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SETS OF DIFFERENTIALS AND SMOOTHNESS
OF CONVEX FUNCTIONS

WEE-KEE TANG

Approximation by smooth convex functions and questions on the Smooth Varia-
tional Principle for a given convex function / on a Banach space are studied in
connection with majorising / by C1 -smooth functions.

It is known that a weakly compactly generated (WCG) Banach space admits an
equivalent Frechet differentiable norm if it admits a Frechet differentiable bump function
(see, for example [5]). However, there are nonseparable spaces that admit Frechet
differentiable bump functions but admit no equivalent Frechet differentiable norm (see,
for example [3, Chapter VII]). If the space X admits an equivalent norm with modulus
of smoothness of power type 2, then every convex continuous function on X has points
of Lipschitz smoothness (see, for example [3, Chapter IV]). The purpose of this note is to
localise these results. We prove that any convex Lipschitz function / that is defined on a
WCG Banach space X can be uniformly approximated by Frechet differentiable convex
functions if / is majorised on I by a Frechet smooth convex function. If, moreover,
span"'"{df(x) : x G X} is a subspace of X* that admits a norm with modulus of
rotundity of power type 2, then there is a convex function ip with tp' Lipschitz on X
such that ip ^ / on Xand ij>(x) — f(x) for some x £ X. Thus in particular, / has
points of Lipschitz smoothness. A separable version of these problems was studied in
[10]. We use standard notation in this note (see for example [3]), and refer to [6, 7, 9]
and [3] for some unexplained notions and results used in this note.

THEOREM 1. Let f be a convex Lipschitz function defined on a WCG
Banach space X. Then the following are equivalent.

(1) The function f can be uniformly approximated on X by a Frechet dif-
ferentiable convex function.

(2) There exists a Frechet differentiable convex function <$> defined on X such
that <t>~2 f on X.

Received 15th October, 1994
The author was supported by NSERC (Canada). The author is indebted to Professor V. Zizler for his
guidance and suggestions, and to the referee for his/her helpful comments.

Copyright Clearance Centre, Inc. Serial-fee code: 0004-9729/95 SA2.00+0.00.

91

https://doi.org/10.1017/S0004972700014477 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972700014477


92 W-K. Tang [2]

PROOF: Clearly (1) = > (2). The proof (2) =3> (1) is divided into a few steps.

PROPOSITION 2 . Let X be a WCG Banacb space, <f> be a Frecbet differentiable

convex function defined on X and let Y := apan^ {<}>'(x) : x £ X}. Then there exists

a projectional resolution of tbe identity (PRI) {Pa : w < a < /*} on X such that

(i) P ; = J , | | P * | | = 1 for af lo .

(ii) PZPZ = P*pP*a = P*miM).
(iii) P'YcY for all a.

(iv) dens (P*Y) < a for all a^fj,.

(v) P*Y = 5pan"H \Jp<a P£+1Y for all a ^».

PROOF: Using standard techniques for constructing projectional resolutions of the
identity (see for example [3, Chapter VI]), we only need to show P*Y C Y and P*Y -

^ \J Pg+iY for all o . The proof of this is contained in Lemmas 3 to 5.

LEMMA 3 . In notation as above, we can construct a PRI {Pa : u> ̂  a ^ fi} so

that P*<l>'(y) = <f>'(y) for all y £ PaX.

PROOF: See Lemma 5 in [5]. D

LEMMA 4 . With notation as above, P*Y = span11'11 {ft(x) : x £ PaX}.

PROOF: TO see P*Y D span^{<f>'{x) : x £ PaX}, we let x £ PaX, and show
that <l>'(x) 6 P£Y. Since <j> is C1-smooth, given e > 0, there exists an xp £ Pp+\X

for some /3 < a, such that ||^'(x) - 4>'{xp)\\ < e. By Lemma 3, 4>'{xp) = Pp+1<j)'(xp).

Therefore (j>'(xp) e Pp+1Y C P*Y. As P*Y is closed, <}>'(x) 6 P*Y. For the converse
inclusion, we follow the idea in [4]. Let <f>'{x) £ Y. Clearly g() = <£(•) - (j>'(x)(-)

is a continuous bounded below function on X. Hence its restriction g\pax is also
continuous and bounded below. By Ekeland's variational principle, given t > 0, there
exists xa £ PaX such that for every w £ Bpax, t > 0, we have g(xa + tw) ^
g{xa) — et, thus, <j>'{x){w) ^ {<f>(xa + tw) — <f>(xa))/t — e. Hence, by taking limits, we
have 4>'{x){w) - 4>'(xa)(w) ^ e. Therefore sup{|0'(a:)(t>) - <j>'(xa){v)\ : v £ BPaX} <
e. Given any h £ Bx, we have (h,P*<j,'(x) - <f>'(xa)) = (A,P^ ' (x) - P*(f>'{xa)) =
{Pah,<j>'{x) - (j>'(xa)) < e. Therefore \\P*4>'{x) - $'{xa)\\ < e. FinaUy, since Y is the
closed linear span of the derivatives of <j> and Pa is bounded, the assertion follows. D

