \notin Y$, we only need to consider points in Y. Let $v \in Y$, then $(g(y) + g(y+v))/2 - g((2y+v)/2) \ge (h(y) + h(y+v))/2 - h((2y+v)/2)$ for any $y \in Y$. Using (*), we have $(g(y) + g(y+v))/2 - g((2y+v)/2) \ge L \|v\|^2$ for any $v \in Y$ and for any $y \in Y$. Following the same idea as in the proof of Theorem 7, we can complete the proof of the claim. By Lemma 6, k is Fréchet differentiable and k' is Lipschitz. For each $n \in IN$ define $g_n := f^* + h/(2n^4)$ and k_n such that $k_n^* = g$. By the above argument, the function k_n is Fréchet differentiable and k'_n is Lipschitz for each $n \in IN$. By [8, Lemma 2.1], $\lim g_n = f$ uniformly on X.

REFERENCES

- E. Asplund and R.T. Rockafellar, 'Gradients of convex functions', Trans. Amer. Math. Soc. 139 (1968), 443-467.
- B. Beauzamy, Introduction to Banach spaces and their geometry, Math. Stud. 68 (North Holland, 1985).
- [3] R. Deville, G. Godefroy and V. Zizler, Smoothness and renormings in Banach spaces, Monographs and Surveys Pure Appl. Math. 64 (Pitman, 1993).
- [4] M. Fabian, 'On Projectional resolution of identity on the duals of certain Banach spaces', Bull. Austral. Math Soc. 35 (1987), 363-371.
- [5] K. John and V. Zizler, 'Smoothness and its equivalents in weakly compactly generated Banach spaces', J. Funct. Anal. 15 (1974), 161-166.
- [6] J. Lindenstrauss and L. Tzafrifi, Classical Banach spaces Vol. I, Ergebnisse der Mathematik und ihrer Grenzgebiete 92 (Springer-Verlag, Berlin, Heidelberg, New York, 1977).
- [7] J. Lindenstrauss and L. Tzafrifi, Classical Banach spaces Vol. II, Ergebnisse der Mathematik und ihrer Grenzgebiete 97 (Springer-Verlag, Berlin, Heidelberg, New York, 1979).

- [8] D. McLaughlin, R.A. Poliquin, J.D. Vanderwerff and V.E. Zizler, 'Second order Gateâux differentiable bump functions and approximations in Banach spaces', Canad. J. Math 45 (1993), 612-625.
- [9] R.R. Phelps, Convex functions, monotone operators and differentiability, Lecture Notes in Mathematics 1364, (Second Edition) (Springer-Verlag, Berlin, Heidelberg, New York, 1993).
- [10] W-K. Tang, 'On Fréchet differentiability of convex functions on Banach spaces' (to appear).

Department of Mathematics University of Alberta Edmonton Canada T6G 2G1