LEMMA 5 . P*Y = sponIHI U Pp+lY for every a ^ fi.
/3<Q

PROOF: Clearly P£Y D spon1111 (J Pg+1Y. The converse inclusion follows from
0<a

Lemma 4 and the continuity of <j>'. D

PROOF OF THEOREM 1: Since / ^ <f>, using Ekeland's variational principle as in
Lemma 4 we show that dom/* C Y. Using Lemma 5, and the classical Troyanski's
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construction (see for example [3, Chapter VII]) we obtain a dual norm ||-|| in X*

such that its restriction on Y is locally uniformly rotund (LUR). Define a sequence of
functions {hn} on X* by hn{x*) = f(x*) + \\x*\\*2 / (4n4) . Clearly, dom.hn = dom/* .
Define gn := / D n 4 ||-|| , where D denotes the infimal convolution. Note that gn is
convex and continuous on X and 5* = hn for all n . Given n G IN, x G X and
y € dgn(x), note that hn is rotund at y with respect to x in the sense of [1], that is,
for every e > 0, there exist 6 > 0 such that {v : hn(y + v) — hn(y) — (x, v) < 6} C eBx'

(see, [10]). By [1, Proposition 4], gn is Frechet differentiate at x with the derivative
y. One can also show that ]imgn = f uniformly on X (see for example [8, Lemma
2.4]). D

Since the function / can be quite "flat" in Theorem 1, there is a difficulty in
applying the techniques of Smooth Variational Principles (see, [3, Chapter I]) in this
situation. However, under more restrictive assumptions we can use the Stegall-Fabian
variational principle and obtain our variational result by duality. We shall say that
x G X is a point of Lipschitz smoothness of a convex function / if /(x + h) + f(x — h) —

LEMMA 6. Let f be a convex continuous function on a Banach Space X and
g be its dual function. Suppose there exists a constant C such that for any x e X,
y G df{x), and for any e > 0, we have

{v:g(y + v)- g{y) -(x,v)^Ce2}C eBx> •

Then f is Frechet differentiable and f is Lipschitz on X.

PROOF: By taking polars, we have e~xBx C {v : g(y +v)—g(y) — (x,v) ^ Ce2}0.
According to Proposition 3 of [1], {v : g{y + v) - g(y) - (x,v) ^ Ce2}0 C C~le~2{u :
f{x+u) - f(x) - {y,u) ^ Ce2}. Therefore, eCBx C {u : f(x+u) - f{x) - (y,u) ^
Ce2}, that is, for any u G eCBx> f(x + u) + f{x -u)- 2f(x) ^ 2/C(eC)2. Thus
/ ' exists at x and we have that / ' is Lipschitz on X (see, for example [3, Lemma
V.3.5]). D

THEOREM 7 . Let f be a Lipschitz convex function on a Banach space X and

Y = spon"'"{9/(s) : x G X}. Suppose that Y admits an equivalent norm with modulus

of convexity of power type 2. Then f can be majorised by a convex function ifr that has

a Lipschitz derivative and ij){x) — f(x) for some x G X. In particular, f has points of

Lipschitz smoothness.

PROOF: Let ||-|| be an equivalent norm on X* such that its restriction on Y has
modulus of convexity of power type 2 (see, for example [3, Lemma II.8.1]). We note
that Y is iw*-closed. Indeed, since Y is reflexive, By is compact in the weak topology
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of X* and thus By is w*-compact in X*. By the Banach-Dieudonne theorem, Y is
to*-closed. Assume that /(0) = 0, and thus we have / ' ^ 0 on X*. Let

{ oo otherwise,

where m = Lip(f). Since Y is tu*-closed, h is iu*-lower semicontinuous and h =
{hfx) • We show that h satisfies the condition on the function g given in Lemma
6. Indeed, by the modulus of rotundity of || • ||, there exists L > 0 such that for any
3/i > 2/2 G Y, we have

(see, for example [2, Lemma 5.1.4]). Assume that for every k G IN there exist ek > 0,
xj, € X, yk G dhfx(xk) and vk G Jf*,||t;*|| > e*, such that h(yk+vk) - h(yk) -
vk(xk)^ek

2/k. Then \\yk + vk\\
2 /2 - \\yk\\

2 /2 - (xk,vk) ^ ek
2/k for all k. From the

definition of a subdifferential, we have — (xk,vk) ^ \\yk\\ — \\yk + « A / 2 | | 2 . Therefore,
(||y*||2 + | | 2 / k + ^ | | 2 ) / 2 - \\yh +vk/2\\2 ^ ek

2/k < \\vk\\
2/k, which contradicts (•).

Now, for each x* G dom/* C mBx-, we have h(x*) ^ 0 ^ f(x*). Therefore /* - h is
a lower semicontinuous convex function on dom/* that is bounded below. Note that
/* — h ^ || • || - m. By the Stegall-Fabian result (see, for example [9, Corollary 5.22]),
there exists x £ Y* such that /* — h — x attains its minimum in dom/* , that is, there
is a x* e dom/* such that /*(x*) - h{x*) - x(x*) = a ^ /*(t/*) - % * ) - x(y*) for
all y* G dom/*. Therefore we have h(-) + x(-) + a </*(•) on dom/* and the equality
holds at x*. Since Y is reflexive, there exists x 6 X such that j/*(x) = x{y*) for each
j / * G Y. Let fc : X* -> 2R be a function denned by Jfc(-) = h() + x() + a. Then Jfc is
a convex function such that k ^ /* and k(x*) — f*(x*). Put / = k\y • The function
I is continuous and convex on V. Let y G dl{x*) C Y*. As 7 is reflexive, there
exists y G X such that y(y*) = y*(y) for each y* G Y. We claim that y G 9Jfc(a;*).
Indeed, let z* G X*. If a* G K, y(«* - x*) = y(z* - x*) < k(z*) - k{x*). If z* <£ Y,
then 1/(2* -x*) < k(z') - Jfc(z*) = oo. Hence y G dk(x*). Since fc(a;*) = /*(a*),
we have y G 0/*(x*). Thus fc*(y) + ifc(a;*) = (x*,y) = f*(xm) + f(y). Therefore
f(y) = k*(y). Since /* ^ k, we have ifc* ^ / . Put V = kfr. The function V has
a Lipschitz derivative and is our required function. Indeed, k* = (ft(-) + z ( ) + a)* =
(ft + x)* — a = A*(•)•£,;(•) — a = h*(- — x) — a (where Sx is the indicator function
of the singleton {x}) and h* has the desired differentiability by Lemma 6. Finally,
since f(y) — k*(y) = ij)(y) and / ^ ip on X, we have/(j/ + v) + f(y - v) - 2f(y) <
ij)(y + v) + tfi^y — v) — 2if>(y) ^ C \\v\\ , for some constant C. Therefore the function /
is Frechet differentiable at y and / ' is Lipschitz at y. D
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Similarly, using Troyanski's result that reflexive spaces admit equivalent LUR
norms (see, for example [3, Chapter VII]], we can show the following result.

COROLLARY 8 . Let f be a Lipschitz convex function on a Banach space X and
Y = span"'"{df(x) : x 6 X}. If Y is reflexive, t ien / can be majorised on X by a.
convex function <j> that is Frechet differentiable and <f>(x) = f(x) for some x 6 X.

Under the assumptions in Theorem 7, the techniques in Theorem 1 may be applied
to obtain approximation by functions with Lipschitz derivatives.

THEOREM 9 . Let X, Y and f be as in Theorem 7. Then f can be uniformly

approximated on X by convex functions that have a Lipschitz derivative.

PROOF: AS in the proof of Theorem 7, let || • || be an equivalent norm of X*

such that its restriction on Y is LUR. Let h = || • \\2/2 and g := h + f* on X*.

The function g is luMower semicontinuous on X*. Let k be a convex function on X

such that k* — g. We claim that there exists a constant C such that for any e > 0,
x G X and y G dk(x), we have {v : g(v + y) — g(y) — (x,v) ^ Ce} C eBx* • Since
g(u) = oo whenever u (fc Y, we only need to consider points in Y. Let v £ Y,

then (fli(y) + g(y + v))/2 - g((2y + v)/2) > ( % ) + h(y + v))/2 - h((2y + v)/2) for any
y G Y. Using (*), we have (g(y) + g(y + v))/2 - g((2y + v)/2) ^ L \\vf for any v € Y

and for any y 6 Y. Following the same idea as in the proof of Theorem 7, we can
complete the proof of the claim. By Lemma 6, k is Frechet differentiable and k' is
Lipschitz. For each n £ IN define gn := /* + /i/(2n4) and kn such that fc* = g. By
the above argument, the function kn is Frechet differentiable and k'n is Lipschitz for
each n £ IN. By [8, Lemma 2.1], lim<7n = / uniformly on X. U
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